首页> 中国专利> 用于硫属化物光伏应用的低熔点溅射靶及其制造方法

用于硫属化物光伏应用的低熔点溅射靶及其制造方法

摘要

在本发明一个示例性的实施方式中,描述了一种用于沉积半导体性硫属元素化物膜的溅射靶结构。所述溅射靶包括:靶体,其具有包含Cu1-x(Se1-y-zSyTez)x的靶体组合物,其中:x值大于或等于约0.5;y值在约0到约1之间;z值在约0到约1之间;并且所述靶体组合物中Se、S和Te相的总量小于所述靶体组合物的50体积%。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2014-07-16

    授权

    授权

  • 2013-01-09

    实质审查的生效 IPC(主分类):C23C14/34 申请日:20101124

    实质审查的生效

  • 2012-08-08

    公开

    公开

说明书

技术领域

本发明一般性地涉及光伏器件的制造,特别涉及低熔点溅射靶的制造,所述溅射靶用于沉积所述器件的半导体性硫属化物(chalcogenide)膜。

背景技术

半导体性硫属化物膜通常在光伏器件(例如太阳能电池)中用作吸收层。硫属化物是指由至少一种硫族离子(元素周期表中第16(VI)族元素,例如硫(S)、硒(Se)和碲(Te))和至少一种更具正电性元素组成的化合物。本领域技术人员明白,当提到“硫属化物”时通常仅指硫化物、硒化物和碲化物。基于薄膜的太阳能电池器件可以使用这些硫属化物半导体材料本身作为吸收层,或者使用它们与其他元素或甚至化合物(例如氧化物、氮化物和碳化物等)的合金作为吸收层。(单独的或混合的)硫属化物半导体具有正好在地球太阳能光谱范围内的光学带隙(optical band gap),因此可以在薄膜基太阳能电池中用作光子吸收剂来产生电子孔穴对并将光能转化为可用的电能。

传统上通常使用基于物理气相沉积(PVD)的工艺,特别是基于溅射的沉积工艺,以高产量和产率来大批量生产这种薄膜层。这些薄膜层可以通过高纯度溅射靶的溅射(以反应性溅射/非反应性溅射或共溅射的形式)来沉积。通常,所得半导体薄膜的质量取决于提供材料的溅射靶的质量,而溅射靶的质量类似地通常取决于靶制造工艺的质量。通过具有相同化学计量比的合适材料的高纯度溅射靶的非反应性溅射,可以理想地实现制造工艺的简化同时确保精确地控制(薄膜层的)化学计量比。然而,因为这类材料中的一些具有拥有不同溅射速率的不同原子种类以及不同的熔点,所以在薄膜中实现精确的化学计量比控制仍然是一个挑战。所得薄膜中的任何化学计量比的偏离都会导致结构体中未经调整的电荷补偿,进而可能影响器件特性。此外,从溅射靶中引入杂质到薄膜吸收层中还会导致器件特性的不一致和不可靠。例如,杂质可能在带隙中充当陷阱能级(根据不同的杂质及其相对浓度可能变化),另外,为了在沉积工艺中减少电弧和缺陷的产生,溅射靶本身也需要具有适当的密度,因为这些电弧和缺陷会限制工艺的产率。

