首页> 中国专利> 氧化石墨/乙酰丙酮铽纳米荧光复合材料及其制备

氧化石墨/乙酰丙酮铽纳米荧光复合材料及其制备

摘要

本发明提供了一种氧化石墨/乙酰丙酮铽纳米荧光复合材料的制备,将氧化石墨超声分散在四氢呋喃中;加入氧化石墨质量1~5倍的乙酰丙酮铽,在50~60℃下搅拌反应18~24h,过滤,用四氢呋喃反复洗涤去除未反应的乙酰丙酮铽,干燥,研磨而得,属于复合材料技术领域。本发明利用氧化石墨的碳环与乙酰丙酮铽配合物发生π-π共轭,使乙酰丙酮铽纳米颗粒均匀的包覆在氧化石墨表面,使复合材料继承了氧化石墨的优良性能后又具备了一定的荧光性能,而且其具有良好的热稳定性能,在荧光标记、防伪以及传感器等领域具有很好的应用前景。

著录项

  • 公开/公告号CN102517005A

    专利类型发明专利

  • 公开/公告日2012-06-27

    原文格式PDF

  • 申请/专利权人 西北师范大学;

    申请/专利号CN201110367925.6

  • 申请日2011-11-18

  • 分类号C09K11/65;C09K11/06;B82Y20/00;B82Y30/00;

  • 代理机构甘肃省知识产权事务中心;

  • 代理人张英荷

  • 地址 730070 甘肃省兰州市安宁区安宁东路967号

  • 入库时间 2023-12-18 05:34:25

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-01-06

    未缴年费专利权终止 IPC(主分类):C09K11/65 授权公告日:20140409 终止日期:20141118 申请日:20111118

    专利权的终止

  • 2014-04-09

    授权

    授权

  • 2012-09-05

    实质审查的生效 IPC(主分类):C09K11/65 申请日:20111118

    实质审查的生效

  • 2012-06-27

    公开

    公开

说明书

技术领域

本发明属于复合材料技术领域,涉及一种纳米荧光复合材及其制备方法,尤其涉及一种以氧化石墨为主体,以乙酰丙酮铽配合物为包覆外层的氧化石墨/乙酰丙酮铽纳米荧光复合材料;本发明同时还涉及该氧化石墨/乙酰丙酮铽纳米荧光复合材料的制备方法。

背景技术

稀土荧光特性主要是通过稀土高分子激发态与基态能级之间的电子跃迁表现出来的。迄今为止,仅在三价稀土离子的 4f n组态中就已知有 1639 个能级,能级对之间可实现跃迁的数目可达192177个,存在独特的光学和电学性质,使得它在磁性材料,电子材料、光学材料方面发挥重要的作用,广泛的应用于纳米材料的研究中,因此作为功能材料,稀土荧光特性的利用前景是极其广阔的。

稀土配合物具有长的荧光寿命、耐光性和窄的发射带等独特的电子性能,因而在荧光,催化剂和生物等领域有广泛的应用。稀土元素铽(Ⅲ)被紫外照射时,能在许多晶格中发射出很强的绿色荧光,因而其发光性能引起了广大研究者的关注。乙酰丙酮作为典型的β-二酮,能够对铽(Ⅲ)的荧光有很大的影响,所以对乙酰丙酮铽配合物发光性能的研究很有意义。

氧化石墨是石墨表面的sp2碳原子转变成sp3碳原子之后,原来的平面结构也随着变成褶皱结构,因此也叫石墨的富氧衍生物。氧化石墨自1858年由Brodie制备以来的一个多世纪,普遍接受的结构是碳层表面富集着大量的环氧基和羟基,而羧基位于其边缘。目前,氧化石墨广泛的用于制备石墨烯。氧化石墨由于其缺陷相关的光学带隙具有弱的荧光性能,扩大了在显示和照明领域的应用,例如生物标记和防伪。但是,在氧化石墨与稀土配合物的复合物中由于其电子转移过程,而使稀土配合物的荧光发生淬灭,与此同时也极大地增强稀土配合物的热和光化学稳定性,这就增大了氧化石墨在光物理和器件上的应用,因此,开发研究氧化石墨与稀土配合物的复合才来哦具有十分重要的意义。

