首页> 中国专利> 进行井下微震检测的地震波采集观测系统

进行井下微震检测的地震波采集观测系统

摘要

本发明涉及一种进行井下微震检测的地震波采集观测系统,为解决现有系统不能形成三维图像问题,其系统以井口为圆心O,由多个同心圆组成,形成圈状结构,每个圆周上设置的接收点数可以不同,一般随着圆周长的增加而增加,以保持接收点分布均匀。接收的地震数据为圈状三维结构,而且布设比较均匀,可以进行三维立体显示地震波的属性。圆周上布设的接收点个数为最内圈的2倍数并且均匀分布,在具有圈状结构的同时,具有放射状结构,可以把每一条射线作为一个二维剖面显示地震波的属性。其充分考虑了井下微震检测的有效性和经济性,并且布设简单,容易实现,能形成三维图像,接收的地震数据为圈状三维结构,而且布设比较均匀,可以进行三维立体显示地震波的属性。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2014-12-17

    授权

    授权

  • 2014-11-12

    专利申请权的转移 IPC(主分类):G01V1/20 变更前: 变更后: 登记生效日:20141021 申请日:20111102

    专利申请权、专利权的转移

  • 2012-10-03

    实质审查的生效 IPC(主分类):G01V1/20 申请日:20111102

    实质审查的生效

  • 2012-08-08

    公开

    公开

说明书

技术领域

本发明涉及一种微震检测观测系统,特别是涉及一种进行井下微震检测的地震波采集观测系统。

技术背景

在地震勘探时,为了得到能够系统地追踪目的层有效波的地震记录,在野外资料采集时必须适当地安排和选择激发点与接收点的相互位置,这种描述激发点和接收点之间以及排列和排列之间位置关系称为观测系统。

井下微震检测的地震波采集观测系统是一种比较特殊的观测系统,它的激发源为储层压裂时破裂产生的微震,分布于井的周围,具有随机性。而且能量较弱,信噪比非常低。目前采用的观察系统均为放射状,以井口为中心,由若干条测线呈放射状向外延伸。它的优势是布设简单,容易实现,缺点是离中心点越远,圆弧方向间距越大,不能形成三维图像。

发明内容

本发明目的在于克服现有技术的上述缺陷,提供一种能形成三维图像的进行井下微震检测的地震波采集观测系统。是检测井下微震的地震波采集观测系统,也是一种采集井下压裂时产生地震波的方法。

本发明为一种进行井下微震检测的地震波采集观测系统,用于检测井中压裂时产生的地震波。本观测系统以井口为圆心O,由多个同心圆组成,形成圈状结构,每个圆周上设置的接收点数可以不同,一般随着圆周长的增加而增加,以保持接收点分布均匀。

接收点按如下要求分布:我们定义第i个同心圆的半径为Ri(i=1,2,…,max),则有:最小圆的半径为R1,最大圆的半径为Rmax;第i个圆的周长为Ci=2πRi,第i个圆与第i+1个圆的半径差DRi=R(i+1)-Ri。

定义在第i个圆周上布设Mi个接收点并均匀分布,并且Mi=N×2m(N=3,4,5,6,7,8,…;m=0,1,2,3,…)则有:2个接收点之间的弧长DLi=2πRi/Mi。定义最短弧长为DLmin,最长弧长为DLmax,则有:DLmin≤DLi≤DLmax。

根据以上定义,我们给出了检测井下微震的地震波采集观测系统(见图1):①由多个同心圆组成,形成圈状结构,第i个同心圆的半径为Ri(i=1,2,…,max),最小圆的半径为R1,最大圆的半径为Rmax;②接收点的半径方向间距(简称径距)为DRi;③接收点圆周方向的间距(简称弧距)为DLi,并有DLmin≤DLi≤DLmax。④第i个圆周上布设Mi个接收点并均匀分布,并且Mi=N×2m(N=3,4,5,6,7,8,…;m=0,1,2,3,…)。

本发明充分考虑了井下微震检测的有效性和经济性,布设简单,容易实现,其能形成三维图像,接收的地震数据为圈状三维结构,而且布设比较均匀,可以进行三维立体显示地震波的属性。

作为优化,接收的地震数据为圈状结构,可以把每个圆圈作为一个二维剖面显示地震波的属性。

作为优化,由于定义了圆周上布设的接收点个数为最内圈的2倍数(最内圈除外)并且均匀分布,在具有圈状结构的同时,具有放射状结构,可以把每一条射线作为一个二维剖面显示地震波的属性。

作为优化,在接收点的半径方向间距(简称径距)DRi可以为常数,但接收点圆周方向的间距(简称弧距)DLi则不能为常数,只能限制在一定范围内,并有DLmin≤DLi≤DLmax。