附图说明

图1示出了平衡Cu-Se相图。

图2示出了平衡Cu-S相图。

图3示出了平衡Cu-Te相图。

图4示出了通过示例性溅射靶得到的特征X-射线衍射图案的实例。

图5示出了制造示例性溅射靶的工艺实例的流程图。

图6示出了制造示例性溅射靶的工艺实例的流程图。

图7A和7B分别示出了示例性溅射靶的俯视图和侧视截面图。

具体实施方式

本发明一般性地涉及适用于光伏应用的溅射靶,并且具体地涉及用于沉积所述应用中所用的半导体性硫属化物膜的低熔点溅射靶的制造。

铜铟镓二硒化物(例如Cu(In1-xGax)Se2,其中x小于或等于约0.7),铜铟镓硒化物硫化物(例如Cu(In1-xGax)(Se1-ySy)2,其中x小于或等于约0.7且y小于或等于约0.99),及铜铟镓二硫化物(例如Cu(In1-xGax)S2,其中x小于或等于约0.7),以上各种通常被称为“CIGS”材料,已被成功用在光伏电池中的薄膜吸收体的制造中,这主要由于它们具有相对高的吸收系数。实际上,利用铜铟镓二硒化物吸收层已经制造了光伏效率大于或等于约20%的光伏电池。为使吸收层(下文中被称为“吸收层”或“吸收体”)中的缺陷密度最小化所做的各种努力已使得高品质的CIGS薄膜光伏电池能被制造。作为示例,通过加热CIGS材料至接近其熔融温度(这有助于吸收层中的晶粒生长和缺陷清除)可以实现吸收层中的缺陷密度的降低。然而,不幸的是,CIGS材料的熔融温度相对较高(例如接近1000摄氏度),并且从制造的立场出发,该方法通常不经济。此外,为了使用玻璃基板,制造过程可能通常不能显著超过约500摄氏度的工艺温度。在一些具体的实施方式中,为了克服这些和其他挑战,制造溅射靶,该溅射靶用于沉积包含至少一种具有较低熔化温度的材料的CIGS吸收层。例如,In的熔化温度为约157摄氏度,Se的熔化温度为约217摄氏度,S的熔化温度为约113摄氏度,Ga的熔化温度为约30摄氏度,而Cu1-xSex(例如,其中x大于或等于约0.53)的熔化温度为约523摄氏度。

已经确定,为了制造效率达到或超过12%的光伏电池,Se和/或S必须存在于CIGS吸收体中。遗憾的是,通常难以实现控制CIGS材料中Se和S的组成。Se和S具有低蒸气压,并且可能在高工艺温度下的退火或沉积期间从Cu和In层中逸出。在CuSe和CuS层中,这通常分别导致Cu/Se或Cu/S的比例增大,并且导致这些层的熔点提高。例如,如图1的平衡Cu-Se相图所示,Cu2Se材料的熔点超过Cu1-xSex(其中x大于或等于约0.53)熔点的两倍。类似地,如图2的平衡Cu-S相图所示,Cu1.8S材料的熔化温度远高于Cu1-xSx(其中x大于或等于约0.5)。此外,图3示出了平衡Cu-Te相图。CIGS层中Se和S的损失导致所得吸收层中存在Se和S空缺,这会降低这些CIGS吸收体的电性能。此外,Se和S的损失可能导致形成具有不同于铜铟镓二硒化物和铜铟镓二硫化物的化学计量比的相。这些诱导相通常对CIGS吸收层的电性能产生不利的影响。

控制Se或S组成的一种方法是在H2S和/或H2Se的存在下溅射Cu和In层或使Cu和In层退火。H2S和H2Se均是有毒且易燃的,因而必须小心处理。但是,这种方法允许精确投料并且非常严格地控制硫属化物的组成。另一种方法包括,在Se或S蒸气氛中溅射Cu和In层或使Cu和In层退火。然而,在高产量制造工艺中通常难以控制Se和S的热蒸发。硫化/硒化发生在硫属化物过量的环境中,不能精确投料或控制。此外,为了使Se或S的损失最小化,可以使Cu和In层快速退火。例如,在快速退火过程中,其上沉积/生长光伏电池的基板的温度可以每秒增加一摄氏度或几摄氏度(或者明显更快)以使Se或S的蒸发最小化。

另一种避免Se或S损失的方法是在升高的温度下增大被溅射的含有Se或S的材料的沉积速率。例如,溅射工艺可以利用磁控溅射。磁控溅射是一项已建立的技术,其用于沉积磁硬盘驱动器和微电子器件中的金属层,以及用于沉积半导体应用中的本征导电氧化物层。使用磁控溅射的好处可能包括高沉积速率和在大面积上对所沉积膜的厚度和组成的精确控制。然而,磁控溅射可能不适合溅射仅有Se或仅有S的层。因而,在一些实施方式中,Se和S可以通过使用例如热蒸发技术来沉积。

本发明的一些具体的实施方式涉及低熔点溅射靶的制造,特别是由Cu-Se,Cu-S,Cu-Te或其适当的组合(在下文中被统称为Cu-(Se,S,Te))形成的低熔点溅射靶。在一个具体的应用中,所述溅射靶用于溅射多层薄膜结构(例如用于光伏器件中的CIGS基吸收层),其包含一个或更多个(In,Ga)(Se,S)和Cu1-x(Se1-ySy)x(例如其中x大于或等于约0.5并且其中y可以在0-1的范围内)的层,其中两个或更多个层可以交替方式溅射(在下文中被写成(In,Ga)(Se,S)/Cu1-x(Se1-ySy)x)。沉积了所有吸收层之后,可以使多层结构退火,或在溅射过程中定期或间歇地(例如沉积两个或更多个交替层之后)退火。在第二个具体的应用中,溅射靶用于在低于约450摄氏度的温度下溅射(In,Ga)(Se,S)的薄膜,随后用溅射靶在高于约450摄氏度的温度下溅射Cu1-xSex(例如其中x大于或等于约0.5)的薄膜。

