首页> 中国专利> 具有显示面板和光学传感框架的组件及使用其的显示系统

具有显示面板和光学传感框架的组件及使用其的显示系统

摘要

一种具有显示面板和光学传感框架的组件及使用其的显示系统。该组件包括:具有四个拐角的显示面板,具有邻近显示面板表面安装的至少三个光学模块的光学传感框架,其中所述光学模块位于显示面板的拐角处,并且逆反射器基本沿着显示面板四个侧边中的每一侧边的全部长度延伸,用于驱动光学传感框架的光学传感框架控制器,以及与光学传感框架控制器一起位于单个电路板上的显示面板控制器。

著录项

  • 公开/公告号CN102109933A

    专利类型发明专利

  • 公开/公告日2011-06-29

    原文格式PDF

  • 申请/专利权人 乐金显示有限公司;

    申请/专利号CN201010610167.1

  • 发明设计人 张亨旭;孙敏镐;俞炳天;张真赫;

    申请日2010-12-22

  • 分类号G06F3/042(20060101);G09G3/36(20060101);

  • 代理机构11006 北京律诚同业知识产权代理有限公司;

  • 代理人徐金国;谢雪闽

  • 地址 韩国首尔

  • 入库时间 2023-12-18 02:43:19

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2014-06-11

    授权

    授权

  • 2011-08-10

    实质审查的生效 IPC(主分类):G06F3/042 申请日:20101222

    实质审查的生效

  • 2011-06-29

    公开

    公开

说明书

相关申请的交叉引用

本申请要求享有2009年12月24日提交的韩国专利申请10-2009-0130931和2010年12月8日提交的韩国专利申请10-2010-0125158的权益,其中该申请在这里被引入作为参考,如同在此被全面阐述。

技术领域

本公开涉及液晶显示设备,尤其涉及具有光学传感框架的组件,其中用于驱动光学传感框架的控制单元与显示面板的控制单元集成在一起。

背景技术

通常,在使用不同类型显示器的信息和通信设备之间提供接口的触摸面板是一种能够在用户用手或笔触摸屏幕时实现与设备的接口的输入单元。

由于可以通过用手指以对话和直观的方式触摸显示设备上显示的按钮或图标来使用此类设备,因此,触摸面板适用于很多领域,例如银行和公共机构的自动柜员机、各种医疗设备、旅游和大型设施指南、以及交通指南。

在触摸面板显示器中,存在电阻型触摸面板、微电容触摸玻璃、超声波触摸玻璃、红外型触摸面板等等。

电阻型触摸面板具有两个透明的导电层,其中,其下层是用涂有导电材料的玻璃或塑料制成的,其上层则是用涂有导电材料的薄膜制成的。这两个层被微印刷间隔装置分离开,并且被电绝缘。电阻型触摸面板是一种涉及当在将固定电压施加到这两个层的状态下用手或触摸笔触摸上板时上板(X轴)和下板(Y轴)中每一个的电阻变化的设备。在这种情况下,由控制器计算由此发生电阻变化的X(上板)和Y(下板)位置,以便在监视器上显示该位置或者将其作为数据输出。

微电容触摸玻璃具有涂覆了薄导电材料的透明玻璃传感器。因此,沿着导电层周边精确地印刷电极图案,并且该电极图案具有紧贴导电涂层设置的透明玻璃保护薄膜,以便保护和包封传感器。在微电容触摸玻璃中,在屏幕上施加电压,并且电极图案通过导电层而在触摸传感器表面上形成低电压场。当手指触摸屏幕时,在触摸点上流过微电流。来自每一个拐角的电流与从该拐角到手指的距离是成比例的,并且触摸屏控制器计算电流的比值,以便发现做出该触摸的位置。

超声波触摸玻璃显示器不会受表面损伤的影响,并且与使用100%的玻璃材料制成的其他产品相比,这种显示器完全不会磨损或退化,而玻璃材料显示器甚至有可能因为很小的表面损伤或磨损而遭到毁坏。在此类显示器中,触摸屏控制器通过向转能器转发5MHz的电信号来产生超声波,由此产生的超声波会因为反射线而沿着触摸屏表面传递。在超声波触摸玻璃中,如果用户按下触摸屏表面,那么经过所按下的点的一部分超声波会被用户吸收,由此损失的信号会因为接收信号和数字映射而被控制器立即识别,并且将据此来计算当前发生信号改变的点的坐标。这样的一系列步骤是在X和Y轴上独立执行的。

红外型触摸面板利用了红外线的一种属性,即由于红外线的直线传播特性,因此,如果红外线被障碍物阻挡,则红外线将不会传播。被施加压力的部分会在横向方向和纵向方向上切断红外线,并读取切断部分的X和Y坐标以用于感测。红外线光类型识别出在触摸面板的正面由于红外线扫描光的切断而导致的触摸位置。红外型触摸面板具有从一侧射出、并在x和y轴的相对侧接收的红外线,以便形成红外线的格阵。

