首页> 外文学位 >Preparation and characterization of graphite nanoplatelet, graphene and graphene-polymer nanocomposites.
【24h】

Preparation and characterization of graphite nanoplatelet, graphene and graphene-polymer nanocomposites.

机译:石墨纳米片,石墨烯和石墨烯-聚合物纳米复合材料的制备和表征。

获取原文
获取原文并翻译 | 示例

摘要

Graphene is defined as a flat monolayer of carbon atoms tightly packed into a honeycomb lattice. This strictly two-dimensional (2D) material exhibits a range of unusual properties, such as excellent electrical and thermal conductivities and extremely high strength, which hold great promise in many applications. The main objectives of this study are to explore methods to produce graphene sheets and ultra-thin graphite nanoplatelets (GNPs), as well as utilizing them as conducting nanofillers to fabricate polymer nanocomposites.;To realize the formation of graphene, an electrochemical technique is employed to produce graphite intercalation compound (GIC); and three important factors, including stage structure and intercalant species of GIC, and the expansion technique, are specifically studied to understand their effects on the expansion and exfoliation behaviors of graphite.;Two kinds of chemical functionalization are applied on GNPs to improve the interfacial adhesion with matrix, which are UV/ozone treatment and amino functionalization. The electrical and thermal conductivities of GNPs show opposite trends with respect to the UV/ozone treatment duration. The amino-functionalized GNPs, particularly those treated with triethylenetetramine (TETA), improved the dispersion stability in solvents.;A novel and simple route to produce GNPs is proposed. The natural graphite is directly exfoliated by ultrasonication in formic acid. A stable graphene aqueous dispersion is obtained through chemical oxidation and subsequent chemical reduction of GNPs. A major advantage of this new process is to carry out the oxidation and exfoliation steps simultaneously.;The defect-free and unoxidized graphene sheets are produced from exfoliation of natural graphite in a solvent, N-methyl-pyrrolidone (NMP). A new approach is devised to transfer graphene from NMP to acetone so that the graphene sheets can be incorporated into a common matrix material, epoxy matrix. The resulting graphene/acetone dispersion is stable without any aggregates. The graphene/epoxy nanocomposite produced thereby shows significant improvements in electrical and thermal properties compared to the corresponding GNP/epoxy nanocomposites.;An alternative approach to fabricate graphene-based nanocomposites is proposed, involving the use of functionalized graphene sheets (FGS). The FGS are obtained from ultrasonication of thermally expanded graphene oxide (GO). Although the inherent electrical conductivity of FGS is deteriorated due to the existence of oxygen functional groups, the FGS/epoxy nanocomposites exhibit a much higher electrical conductivity than the corresponding GNP/epoxy nanocomposites.;Major contributions of this thesis include: (i) the development of a simple and novel route to produce GNPs and synthesis of graphene from these GNPs; and (ii) the successful fabrication of graphene/epoxy nanocomposites using two different sources of filler, namely defect-free graphene and FGS. The graphene synthesis technique proposed in this work has several advantages over other techniques, including the use of a non-toxic, environmental-friendly intercalant and the capability for mass production of graphene for industrial applications, as well as reduction of processing time required to produce GNPs. This thesis is known to be the first attempt to produce graphene nanocomposites using a thermoset resin matrix. All previous studies are based on thermoplastic matrices, which are much easier to produce. It is demonstrated that the graphene/epoxy nanocomposites fabricated here have excellent physical and mechanical properties, including the electrical conductivity being two orders of magnitude higher than the corresponding GNP/epoxy nanocomposites for the same filler content.
机译:石墨烯定义为紧密堆积在蜂窝状晶格中的碳原子平面单层。这种严格的二维(2D)材料展现出一系列异常特性,例如出色的导电性和导热性以及极高的强度,这在许多应用中都具有广阔的前景。这项研究的主要目的是探索生产石墨烯片和超薄石墨纳米片(GNP)的方法,以及将它们用作导电纳米填料以制造聚合物纳米复合材料。为了实现石墨烯的形成,采用电化学技术生产石墨插层化合物(GIC);并专门研究了GIC的阶段结构和嵌入物种类以及膨胀技术这三个重要因素,以了解它们对石墨膨胀和剥落行为的影响。;对GNPs进行了两种化学官能化,以改善界面附着力基质,可进行紫外线/臭氧处理和氨基官能化。就紫外线/臭氧处理时间而言,GNP的电导率和导热率显示出相反的趋势。氨基官能化的GNP,特别是经三亚乙基四胺(TETA)处理的GNP,提高了在溶剂中的分散稳定性。天然石墨在甲酸中通过超声处理直接剥离。通过化学氧化和随后的GNP化学还原,可获得稳定的石墨烯水分散体。这种新方法的主要优点是可以同时进行氧化和剥离步骤。无缺陷和未氧化的石墨烯片材是通过在溶剂N-甲基-吡咯烷酮(NMP)中剥离天然石墨制成的。设计了一种新方法,将石墨烯从NMP转移到丙酮中,以便可以将石墨烯片结合到常见的基质材料(环氧基质)中。所得石墨烯/丙酮分散体是稳定的,没有任何聚集体。与相应的GNP /环氧纳米复合材料相比,由此制得的石墨烯/环氧纳米复合材料在电气和热性能方面显示出显着的改善。提出了另一种制备石墨烯基纳米复合材料的方法,包括使用功能化石墨烯片(FGS)。 FGS由热膨胀氧化石墨烯(GO)的超声处理获得。尽管由于存在氧官能团而使FGS的固有电导率变差,但是FGS /环氧纳米复合材料的电导率比相应的GNP /环氧纳米复合材料高得多。;本论文的主要贡献包括:(i)发展一种简单新颖的途径生产GNP以及从这些GNP合成石墨烯的方法; (ii)使用两种不同的填充剂,即无缺陷石墨烯和FGS,成功地制造了石墨烯/环氧纳米复合材料。与其他技术相比,这项工作中提出的石墨烯合成技术具有许多优势,包括使用无毒,环保的嵌入剂以及工业应用中石墨烯的大量生产能力,以及减少生产所需的处理时间GNP。已知该论文是使用热固性树脂基质生产石墨烯纳米复合材料的首次尝试。以前的所有研究都是基于热塑性基质,它更容易生产。已经证明,在此制备的石墨烯/环氧纳米复合材料具有优异的物理和机械性能,包括对于相同的填料含量,其电导率比相应的GNP /环氧纳米复合材料高两个数量级。

著录项

  • 作者

    Geng, Yan.;

  • 作者单位

    Hong Kong University of Science and Technology (Hong Kong).;

  • 授予单位 Hong Kong University of Science and Technology (Hong Kong).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号