发明内容

本发明的目的是提供一种乙酰丙酮铽/氧化石墨纳米荧光复合材料。

本发明的另一目的是提供一种乙酰丙酮铽/氧化石墨纳米荧光复合材料的制备方法。

一种氧化石墨/乙酰丙酮铽纳米荧光复合材料的制备方法,是将氧化石墨超声分散在四氢呋喃中;加入氧化石墨质量1~5倍的乙酰丙酮铽,在50~60℃下搅拌反应18~24h,过滤,用四氢呋喃反复洗涤去除未反应的乙酰丙酮铽,干燥,研磨,得到氧化石墨/乙酰丙酮铽配合物纳米复合材料。

所述过滤采用微孔滤膜过滤。

所述干燥为于50~60℃下真空干燥。 

下面通过红外光谱图、SEM、XRD、荧光曲线、紫外曲线和TG曲线对本发明制备的氧化石墨/乙酰丙酮铽荧纳米光复合材料的结构和性能进行测试和表征。

1、红外光谱分析

图1为氧化石墨(a)、乙酰丙酮铽(b)、氧化石墨/乙酰丙酮铽复合材料(c)的FT-IR谱图。从图1中可以看出这三条曲线有很大的区别:乙酰丙酮铽的FT-IR谱图特征吸收峰出现在1093cm-1(-CH3),1470cm-1(-CH2), 930 cm?1 (C-C) ,1517cm-1 (C-O),同时也出现了Tb-O的特征吸收峰。氧化石墨的FT-IR曲线的含氧官能团的特征吸收峰在1055,1238, 1404 和 1728 cm-1处被观察到,它们分别是C–O–C的伸缩振动峰,C–OH的拉伸峰,C–O–H的变形峰型,COOH官能团中的C=O伸缩峰,1628 cm-1处为氧化的碳骨架的特征峰。比较于氧化石墨的红外谱图,氧化石墨/乙酰丙酮铽复合材料在681cm-1和568cm-1出现的新特征峰为氧化石墨/乙酰丙酮铽中Tb-O,但它较纯乙酰丙酮铽的特征曲线出现了红移,从721cm-1 移到了 681cm-1,以上特征都表明氧化石墨/乙酰丙酮铽复合成功。

2、扫描电镜分析

图2 为氧化石墨(a)和氧化石墨/乙酰丙酮铽复合物(b)的扫描电镜图。从图(a)中可以清楚地看出氧化石墨表面是光滑的;从图(b)可以看出,乙酰丙酮铽颗粒将氧化石墨完全且均匀的包覆起来,乙酰丙酮铽纳米颗粒包覆在氧化石墨薄片的表面以及边缘之上;而且还可以观察到,氧化石墨的薄片被完全打开,乙酰丙酮铽颗粒插层在氧化石墨片间。所述氧化石墨的厚度为3~5nm左右,乙酰丙酮铽配合物颗粒的粒径为30~60nm。另一方面,乙酰丙酮铽颗粒的尺寸并没有因为与氧化石墨复合而改变,依旧大小不均匀。

3、XRD分析

图3为室温下衍射角范围从10°到80°的氧化石墨/乙酰丙酮铽的XRD谱图。氧化石墨GO(002)的衍射角移动到更高的角度,从10.7°到15.9°,这是因为乙酰丙酮铽中的Tb3+插层在氧化石墨层间将氧化石墨连接起来。根据XRD的数据,我们计算出乙酰丙酮铽的颗粒的直径介于30nm~60nm之间,这与扫描电镜的结果相吻合。

4、荧光光谱分析

图4、5分别为乙酰丙酮铽及氧化石墨/乙酰丙酮铽的固态荧光曲线图。比较图4、5,可以看出,对于乙酰丙酮铽来说,在485nm,545nm,584nm处有强的吸收峰。根据Judd–Ofelt理论,铽(III)配合物内部的辐射跃迁被禁止了,而主要是弱磁偶极子跃迁和诱导偶极跃迁。最强的发射峰在545nm处,对应着5D4 →7F5跃迁。同时,在485nm 和 584nm处对应的5D4 →7F6 和 5D4 →7F4的跃迁都是纯粹的诱导偶极跃迁,但是铽(Ⅲ)的5D4 →7F3跃迁对应的622nm的特征峰没有观察观察到。而在氧化石墨/乙酰丙酮铽GO- Tb(acac)3中有关Tb(acac)3中铽(Ⅲ)的三个发射峰没有出现,这是因为氧化石墨通过电子转移过程引起了荧光淬灭。同时,635nm处的发射峰又重新出现了,而且发生了蓝移。这些都表明了氧化石墨和Tb(acac)3之间发生了复合,并与红外分析和扫描结论一致。 