如例如图1所示的平衡相图所示明,制造这种低熔点溅射靶存在多个挑战。例如,如图1所示,在低于约332摄氏度下CuSe(图中的CuSeht2)和CuSe2(图中的CuSe2 rt)或Cu2Se(图中的Cu2Se ht)和Se相以Cu1-xSex(例如其中x大于或等于约0.5)合金形式存在,这更具体地取决于材料组成。同样如图1所示的平衡相图所示明,在高于约332摄氏度下,CuSe2相很明显不再稳定,Cu1-xSex(例如其中x大于或等于约0.5)合金由CuSe相和Se相组成,其中Se是液体形式。同样要指出的是,在高于332摄氏度下少量百分比的Cu溶于Se中。在进一步升高的温度下,例如高于约377摄氏度,CuSe很明显不再稳定,而Cu1-xSex(例如其中x大于或等于约0.5)合金由Cu2Se相(熔点高于1000摄氏度)和Se液相(在高于377摄氏度下少量百分比的Cu溶于Se中)组成。上面已经描述,Se的蒸气压低,在升高的温度下会从含Se材料中逸出。此外,如果材料中存在液体Se,预期Se的蒸发进一步增大。因而,在一些具体的实施方式中,在Cu1-xSex(例如其中x大于或等于约0.5)合金溅射靶中,Cu2Se相(高熔点相)和Se相的量应该最小化,而CuSe相和CuSe2相的量应该最大化。此外,还要注意的是,Cu1-xSex(例如其中x大于或等于约0.5)合金溅射靶的制造很重要,可以伴随加入额外的Se以抵消溅射薄膜(例如用于光伏器件的CIGS吸收体)时的Se损失。

类似地,在图2所示的平衡相图中,主要感兴趣的相包括S(图中的(S)8αrt)、CuS(图中的CuS rt)、和Cu1.8S(图中的Cu1.8S dig ht)。在一些具体的实施方式中,在Cu1-ySey(例如其中y大于或等于约0.5)合金溅射靶中,Cu1.8S相(高熔点相)和S相的量应该最小化,而CuS相的量应该最大化。

类似地,在图3所示的平衡相图中,主要感兴趣的相包括Te、CuTe、Cu1.4Te(图中的Cu1.4Te rt、Cu1.4Te ht、Cu1.4Te ht1、或Cu1.4Teht2)。在一些具体的实施方式中,在Cu1-zTez(例如其中z大于或等于约0.5)合金溅射靶中,Cu1.4Te相(高熔点相)和Te相的量应该最小化,而CuTe相的量应该最大化。

提供制造工艺的简化同时确保精确地控制沉积的Cu1-x(Se1-y-zSyTez)x(例如其中x大于或等于约0.5,其中y在约0-1之间,并且其中z在约0-1之间)的化学计量比可以通过如下实现:具有基本相同化学计量比的适当材料的高纯度溅射靶的非反应性的溅射。一些具体实施方式的目标是制造可用于沉积具有Cu1-x(Se1-y-zSyTez)x(例如其中x大于或等于约0.5,其中y在约0-1之间,并且其中z在约0-1之间)的组成的膜的Cu-(Se,S,Te)溅射靶。此外,通过溅射靶的溅射所沉积的Cu1-x(Se1-y-zSyTez)x(例如其中x大于或等于约0.5,其中y在约0-1之间,并且其中z在约0-1之间)膜的组成在靶的使用寿命期间不应发生明显的变化。例如,在Cu-Se的情况下,这可以在一些具体的实施方式中通过制造主要由CuSe相和CuSe2相组成的Cu1-xSex(例如其中x大于或等于约0.5)溅射靶而实现。在一些具体的实施方式中,理想的是,至少约50体积%(50vol.%)的所述Cu1-xSex溅射靶由CuSe相和CuSe2相组成。在一些具体的实施方式中,甚至更理想的是,超过80vol.%的所述Cu1-xSex溅射靶由CuSe相和CuSe2相组成。在一些具体的实施方式中,甚至进一步理想的是,超过90vol.%的所述Cu1-xSex溅射靶由CuSe相和CuSe2相组成。图4示出了通过根据某一具体实施方式的示例性CuSe2溅射靶得到的特征X-射线衍射图案的实例。如X-射线衍射图案所示明的,明显的是CuSe2溅射靶由超过50vol.%的CuSe相和CuSe2相组成。

