首页> 中国专利> 谐振式加速度计谐振梁和支撑梁的二步腐蚀制造方法

谐振式加速度计谐振梁和支撑梁的二步腐蚀制造方法

摘要

本发明公开了一种谐振式加速度计谐振梁和支撑梁的二步腐蚀制造方法,属于微电子机械系统领域。本发明的目的在于在同一硅片(3)上制作出不在同一平面的谐振梁(1)和支撑梁(2),谐振梁(1)位于衬底上表面,支撑梁(2)的中性面与质量块(4)的重心在同一平面。在制作技术方面的特征在于:首先采用有掩膜腐蚀工艺从谐振梁(1)背面腐蚀到一定深度;然后正反两面光刻,腐蚀或刻蚀腐蚀槽(6)除谐振梁(1)和质量块(4)凸角补偿部分以外的腐蚀掩蔽层(7);最后,采用掩膜和无掩膜腐蚀相结合实现谐振梁(1)和支撑梁(2)的一次成型,谐振梁(1)和支撑梁(2)的厚度同时达到设定值。本制造方法使制作的谐振式加速度计结构简单,具有较小的交叉轴干扰。

著录项

  • 公开/公告号CN102602879A

    专利类型发明专利

  • 公开/公告日2012-07-25

    原文格式PDF

  • 申请/专利权人 中国计量学院;

    申请/专利号CN201210059372.2

  • 申请日2012-03-01

  • 分类号B81C1/00;G01P15/097;

  • 代理机构

  • 代理人

  • 地址 310018 浙江省杭州市下沙高教园区学源街258号中国计量学院

  • 入库时间 2023-12-18 06:11:50

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-03-01

    未缴年费专利权终止 IPC(主分类):B81C1/00 授权公告日:20160106 终止日期:20180301 申请日:20120301

    专利权的终止

  • 2016-01-06

    授权

    授权

  • 2014-10-22

    实质审查的生效 IPC(主分类):B81C1/00 申请日:20120301

    实质审查的生效

  • 2012-07-25

    公开

    公开

说明书

技术领域

本发明涉及谐振式加速度计的谐振梁和支撑梁的制造方法,特别是一种利用掩膜-无掩膜腐蚀技术制造 谐振式加速度计的谐振梁和支撑梁的二步腐蚀方法,属于微电子机械系统(Micro-Electro-Mechanical  Systems,MEMS)领域。

背景技术

微型加速度计是一类重要的力学量传感器。早在上世纪60年代末人们就开始研究一维微型硅加速度 计。80年代末开始一维微型加速度计的规模化生产。进入到90年代,随着科学技术的发展和军事、商业 市场的需求,开始研究三维微型加速度计,应用于军事、汽车电子、工业自动化、机器人技术、消费类电 子产品等领域。由于微型加速度计具有体积小、重量轻、功耗和成本低、过载能力强、易集成、可大规模 批量生产等优点,不仅成为微惯性测量组合的核心元件,也迅速应用到车辆控制、高速铁路、机器人、工 业自动化、探矿、玩具、医疗等民用领域。

微型加速度计是利用传感质量的惯性力测量加速度的传感器。按照检测质量的运动方式可以分为线加 速度计和摆式加速度计;按照信号检测方式分可为压阻式、电容式、隧道电流式、谐振式、热对流式、压 电式加速度计。按照有无反馈信号可分为开环偏差式和闭环力平衡式加速度计。按照敏感轴的数量,分为 单轴、双轴以及三轴加速度计。上世纪90年代以后,随着MEMS技术的不断发展以及军事、商业市场的 需求,单一方向的加速度测试已经不能满足各方面的需求,加速度计向三维方向发展,以用于检测空间加 速度,为卫星导航、导弹制导、炮弹定向等军工项目和汽车防震保护、自动刹车、医疗等民用项目服务。 三轴微型加速度计能够同时测量相互正交的三个轴向加速度。其测量原理包括电容式、压阻式、压电式和 热对流式,按照质量块数目可分为多质量块和单质量块系统。