为了使复合材料具有很好的荧光性能,一般将乙酰丙酮铽与氧化石墨的质量比控制在1:1~5:1。

5、紫外光谱分析

  图6是氧化石墨、铽乙酰丙酮和氧化石墨-铽乙酰丙酮的紫外吸收曲线,其中水是参照物和溶剂。铽乙酰丙酮(b)和氧化石墨-铽乙酰丙酮(c)在近紫外区(200~400nm)有吸收峰,这是由于配体中的共轭双键引起的П-П*跃迁。但是,与铽乙酰丙酮相比,氧化石墨/铽乙酰丙酮(c)的吸收峰从275nm蓝移到222nm,表明铽乙酰丙酮与氧化石墨复合后,两个配体之间的П-П电子相互反应影响了铽乙酰丙酮的共轭体系。氧化石墨-铽乙酰丙酮中同样存在铽(Ⅲ)的紫外特征吸收峰,表明氧化石墨表面堆积着铽乙酰丙酮。同时,吸收峰强度也明显的比铽乙酰丙酮的弱。在任何情况下,稀土配合物的紫外吸收强度越大,那么其荧光强度也就越大。这与荧光分析的结果是一致的。

6、热重分析

图7为氧化石墨(a)、乙酰丙酮铽(b)、氧化石墨/乙酰丙酮铽复合材料(c)的TG曲线。氧化石墨的TG曲线共有三个失重过程:第一阶段是从室温到180℃,这主要是由于水分子从氧化石墨表面脱去,约失重20%。第二阶段发生在180~200℃,这是一个主要的热解过程,氧化石墨表面的环氧官能团在这个温度段被分解出现明显的失重62%。第三个失重过程发生在500~600℃,约失重7%,是氧化石墨中的碳骨架被分解。而氧化石墨/乙酰丙酮铽复合材料的TG曲线,第一个失重阶段为室温到287℃,主要是水分的蒸发,这与乙酰丙酮铽在室温到105℃时的失重相似,这两种物质在这一阶段失重约为12%。第二个失重阶段为298~473℃,是主要的链断裂过程,属于乙酰丙酮铽的失重,但相较于乙酰丙酮铽的TG曲线(b)的第二个失重阶段218~473℃,它发生了后移,这可能是由于碳基材料表面包覆了一层原位生成的Tb2O3,延缓了它们的氧化。第二阶段明显失重约14%,这比乙酰丙酮铽的失重要少。从以上结果我们可以得出,氧化石墨/乙酰丙酮铽复合材料的热稳定性要较氧化石墨和乙酰丙酮铽而言更好。

纵上所述,本发明利用氧化石墨的碳环与乙酰丙酮铽配合物发生π-π共轭,使乙酰丙酮铽纳米颗粒均匀的包覆在氧化石墨表面,成功的制备了氧化石墨/乙酰丙酮铽纳米复合材料,使复合材料继承了氧化石墨的优良性能后又具备了一定的荧光性能,而且其具有良好的热稳定性能,在荧光标记、防伪以及传感器等领域具有很好的应用前景。