本领域技术人员明白,在溅射过程中被正离子轰击的结果是溅射靶被加热。因而,在示例性应用中,为了使Se相和Cu2Se相的形成最小化,在溅射过程中溅射靶应该被冷却低于约332摄氏度,并且甚至更期望低于200摄氏度。Cu1-xSex(例如其中x大于或等于约0.5)合金溅射靶中单质Se的存在将增大Se蒸发,因而在靶的使用寿命期间影响使用靶所溅射的Cu-Se膜的组成。此外,预期Cu2Se相和Se相具有不同的溅射率,这可能在靶的使用寿命期间进一步影响使用靶所溅射的膜的组成。

通常,在一些具体的实施方式中,单质Se、S或Te相的总vol.%应该小于溅射靶组合物的50vol.%。例如,在所制造的具有Cu1-x(Se1-y-zSyTez)x(例如其中x大于或等于约0.5,其中y在约0-1之间,并且其中z在约0-1之间)组成的溅射靶中,单质Se、S或Te相的总vol.%应该小于溅射靶组合物的50vol.%。在一个更具体的实施方式中,所述Cu1-x(Se1-y-zSyTez)x溅射靶的组成应该为,其中Cu2-xSe相、Cu2-xS相和Cu2-xTe相(其中x大于或等于约0.30)小于总的溅射靶组合物的50vol.%。在一个更具体的实施方式中,所述Cu1-x(Se1-y-zSyTez)x(其中z为0,即Cu1-x(Se1-ySy)x)溅射靶的组成应该为,其中CuSe2相、CuSe相和CuS相占总的溅射靶组合物的至少50vol.%。在一个更具体的实施方式中,所述Cu1-x(Se1-y-zSyTez)x(其中y和z为0,即Cu1-xSex)溅射靶的组成应该为,其中CuSe2相和CuSe相占总的溅射靶组合物的至少50vol.%。在一个更具体的实施方式中,所述Cu1-x(Se1-y-zSyTez)x(其中y和z为0,即Cu1-xSex)溅射靶的组成应该为,其中CuSe2相和CuSe相占总的溅射靶组合物的至少80vol.%。在一个更具体的实施方式中,所述Cu1-x(Se1-y-zSyTez)x(其中y等于1而z为0,即Cu1-xSx)溅射靶的组成应该为,CuS相占总的溅射靶组合物的至少50vol.%。在一个更具体的实施方式中,所述Cu1-x(Se1-y-zSyTez)x(其中y等于0而z等于1,即Cu1-xTex)溅射靶的组成应该为,CuTe相占总的溅射靶组合物的至少50vol.%。此外,在一些具体的实施方式中,Cu1-x(Se1-y-zSyTez)x(例如其中x大于或等于约0.5,其中y在约0-1之间,并且其中z在约0-1之间)溅射靶的纯度为至少约2N7,气体杂质浓度对于氧(O)、氮(N)、氢(H)每项都低于约500ppm(百万分之一),碳(C)杂质浓度低于约500ppm,密度为溅射靶组合物的理论密度的至少95%。在一些具体的实施方式中,溅射靶可以通过铸锭冶金工艺或粉末冶金工艺的方法来形成。