谐振式加速度传感器利用惯性力改变谐振器的轴向应力和应变,从而引起谐振频率变化,检测谐振频 率的变化量获得加速度的大小。谐振式加速度传感器可以将被测加速度直接转换为稳定性和可靠性较高的 频率信号,而且在传输过程中不易产生失真误差,无需经A/D转换器即可与数字系统接口。另外,谐振 式加速度传感器动态范围宽、灵敏度和分辨率高、稳定性好、测量精度高,已达到1KHz/g的灵敏度和2μg 的噪声水平,能够满足对加速度传感器的高性能要求。1996年Christian Burrer报道的电热激励/压阻检测 谐振式加速度传感器由质量块、支撑悬臂梁和谐振梁组成。敏感质量块悬挂在与其中心轴线平行且对称的 两根支撑梁的一端,支撑梁另一端固定在衬底上。谐振梁一端与敏感质量块相连,另一端固定在衬底上。 当有垂直衬底表面的加速度作用于敏感质量块上时,质量块将在垂直方向移动,导致谐振梁产生拉伸或压 缩应变,改变谐振梁的固有频率,灵敏度为250Hz/g。

同年D.W.Burns结合体微机械和表面微机械工艺制作了一种静电激励/压阻检测的多晶硅微梁谐振式加 速度传感器,传感器包括质量块、上下密封盖、支撑弹性梁、两个同轴的谐振梁和检测谐振梁应变的压敏 电阻组成。质量块和弹性梁为对称结构以降低交叉轴的干扰,上、下密封盖板为质量块提供挤压模阻尼和 过载保护。密封外壳上施加直流偏压。谐振梁的驱动电极上施加小幅交流电压,产生的静电力驱动谐振梁 振动。谐振梁固支端的压敏电阻测量梁振动引起的应变,放大后反馈到驱动电极,使谐振梁振动在谐振频 率。两个谐振梁工作在差动模式,加速度使一个谐振梁的谐振频率增加,另外一个减小,以提高灵敏度并 对共模信号(如温度交叉灵敏度)进行抑制。传感器的量程可以通过支撑梁的尺寸调节。对20g的量程, 谐振梁的长度、宽度和厚度分别为200μm,40μm和2μm,谐振频率为500KHz,Z轴加速度检测灵敏度高达 1750Hz/g。

2000年韩国Seoul国立大学Byeung-leu1 Lee等采用表面微机械工艺研制了一种惯性导航级的差动谐 振式单轴加速度传感器(DRXL),其敏感元件是静电激励的扭转梁谐振器。垂直方向的加速度测量利用 静电刚度调节效应,通过加速度产生的惯性力改变弹性梁承受的静电力,实现对刚度系数的改变,从而引 起谐振频率的变化,并采用两个形状互补的质量块实现差动测量。面内加速度传感器采用末端带有质量块 的双端音叉,利用惯性力改变音叉的轴向力,从而改变谐振频率。面内加速度的谐振频率为23.4KHz,灵 敏度最高达到128Hz/g,带宽为110Hz,精度为5.2μg;垂直方向的谐振频率为12KHz,灵敏度最高达到 70Hz/g,带宽为100Hz,精度为2.5μg。

1997年Trey A.Roessig采用表面微机械工艺制作了一种新型结构的谐振式加速度传感器。传感器包括质 量块、两个双端音叉和支撑梁,双端音叉通过力放大结构两端的支承音叉连接。音叉通过横向运动的梳状 电容驱动在谐振频率上振动,并作为谐振电路反馈回路的一部分,以维持振动。当加速度作用在质量块上 时,产生双端音叉轴向方向的作用力,改变系统的势能,从而改变音叉的振动频率。两个双端音叉的差动 输出可以消除共模误差的一阶分量对频率的影响(如温度和交叉轴干扰)。双端固支音叉谐振器的谐振频 率为68KHz,灵敏度为45Hz/g。2002年该研究小组又报道了一种结构改进后的器件,真空封装后的器件在 300Hz时的本底噪声为

2005年,V.Ferrari等人报道了一种利用体硅工艺制作的电热激励/压阻检测谐振式加速度计。芯片平面 的加速度诱发微谐振梁轴向应力,按比例改变微梁的谐振频率。微梁谐振频率为700KHz。在0~3KHz频段 内,测量灵敏度为35Hz/g。测试系统内引入了电路补偿环节补偿输入输出的Cross-talk效应,有效的减小了 输入输出的串扰效应。

谐振式加速度传感器制作的难点之一在于如何在框架和质量块之间制作不在同一平面的支撑梁和谐 振梁,要求谐振梁位于衬底上表面,而支撑梁的中性面要与质量块的重心在同一平面。否则会引入较大的 交叉轴干扰和测量误差。为解决这一问题Christian Burrer等人在一个晶圆上制作谐振梁和质量块的上半部 分,而在另一衬底上制作支撑梁和质量块的下半部分,然后将二者键合在一起,键合面难度较大,易于开 裂。D.W.Burns利用重掺杂自停止腐蚀的方法在芯片正反两面制作支撑梁,实现支撑梁中性面与质量块重 心在同一平面。利用该方法实现的谐振式加速度计的结构和工艺流程较复杂,支撑梁厚度较小。