附图说明

图1为氧化石墨、乙酰丙酮铽及氧化石墨/乙酰丙酮铽的红外光谱图

(a)——氧化石墨            (b)——乙酰丙酮铽

(c)——氧化石墨/乙酰丙酮铽 

图2为氧化石墨及氧化石墨/乙酰丙酮铽复合材料的扫描电镜照片

(a)——氧化石墨            (b)——氧化石墨/乙酰丙酮铽

图3为氧化石墨/乙酰丙酮铽复合材料的XRD图

图4为乙酰丙酮铽的荧光光谱图

图5为氧化石墨/乙酰丙酮铽纳米复合材料的荧光光谱图

图6为氧化石墨/乙酰丙酮铽复合材料的紫外吸收光谱图

(a)——氧化石墨             (b)——乙酰丙酮铽

(c)——氧化石墨/乙酰丙酮铽

图7为氧化石墨,石墨烯,石墨烯/氧化铕复合材料的热重分析图

(a)——氧化石墨             (b)——乙酰丙酮铽

(c)——氧化石墨/乙酰丙酮铽。

具体实施方式

实施例1

①氧化石墨的制备:将1g 200目天然石墨粉在搅拌下缓慢加入到装有23ml浓硫酸的500ml的烧杯中,温度维持在0℃,再缓慢加入0.5g硝酸钠与3g高锰酸钾的混合物,在0℃下搅拌反应2h,之后再35℃的恒温水浴中,搅拌下保温30min,缓慢加入46ml水,使温度上升至98℃,在此温度下维持15min;用温水稀释到140ml,倒入一定量的H2O2,这时溶液颜色变为亮黄色,趁热过滤,用5%的HCl充分洗涤滤饼,直至滤液中无SO42-(用BaCl2溶液检测),于50℃下无水CaCl2存在下于真空干燥24h,得到氧化石墨粉末。

②乙酰丙酮铽配合物的合成:将0.1g NaOH与TbCl3 0.1g混合,研磨30min,接着加入0.154ml乙酰丙酮铽,并调节pH值到7.0 ~ 8.0,继续研磨反应30min。将得到的白色粉末用去离子水洗涤,在40℃的烘箱中干燥24h,即得到目标产品。

③氧化石墨/乙酰丙酮铽纳米复合材料的制备:将0.03g的氧化石墨超声分散于120mL的四氢呋喃中;将30 mg乙酰丙酮铽加入氧化石墨分散液中,于50~60℃下搅拌反应18h;着用四氢呋喃反复洗涤未反应完的乙酰丙酮铽,采用微孔滤膜过滤,于50~60℃下真空干燥,研磨,即得到产品。

本实施例制备的复合材料中,乙酰丙酮铽颗粒均匀地包覆在氧化石墨的表面,而且,乙酰丙酮铽与氧化石墨的质量比为1:1。

实施例2

氧化石墨与乙酰丙酮铽的制法与实施例1相同

氧化石墨/乙酰丙酮铽复合材料的制备:将0.03g的氧化石墨超声分散于120mL的四氢呋喃中;将60 mg乙酰丙酮铽加入氧化石墨分散液中,50~60℃下搅拌反应24h,用四氢呋喃反复洗涤未反应完的乙酰丙酮铽,采用微孔滤膜过滤,于50~60℃下真空干燥,研磨,即得到产品。

本实施例制备的复合材料中,乙酰丙酮铽颗粒均匀地包覆在氧化石墨的表面,而且,乙酰丙酮铽与氧化石墨的质量比为2:1。

实施例3

氧化石墨与乙酰丙酮铽的制法与实施例1相同

氧化石墨/乙酰丙酮铽复合材料的制备:将0.03g的氧化石墨超声分散于120mL的四氢呋喃中;将90 mg乙酰丙酮铽加入氧化石墨分散液中,50~60℃下搅拌反应24h,接着用四氢呋喃反复洗涤未反应完的乙酰丙酮铽,采用微孔滤膜过滤,于50~60℃下真空干燥,研磨,即得到产品。

本实施例制备的复合材料中,乙酰丙酮铽颗粒均匀地包覆在氧化石墨的表面,而且,乙酰丙酮铽与氧化石墨的质量比为3:1。

实施例4

氧化石墨与乙酰丙酮铽的制法与实施例1相同

氧化石墨/乙酰丙酮铽复合材料的制备:将0.03g的氧化石墨超声分散于120mL的四氢呋喃中,将120mg乙酰丙酮铽加入氧化石墨分散液中,60℃下搅拌反应24h,接着用四氢呋喃反复洗涤未反应完的乙酰丙酮铽,采用微孔滤膜过滤,于50~60℃下真空干燥,研磨,即得到产品。

本实施例制备的复合材料中,乙酰丙酮铽颗粒均匀地包覆在氧化石墨的表面,而且,乙酰丙酮铽与氧化石墨的质量比为4:1。

实施例5

氧化石墨与乙酰丙酮铽的制法与实施例1相同

氧化石墨/乙酰丙酮铽复合材料的制备:将0.03g的氧化石墨超声分散于120mL的四氢呋喃中;将150mg乙酰丙酮铽加入氧化石墨分散液中,50~60℃下搅拌反应24h,用四氢呋喃反复洗涤未反应完的乙酰丙酮铽,采用微孔滤膜过滤,于50~60℃下真空干燥,研磨,即得到产品。

本实施例制备的复合材料中,乙酰丙酮铽颗粒均匀地包覆在氧化石墨的表面,而且,乙酰丙酮铽与氧化石墨的质量比为5:1。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号