此外,在一些实施方式中,Cu1-x(Se1-y-zSyTez)x(例如其中x大于或等于约0.5,其中y在约0-1之间,并且其中z在约0-1之间)溅射靶可以被制造成掺杂有元素磷(P)、氮(N)、硼(B)、砷(As)、以及锑(Sb)。此外,已经确定,加入钠(Na)可以改善CIGS吸收体的电性能或其他性能,Cu1-x(Se1-y-zSyTez)x溅射靶可以被制成包含至多约5原子%的元素Na、钾(K)、铷(RB)或镁(Mg)中的至少一种。此外,为了在溅射过程中使期望的相稳定并使Se、S和Te蒸发最小化,可以将Cu1-x(Se1-y-zSyTez)x溅射靶制成包含至多10原子%的下列元素中的至少一种:Al,Si,Ti,V,Zn,Ga,Zr,Nb,Mo,Ru,Pd,In,Sn,Ta,W,Re,Ir,Pt,Au,Pb,以及Bi。在一些具体的实施方式中,Cu1-x(Se1-y-zSyTez)x溅射靶可以被制成包含绝缘的氧化物、氮化物、碳化物和/或硼化物等,以沉积例如在2007年10月24日递交的、名为″SEMICONDUCTOR GRAIN AND OXIDE LAYER FOR PHOTOVOLTAICCELLS″的PCT申请PCT/US2007/082405(公开号WO/2008/052067)中所描述的那些膜结构,该PCT申请通过引用在此结合于本文中。在这些实施方式中,沉积膜的微结构成为颗粒状的,以氧化物、氮化物、碳化物和/或硼化物等形成晶粒界面相。

下面参照附图5和6描述制造溅射靶(例如上面描述的溅射靶)的两个示例性工艺。类似的工艺在于2009年10月27日提交的、名为“CHALCOGENIDE ALLOY SPUTTER TARGETS FOR PHOTOVOLTAICAPPLICATIONS AND METHOD OF MANUFACTURING THE SAME”的美国专利申请12/606,709中有所描述,其通过引用结合在本文中。根据具体应用对纯度、密度、微结构和组成的要求,溅射靶可以使用下面的工艺来制造:(1)铸锭冶金工艺,例如但不限于,参照图5的流程图示例和举例说明的;或(2)粉末冶金工艺,例如但不限于,参照图6的流程图示例和举例说明的。应该注意的是,尽管图5和图6使用单个流程图来进行描述和说明,但是图5和图6所示的工艺实际上都包括一个或多个独立的工艺。

在一些具体的实施方式中,可以利用铸锭冶金工艺形成其中含有单独的或混合的硫属元素化物(如上面所述的具有或不具有所述添加剂)的合金组合物的溅射靶,其中对于所有痕量形式的杂质含量来说,溅射靶纯度为约2N7或更高(例如溅射靶的硫属元素化物合金至少为99.7%纯),气体杂质浓度对于氧(O)、氮(N)、氢(H)每项都低于约500ppm(百万分之一),碳(C)杂质浓度低于约500ppm,密度为溅射靶组合物的理论密度的至少95%。

在一些具体的实施方式中,参照图5说明的工艺开始于步骤502,即提供一个或更多个铸锭(ingot),这些铸锭总共地含有最终所得溅射靶需要包含的材料(例如单质或母合金(master alloy))(例如,一个或更多个铸锭中的每一个都含有用于生产具有期望硫属元素化物合金组成的溅射靶所需的材料;或者,两个或多个铸锭总共地而不是单独地含有用于生产具有期望硫属元素化物合金组成的溅射靶所需的材料)。

因为硫属元素化物是线性化合物(line compounds),它们通常比较脆;但是可以利用在严格控制的速度下(例如,例如低于约每分钟4000摄氏度的冷却速率)凝固来防止任何气孔或缩孔。在一些具体的实施方式中,铸造铸锭的密度可以通过使用例如热等静压压制(hot isostaticpressing)和/或使用环境温度环境压强下或高温高压下的其他凝固方法等铸造后致密化来提高。根据合金的延展性和可加工性,在一些具体实施方式中,可以对这些铸锭进行热机械加工来进一步提高密度和改善铸造微结构。热机械加工的例子包括,例如但不限于,单向或多向、冷或温或热的轧制、锻造或其他在例如约环境温度到约固相线温度(solidustemperature)以下50摄氏度的温度范围内进行的变形处理。此外,为了有助于组成控制并使Se、S和Te蒸发最小化,在熔化和/或凝固过程可以在Se、Te和S中的一种或更多种的正压力氛围(例如大于约0.01milliTorr)中进行对用于制造溅射靶的铸锭的任何热处理。