发明内容

本发明的目的在于发明一种谐振式加速度计的谐振梁(1)和支撑梁(2)的制造方法,在同一硅片(3)上制 作出不在同一平面的谐振梁(1)和支撑梁(2)。谐振梁(1)和支撑梁(2)位于质量块(4)和框架(5)之间的“口”字型 腐蚀槽(6)内,一端固支在质量块(4)的侧面,另一端固支在框架(5)内壁。谐振梁(1)位于硅片(3)上表面,支 撑梁(2)的中性面与质量块(4)的重心在同一水平面。

为实现上述目的本发明所采用的技术方案是:谐振式加速度计的谐振梁(1)和支撑梁(2)通过二步各向异 性湿法腐蚀工艺实现一次成型。首先,采用有掩膜湿法腐蚀工艺从谐振梁(1)背面腐蚀到一定深度。然后正 面光刻,湿法腐蚀或干法刻蚀硅片(3)正面腐蚀槽(6)中除谐振梁(1)部分和质量块(4)凸角补偿部分以外的腐 蚀掩蔽层(7);再次,反面光刻,湿法腐蚀或干法刻蚀硅片(3)背面腐蚀槽(6)中除质量块(4)凸角补偿部分以 外的腐蚀掩蔽层(7)。最后掩膜-无掩膜腐蚀相结合实现谐振梁(1)和支撑梁(2)的一次成型,谐振梁(1)和支撑 梁(2)的厚度同时达到设定值。

本发明所涉及的谐振式加速度计的(1)和支撑梁(2)的二步腐蚀制造方法,其特征在于可通过以下工艺步 骤实现:

[1]原始硅片(3)是双面抛光硅片,厚度为H。

[2]热氧化或化学气相淀积方法在硅片(3)正面和背面制作腐蚀掩蔽层(7)。

[3]背面光刻,形成背腐蚀窗口,窗口位置正对谐振梁(1)和腐蚀槽(6)的四个拐弯处。谐振梁背腐蚀窗 口(8)的长度(沿谐振梁(1)长度方向)和宽度(沿谐振梁(1)宽度方向)分别为L和b+2(H-h)ctg54.7°,其中L 是腐蚀槽(6)宽度,b是第二次光刻时谐振梁(1)的掩膜宽度,h是谐振梁(1)的设计厚度。腐蚀槽拐弯处背腐 蚀窗口(9)为正方形,边长等于谐振梁背腐蚀窗口(8)的长度。

[4]各向异性腐蚀液中腐蚀硅,垂直腐蚀深度为(H+d)/2-h。其中,d是支撑梁(2)的设计厚度。

[5]正面光刻,湿法腐蚀或干法刻蚀硅片(3)正面腐蚀槽(6)中的腐蚀掩蔽层(7),但应保留谐振梁(1)部分 和质量块(4)凸角补偿部分的腐蚀掩蔽层(7)。

[6]背面光刻,湿法腐蚀或干法刻蚀硅片(3)背面腐蚀槽(6)中的掩膜,但应保留质量块(4)凸角补偿部分 的腐蚀掩蔽层(7)。

[7]各向异性腐蚀液中腐蚀硅,腐蚀深度等于(H-d)/2时,实现谐振梁(1)和支撑梁(2)的同时成型。

其中,工艺步骤第[7]步的各向异性腐蚀是实现谐振式加速度计的谐振梁(1)和支撑梁(2)一次成型的关 键,在腐蚀过程中硅片(3)不同区域的变化情况如下:

[1]腐蚀槽拐弯处背腐蚀窗口(9)的硅材料被不断腐蚀,当腐蚀深度等于(H-d)/2+h时,腐蚀槽(6)的四 个拐弯处被贯穿。

[2]腐蚀深度等于(H-d)/2时,谐振梁(1)厚度为h,支撑梁(2)厚度为d,达到设定值。

[3]腐蚀槽拐弯处背腐蚀窗口(9)和谐振梁背腐蚀窗口(8)之间的正反面均被腐蚀,正面的硅材料被有掩 膜腐蚀,背面的硅材料被无掩膜腐蚀,其(111)侧面逐渐被(311)面代替。如果谐振梁背腐蚀窗口(8)和腐蚀 槽拐弯处背腐蚀窗口(9)之间距离大于1.89(H-d),则最后形成的支撑梁(2)的截面为等腰梯形。如果谐振梁 背腐蚀窗口(8)和腐蚀槽拐弯处背腐蚀窗口(9)之间距离小于1.89(H-d),则最后形成的支撑梁(2)的截面为等 腰三角形。所制作的支撑梁(2)的截面为等腰三角形或等腰梯形,侧面和底面的夹角为25.24°。