虽然上述显示器类型具有不同的优点,但是优选的是红外型触摸面板,这是因为施加到这种触摸面板上的压力最小,且便于布置。

现在将参考附图来描述现有技术的红外型触摸面板。

图1示出现有技术的红外型触摸面板的平面图。

参考图1,现有技术的红外型触摸面板具有安装在面板10的两个邻近拐角上的红外传感器5,并且在面板10的三个侧边上安装了反射板7。

如下检测对于红外型触摸面板的触摸。即,反射来自红外传感器5的光,感测触摸时切断的光,并计算其角度以便感知触摸位置。

但是,红外型触摸面板具有无法进行检测的盲区,该盲区具有大于红外传感器5之间的一定角度的范围,由此导致在特定区域的触摸精度很差。为了对此进行纠正,红外传感器被设置在远离液晶显示器面板的外部,由此使盲区形成在液晶面板的外侧。在这种情况下,需要尺寸大于液晶面板的触摸面板,导致对于显示画面无用的非有效区域增多,因此降低了显示设备的效率。

通常,液晶面板与触摸面板是分离开的。如果意图产生触摸,则需要用于将各个组件组装起来并将适于液晶面板的坐标应用于触摸面板的工序、以及用于将触摸面板固定到液晶模块的工序。

现有技术的触摸面板存在着难以选择精确坐标的缺陷,并且一次只能感知一个触摸点。换句话说,如果一次触摸了触摸面板上的两个点,那么触摸面板将无法感知这种情况,或是感知首先接触的接触点之一,由此导致出错。

现有技术的触摸面板是与液晶面板分开形成的,并且要求触摸面板驱动单元应具有附加PCB(印刷电路板)以及在触摸面板驱动单元与触摸面板之间的连接和在触摸面板驱动单元与液晶面板驱动单元之间的连接。此外,由于要求在彼此互不重叠的情况下安装液晶面板驱动单元和触摸面板驱动单元的PCB,并且要求将它们连接到一系统以控制该系统,因此,要求至少触摸面板驱动单元和液晶面板应具有在PCB、系统以及触摸面板驱动单元和液晶面板之间的连接部分,以便分别驱动触摸面板驱动单元和液晶面板,而这种布线连接是非常复杂的。

由于需要PCB之间的连接,因此其布线结构变得非常复杂,而且PCB之间的集成电路加倍,由此增加了成本。

红外型触摸面板存在以下问题。

首先,如果提供两个红外照相机,则在邻近这两个照相机的一侧出现盲区,而这需要提供尺寸大于液晶面板尺寸的触摸组件。在这种情况下,为了安装触摸组件,需要大于液晶面板的空间,而这导致无法实现窄外型。

其次,当仅仅使用两个红外照相机来执行感测时,当进行多点触摸时,会形成重影。

第三,由于用于驱动触摸面板的PCB和用于驱动液晶面板的PCB是分别提供的,因此,液晶显示设备不具有集成结构。由此,需要在触摸面板、用于驱动触摸面板的PCB以及用于驱动液晶面板的PCB之间的连接,并且需要用于安装的组装工艺。

第四,举例来说,为了驱动红外照相机,需要连接布线结构,以将红外照相机连接到用于驱动触摸面板的PCB。特别地,就位置而言,在位于液晶面板上侧的红外照相机与位于液晶面板下侧的背面的触摸面板驱动单元之间的连接布线变得非常长,这可能导致电磁干扰。

第五,用于驱动触摸面面板的PCB和用于驱动液晶面板的PCB是分别提供的,其具有重复的IC,这增加了成本。

第六,如果触摸组件具有两个红外照相机,导致触摸组件大于液晶面板,则无法提供小尺寸的型号。

发明内容

据此,本发明的具体实施例涉及一种具有光学传感框架的显示设备。

根据一些实施例,一种液晶显示器具有嵌入式触摸组件,其中将用于驱动触摸组件的控制单元与液晶面板的控制单元集成在一起。

本公开的附加有益特征的一部分将在随后的说明中阐述,而一部分将在本领域普通技术人员研读下文后而清楚了解,或者可以通过实践本发明来了解。本发明的目的和其他优点可以通过在所撰写的说明书及其权利要求以及附图中特别指出的结构来实现和获取。

一种组件包括显示面板、光学传感框架以及驱动显示面板的显示面板控制器。该显示面板具有四个拐角,并且该光学传感框架具有与显示面板的表面邻近地安装的至少三个光学模块,其中所述光学模块位于显示面板的拐角处。该光学传感框架还包括基本上沿着其四个侧边中的每一侧边的全部长度延伸的光学反射器。光学传感框架控制器驱动光学传感框架。显示面板控制器和光学传感框架控制器位于单个电路板上。