在一个示例性实施方式中,可以使用步骤502提供的铸造铸锭来制造上面描述的溅射靶。但是,在一些具体实施方式中,如上所述,在步骤504,可以对铸造铸锭进行铸造后致密化或铸造后凝固。例如,步骤504的铸造铸锭的铸造后致密化可以通过环境温度环境压强下或高温高压下的热等静压压制来实现。在其他实施方式中,可以在步骤504对铸造铸锭进行铸造后致密化,然后在步骤506对其进行热机械加工。热机械加工的例子包括,例如但不限于,单向或多向、冷、温或热的轧制、锻造、或其他在例如约环境温度到约固相线温度(solidus temperature)以下50摄氏度的温度范围内进行的变形处理。

在一些具体的实施方式中,之后铸锭可以在步骤508中熔化,例如通过真空熔融或惰性气体熔融(例如感应熔融、电子束熔融),例如在真空内(小于约1Torr)液相线温度(liquidus temperature)以上约200摄氏度的最高温度下熔融。在其他实施方式中,铸锭可以在开放式熔化器中熔化。在任何一种情况下,工艺可以继续在步骤510中在模具中以例如小于约每分钟4000摄氏度(在一些具体的实施方式中大于约每分钟1000摄氏度)的冷却速率进行受控凝固(例如传统凝固或者搅拌辅助凝固或搅动辅助凝固)。这样允许有充足的时间来以低密度熔渣形式除去杂质。例如,Cu1-xSex(其中x大于或等于0.50)合金的快速冷却抑制了Cu2Se相和Se相的形成。通过在步骤508的熔化和步骤510的凝固过程中维持正的惰性气体压(例如大于0.01milliTorr)或Se、Te和S中的至少一种的正压力,即使对于含有低熔点高蒸气压的元素(例如Ga)的合金来说,也可以确保精确的化学计量比控制。最终所得溅射靶体除了其他常规处理以外还可以进行机加工。

在一些具体实施方式中,所述工艺可用于制造主要(按体积计大于60%)具有等轴晶粒(晶粒纵横比小于3.5)的微结构的硫属元素化物合金溅射靶。在大多数合金中,来自于铸造铸锭的靶微结构的柱体性(纵横比)可以在机加工中消除。在一些实施方式中,上面提到的微结构特征也可以通过在凝固过程中搅拌或搅动熔体从而通过剪切力打断微结构中的任何柱体性来获得。另外,应该理解通过铸锭冶金得到的靶可以通过重新熔化而回收。这显著降低了经营成本。

在铸锭冶金工艺的一个具体的示例性实施方式中,可以通过如下方法来制造CuSe2溅射靶:在Se正压力(或过压)和725摄氏度(例如液相线温度以上约200摄氏度)下使用铸锭熔体原料(单质原料或重熔原料),之后进行受控凝固(例如以小于约每分钟4000摄氏度的冷却速率进行)。在Se过压下铸造铸锭被横轧(cross-rolled)(以约30摄氏度的间隔),同时保持铸锭表面的温度在约100-250摄氏度的范围内,并且在一个具体实施方式中,至少在固相线温度以下50摄氏度。这种合金组合物的使用过的靶也可以用作重熔原料。

下面参照附图6的流程图来描述使用粉末冶金技术来形成溅射靶的第二种工艺。在示例性的实施方式中,可以使用粉末冶金技术来形成带有或不带有掺杂元素或其他添加剂的、含有合金组合物Cu1-x(Se1-y-zSyTez)x(例如其中x大于或等于约0.5,其中y在约0-1之间,并且其中z在约0-1之间)的溅射靶。在一些具体实施方式中,对于所有痕量形式的杂质含量来说,所得溅射靶的纯度为至少约2N7或更高(例如溅射靶的硫属元素化物合金至少为99.7%纯),气体杂质浓度对于氧(O)、氮(N)、氢(H)每项都低于约1000ppm(百万分之一),碳(C)杂质浓度低于约1500ppm,密度为溅射靶组合物的理论密度的至少95%。