作为优化,本发明检测井下微震的地震波采集观测系统,是一种理想情况下的规则观测系统,在野外实际应用时,由于受地表地质条件和地表环境条件的制约,可以根据实际情况做出合理调整。

作为优化,上述系统是一种理想情况下的规则观测系统,在野外实际应用时,由于受地表地质条件和地表环境条件的制约,可以不太规则,即径距DRi和弧距DLi均可以在一定范围内变化。有DRmin≤DRi≤DRmax;DLmin≤DLi≤DLmax,其中DRmin和DRmax分别为允许的最小和最大径距,DLmin和DLmax分别为允许的最小和最大弧距。

本发明进行井下微震检测的地震波采集观测系统充分考虑了井下微震检测的有效性和经济性,并且布设简单,容易实现,能形成三维图像,接收的地震数据为圈状三维结构,而且布设比较均匀,可以进行三维立体显示地震波的属性。

附图说明

图1是本发明井下微震检测的地震波采集观测系统示意图。

具体实施方式

如图所示,本发明为一种进行井下微震检测的地震波采集观测系统,用于检测井中压裂时产生的地震波。本观测系统以井口为圆心O,由多个同心圆组成,形成圈状结构,每个圆周上设置的接收点数可以不同,一般随着圆周长的增加而增加,以保持接收点分布均匀。

我们定义第i个同心圆的半径为Ri(i=1,2,…,max),则有:最小圆的半径为R1,最大圆的半径为Rmax;第i个圆的周长为Ci=2πRi,第i个圆与第i+1个圆的半径差DRi=R(i+1)-Ri。

定义在第i个圆周上布设Mi个接收点并均匀分布,并且Mi=N×2m(N=3,4,5,6,7,8,…;m=0,1,2,3,…)则有:2个接收点之间的弧长DLi=2πRi/Mi。定义最短弧长为DLmin,最长弧长为DLmax,则有:DLmin≤DLi≤DLmax。

根据以上定义,我们给出了检测井下微震的地震波采集观测系统(见图1):①由多个同心圆组成,形成圈状结构,第i个同心圆的半径为Ri(i=1,2,…,max),最小圆的半径为R1,最大圆的半径为Rmax;②接收点的半径方向间距(简称径距)为DRi;③接收点圆周方向的间距(简称弧距)为DLi,并有DLmin≤DLi≤DLmax。④第i个圆周上布设Mi个接收点并均匀分布,并且Mi=N×2m(N=3,4,5,6,7,8,…;m=0,1,2,3,…)。

本发明地震波采集观测系统接收的地震数据为圈状三维结构,而且布设比较均匀,可以进行三维立体显示地震波的属性。

本发明地震波采集观测系统接收的地震数据为圈状结构,可以把每个圆圈作为一个二维剖面显示地震波的属性。

本发明地震波采集观测系统由于定义了圆周上布设的接收点个数为最内圈的2倍数(最内圈除外)并且均匀分布,在具有圈状结构的同时,具有放射状结构,可以把每一条射线作为一个二维剖面显示地震波的属性。

本发明地震波采集观测系统在接收点的半径方向间距(简称径距)DRi可以为常数,但接收点圆周方向的间距(简称弧距)DLi则不能为常数,只能限制在一定范围内,并有DLmin≤DLi≤DLmax。

本发明地震波采集观测系统是一种理想情况下的规则观测系统,在野外实际应用时,由于受地表地质条件和地表环境条件的制约,可以根据实际情况做出合理调整。

本发明地震波采集观测系统是一种理想情况下的规则观测系统,在野外实际应用时,由于受地表地质条件和地表环境条件的制约,可以不太规则,即径距DRi和弧距DLi均可以在一定范围内变化。有DRmin≤DRi≤DRmax;DLmin≤DLi≤DLmax,其中DRmin和DRmax分别为允许的最小和最大径距,DLmin和DLmax分别为允许的最小和最大弧距。

实例:

设:R1=50m;Rmax=2000m;DR=25m;DLmin=20m;DLmax=40m;N=8。

则有:

①观测系统由79个同心圆组成,最小圆半径R1为50m,最大圆半径Rmax为2000m,最小圆周长为314m,最大圆周长为12560m,

②接收点的半径方向间距(简称径距)DR为25m;

③接收点圆周方向的间距(简称弧距)为DLi,并有20m≤DLi≤40m

④第1个圆周上均匀布设8个接收点,第2~3个圆周上均匀布设16个接收点;第4~7个圆周上均匀布设32个接收点;第8~15个圆周上均匀布设64个接收点;第16~31个圆周上均匀布设128个接收点;第32~64个圆周上均匀布设256个接收点;第65~79个圆周上均匀布设512个接收点。

⑤整个观测系统布设有18856个接收点。

每个同心圆上的布设情况见表1。

表1:观测系统参数表

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号