应该理解的是,本发明的以上一般描述和后续详细描述都是例示性和说明性的,并且其目的是进一步说明所要保护的发明。

附图说明

为了更进一步地理解本公开,在这里包含了附图,并且这些附图将被引入并构成本申请的一部分,所述附图示出的是本公开的一个或多个实施例,并且其连同说明书一起用于说明本公开的原理。在附图中:

图1示出的是现有技术的红外型触摸面板的平面图。

图2A和2B分别示出了具有本发明的光学传感框架的显示设备(显示系统)的平面图。

图3示出的是本发明的显示设备中的底盖的外表面的平面图。

图4具体示出了图3中的用于驱动显示设备的PCB(印刷电路板)的图示。

图5示出了显示连接器与连接到图4的红外传感器模块的柔性印刷电缆之间的连接的图示。

图6示出了显示红外传感器模块与PCB之间的连接的透视图。

图7示出了红外传感器模块的透视图。

图8示出了显示具有根据本发明优选实施例的光学传感框架的显示设备的剖面图。

具体实施方式

现在将详细参考本发明的具体实施例,这些实施例的例子在附图中示出。在可能的情况下,相同的附图标记在附图中始终用于指示相同或相似的部分。

图2A和2B分别示出了具有本发明的光学传感框架的显示设备(显示系统)的平面图。

参考图2A和2B,具有光学传感框架的显示设备1000包括:分别面向显示面板80的至少三个拐角的红外传感器模块200(光学模块),为显示面板80的侧边提供的导引结构170,以及逆反射板300,其中每一个逆反射板都具有在导引结构170的侧边上形成的具有多个棱镜的逆反射层。红外传感器模块200、导引结构170以及逆反射板300被统称为光学传感框架550。

光学传感框架的面积基本上等于显示面板80的面积。

根据具体情况,可以省略导引结构170。

提供了三个或更多的红外传感器模块200,以防止出现盲区,其中所述盲区是当只提供两个传感器模块时在这些传感器模块之间的区域。第三个红外传感器模块的添加防止了该盲区。在这种情况下,第三个红外传感器模块200与两个红外传感器模块200之一相结合来测量触摸点,由此允许在显示面板80的几乎整个区域上实现触摸检测。

与显示面板80的表面邻近地安装该红外传感器模块200。

优选的是,在显示面板80的边缘的上表面上,将红外传感器模块200和逆反射板300设置在相同的水平面上。在这里,逆反射板被设置在显示面板80的上表面上的垂直平面中。逆反射板300基本上沿着显示面板80的四个侧边的每一侧边的全部长度延伸。

在这种情况下,逆反射板300附着到导引结构170的壁部,所述导引结构170被设置为面向显示面板80的有效区域。从红外传感器模块200所在的位置去除导引结构170,并将该导引结构设置在将光学传感框架550的上部以及显示面板80的侧部包围住的壳体结构中,例如顶盖180(参见图8)。顶壳180被配置为包围光学传感框架,并包围显示面板80的侧部。在这里,逆反射板也被称为“逆反射器”。如果省略顶盖,则可以用系统罩壳(未示出)来覆盖光学传感框架550。导引结构170基本上沿着显示面板的四个侧边的每一侧边的全部长度延伸,其中逆反射板300被附着到该导引结构170。

图3示出本发明的显示设备中的底盖的外表面的平面图。图4具体示出了图3中的用于驱动显示设备的PCB(印刷电路板)的图示。

该壳体结构包括顶壳180(参见图8)以及用于将背光单元190(参见图8)收容在显示面板80下方的底盖350。顶壳180和底盖350彼此固定。图3和4示出位于底盖350的外表面上的PCB(印刷电路板)。

参考图3和4,具有本发明的光学传感框架的显示设备还包括具有用于控制显示面板80的驱动的显示面板控制单元410和用于控制红外传感器模块的感测的触摸控制单元420的PCB(印刷电路板)400,以及被配置成可操作地将红外传感器模块200和PCB 400连接起来的柔性印刷电缆或导电连接403a、403b和403c(在下文中将其称为“柔性印刷电缆”)。作为单个电路板的PCB400具有触摸控制单元420和显示面板控制单元410。

红外传感器模块200具有沿对角方向面对拐角的正面,并且包括用于接收从至少两个侧边逆反射来的光的感测单元225(光传感器)(参见图7和8),以及沿对角线方向发出光的发光单元(LED透镜)220(参见图7和8)。在这种情况下,优选的是,在红外传感器模块200与PCB 400之间连接的柔性印刷电缆403a、403b和403c还具有在红外传感器模块200的感测单元225与触摸控制单元420之间连接的感测布线(未显示),以及在红外传感器模块200的发光单元220与触摸控制单元420之间的控制布线(未显示)。