在使用粉末冶金的一些具体实施方式中,按照如下方法制造溅射靶:使用在步骤602中提供的原料粉末,然后在步骤604对原料粉末(单质或气相雾化母合金)进行机械合金化和/或研磨(高能的或低能的)和/或共混处理,然后在步骤606,例如在模具中在高压或/或高温下进行固结(consolidation)。在一些具体的示例性实施方式中,利用对原材料和/或固结方法的合理选择,可以形成溅射靶,其硫属元素化物合金的密度等于或大于合金的理论密度的约95%。作为示例而不是作为限制,步骤604的示例性固结技术可以包括下列技术中的一个或更多个:真空热压、热等静压压制、(液态或固态)常规(热)烧结或能量辅助(电)烧结工艺。能量辅助烧结工艺的一个例子是火花等离子体烧结。在一个示例性实施方式中,含有低熔点(例如熔点低于300摄氏度)元素(诸如Se、S或Te或其他合适元素)的合金组合物在步骤604中使用液态烧结工艺固结。合适的烧结温度例如在约0.2Tm至0.8Tm的范围内,这里Tm是合金的熔化温度(通常由DTA分析来估计),或在0.2Ts至0.8Ts的范围内,这里Ts是合金中任何化学成分的升华温度。

在一些具体实施方式中,参照图6描述的使用粉末冶金技术制造的溅射靶显示出小于1000微米的最大微结构特征的平均特征尺寸。此外,通过对起始原材料粉末、各种颗粒的尺寸及其分布、比表面积的适当选择可以相应地对微结构进行设计。在一个具体实施方式中,任意两种成分粉末的颗粒尺寸的比率可以在约0.01至10的范围内。

一些具体实施方式使用不同原子种类的单质粉末的机械合金化。其他实施方式可以使用期望薄膜中的硫属元素化物的精确或类似名义组合物的快速凝固的(气相雾化的)合金或熔融粉粹的Cu-(Se,S,Te)母合金。此外,在一些实施方式中,Cu粉末在H2S和H2Se中至少一种的存在下和/或在Se、S和Te中至少一种的正压力下退火。其他实施方式可以选择使用一种或更多种母合金与其他单独的金属或其他母合金的组合。在一些示例性的具体实施方式中,可以设计母合金来增强最终所得溅射靶的导电性。这对于含有Ga、In或其他低熔点金属的合金特别有用,这里低熔点金属可以预合金化并且可以在更大范围的工艺窗口内进行处理。

在一个具体的实施方式中,通过下列方法制造Cu-(Se,S,Te)合金:在液相线温度以上至多约200摄氏度的温度下、在正的惰性气压(例如大于0.01milliTorr)或在Se和/或S的过压下使熔体原料(例如单质或母合金)熔融,随后在模具中以例如大于约每分钟100摄氏度(优选地,大于约每分钟1000摄氏度)的冷却速率进行快速凝固(或淬火)。例如,Cu1-xSex(其中x大于或等于约0.50)的快速冷却抑制了Cu2Se相和Se相的形成。例如,在示例性气体雾化工艺中,通过气体射流将熔融的合金分散为微米尺寸的粉末。因而,这代表一种通过相对快的冷却速率来制造Cu-(Se,S,Te)粉末的特别有效的方法。

根据上面描述的实施方式制造的最终所得溅射靶的靶体可以,例如但不限于,是具有名义组成的单一块体,例如图7A和7B所示;或者是结合在一起的组合体,其中具有期望名义组成的靶体通过使用例如如下中的任意一种或全部被结合到支撑盘上:粘合剂(聚合物型的或非聚合物型的)、扩散结合、焊接结合或其他合适的材料接合工艺。在一些具体的实施方式中,靶体或结合的靶组合体的横截面可以是盘状、圆形、或椭圆形。图7A和7B分别示出了具有溅射顶表面702的示例性溅射靶700的俯视图和侧视截面图。在其他实施方式中,靶体或结合的靶组合体可以是具有圆形OD(外径)和/圆形ID(内径)的柱体,其还可以在PVD设备中用作可旋转组件。在其他实施方式中,溅射靶可以是长方形或正方形的工件,其中具有期望名义组成的靶体可以是单体块或者是几个单体块或板片的组合体。在一些实施方式中,靶体可以用于在衬底上例如约2025平方毫米或更大的面积范围内沉积溅射膜。尽管靶尺寸可以在大范围内变动,且通常取决于具体应用(例如典型的PV应用),但是在一些具体实施方式中靶体应当足够大以便在156平方毫米和更大面积的电池上以及1.2平方米的模块上均匀地沉积薄膜。

本公开内容涵盖本领域技术人员对本文的示例性实施方式所能想到的所有可能的变化、代替、改动、替换、和修改。类似地,适当的时候,本文所附权利要求涵盖本领域技术人员对本文的示例性实施方式所能想到的所有可能的变化、代替、改动、替换、和修改。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号