利用上述方法腐蚀的支撑梁(2)的有效长度是(亦即厚度为d部分)是L-(H-d)ctg54.7°。谐振梁(1) 的长度有效长度(亦即厚度为h部分)是L-2(H-h)ctg54.7°。谐振梁(1)的截面为等腰梯形,其下底的 宽度为b+0.59(d-H)+2.6h,上底的宽度是b+0.59(d-H)+6.84h。

为了使第二次腐蚀时四个拐弯处的掩膜图形是正方形,并且使支撑梁(2)的左侧还在质量块(4)范围内, 质量块边长应等于b+2(H-h)ctg54.7+2Z,且大于b+2(H-h)ctg54.7+Z+4.24d,其中Z为谐振梁(1)背腐 蚀窗口(8)和腐蚀槽拐弯处背腐蚀窗口(9)之间距离。

本发明所涉及的谐振式加速度计的谐振梁(1)和支撑梁(2)的二步腐蚀制造方法在同一硅片(3)上制作出 不在同一平面的支撑梁(2)和谐振梁(1),谐振梁(1)位于衬底上表面,而支撑梁(2)的中性面与质量块(4)的重 心在同一平面,使制作的谐振式加速度计结构简单,减小了交叉轴干扰和测量误差。

附图说明

图1为本发明所涉及的谐振式加速度计的谐振梁(1)和支撑梁(2)的结构示意图。

图2为本发明所涉及的谐振式加速度计的谐振梁(1)和支撑梁(2)的制造工艺步骤的第一次光刻的掩模 图形,其中灰色图形区为掩蔽层被腐蚀的区域。

图3是图2所示的谐振式加速度计的谐振梁(1)和支撑梁(2)的制造工艺步骤沿AA视角的工艺流程图。 图中:

1-谐振梁        2-支撑梁            3-硅片

4-质量块        5-框架              6-腐蚀槽

7-腐蚀掩蔽层    8-谐振梁背腐蚀窗口  9-腐蚀槽拐弯处背腐蚀窗口

具体实施方式

下面结合附图3和实施例1对本发明做进一步说明,但并不局限于该实施例。

实施例1:谐振梁(1)厚度为10微米,支撑梁(2)厚度为50微米,原始硅片(3)厚度为380微米,腐蚀槽 (6)宽度661微米。依据此数据来确定的制作工艺流程如下:

1)热氧化,在硅片(3)正反两面制作厚度1.5微米的二氧化硅薄膜。(见附图3[1])

2)背面光刻,形成背腐蚀窗口,窗口位置正对谐振梁(1)和腐蚀槽(6)的四个拐弯处。谐振梁背腐蚀窗 口(8)的长度(沿谐振梁(1)长度方向)和宽度(沿谐振梁(1)宽度方向)较谐振梁(1)的长度和宽度分别为661微米 和724微米。腐蚀槽拐弯处背腐蚀窗口(9)为正方形,边长为661微米。(见附图3[2])

3)40%氢氧化钾溶液中腐蚀硅,垂直腐蚀深度205微米。(见附图3[3])

4)正面光刻,缓释氢氟酸溶液腐蚀正面腐蚀槽(6)中除谐振梁(1)和凸角补偿处的二氧化硅掩蔽层。谐 振梁(1)的掩蔽层宽度为200微米。(见附图3[4])

5)背面光刻,缓释氢氟酸溶液腐蚀硅片(3)背面腐蚀槽(6)中的二氧化硅掩蔽层。(见附图3[5])

6)40%氢氧化钾溶液中腐蚀硅,垂直腐蚀深度等于165微米时,实现谐振梁(1)和支撑梁(2)的同时成 型。(见附图3[6])

利用上述工艺步骤腐蚀的谐振梁(1)的上底的宽度为73.7微米,下底的宽度为31.3微米,谐振梁(1)的 有效长度(亦即厚度为10微米部分)是137微米。支撑梁(2)的有效长度是(亦即厚度为50微米部分)是 427微米。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号