感测单元225对在逆反射板300处反射的光进行感测,以便当触摸体触摸显示面板时感测由逆反射板300反射的光受到的阻挡,从而检测该触摸。

在这种情况下,柔性印刷电缆403a、403b和403c可以是FPCB(柔性印刷电路板)或FPC(柔性印刷电路)。

将柔性印刷电缆403a、403b和403从红外传感器模块200弯曲到底盖350的外表面,并且连接到PCB 400。PCB 400具有分别连接到柔性印刷电缆403a、403b和403c的连接器402a、402b和402c。

显示面板控制单元410与显示面板80相连接,并且具有将来自系统(未显示)的图像数据应用于显示面板的功能。触摸控制单元420具有用于处理显示面板上的触摸坐标、触摸状态和事件以及传送数据的功能。

PCB 400还包括与系统相连接的图像数据连接单元431。PCB 400还包括与系统相连接的触摸坐标连接单元432。

在PCB 400中,在触摸控制单元420与触摸坐标连接单元432/连接器402a、402b和402c之间具有内部金属线。此外,在图像数据连接单元431与显示面板控制单元410之间具有内部金属线。

优选地,PCB 400位于底盖350的外表面的一侧,与两个红外传感器模块200相邻。底盖350和PCB 400被设置在显示面板80的下方。

光学传感框架550中具有电连接的一个组件是红外传感器模块200,而逆反射板300不具有电连接,但在其上提供了逆反射层,以便作为无源元件来反射光。

图2A和2B分别示出显示面板的正视图,而图3和4分别示出对应于显示面板的背面的平面图。参照所述背面,红外传感器模块200位于上侧边的左拐角和右拐角以及下侧边的右拐角。

由于两个相邻的红外传感器模块位于上侧边,而所述上侧边是较长侧边并且代表显示面板和/或底盖350的宽度,因此,PCB 400被布置在上侧边上,以便使柔性印刷电缆403a、403b和403c的长度最小化。也就是说,由于PCB400的宽度与显示面板长边的宽度大致相同,因此,位于上侧边的左拐角和右拐角的柔性印刷电缆403a和403b的长度与显示面板的侧部厚度尺寸基本相似或是稍长一些,而位于下侧边的右拐角的柔性印刷电缆403c的长度短于显示面板的短边。

即,和在不与驱动显示面板的源PCB相同的位置提供触摸控制器的结构相比,通过以不同的布线长度将红外传感器模块连接到触摸控制单元,可以使至少两个红外传感器模块位置的布线长度最小化,并且由于源PCB和触摸控制单元被安装到相同的集成板上或是相同的集成芯片中,因此,用于连接源PCB和光学传感框架的结构也可以被省略。

因此,具有本发明的光学传感框架的显示设备以单个电路板的形式提供具有触摸控制单元420和显示面板驱动控制单元410的PCB 400,并且这些控制单元(控制器)被集成到一个PCB 400中,或是被集成到一个集成芯片中。

通过在相应拐角提供三个或更多的红外传感器模块200,可以消除由于只具有两个传感器模块而导致的重影。

通过使用第三个红外传感器模块来弥补仅仅基于两个红外传感器模块200的盲区的感测,使得不再需要扩大红外传感器模块之间的横向距离。这使得能够生产窄外型。

图5示出了显示在连接器与连接到图4中的红外传感器模块的柔性印刷电缆之间的连接的图示。图6示出了显示在红外传感器模块与PCB之间的连接的透视图。

图5示出位于图4中的红外传感器模块的一侧的柔性印刷电缆403a,显示出该柔性印刷电缆403a连接到连接器402a。图6显示了在底盖350的外表面上以基本为“L”形设置的、且与提供给PCB 400的连接器402b相连接的柔性印刷电缆403a、403b。

有时,如图6中的上侧边的右拐角处所示,柔性印刷电缆403b可以以基本为“-”形设置,并且连接到PCB 400的连接器。

由于来自下侧边的右拐角处的红外传感器模块的柔性印刷电缆403c是与PCB 400略微隔开的,因此,柔性印刷电缆403c沿一条直线穿过显示面板80的短边,并与PCB 400的连接器相连接。

图7示出红外传感器模块的透视图。

参考图7,红外传感器模块200至少具有感测单元225和发光单元220。此外,感测单元225和发光单元220可以分别具有红外滤光器(未显示)和透镜,以便增强感测率和发光率。

图8示出了显示具有根据本发明优选实施例的光学传感框架的显示设备的剖面图。

如图8所示,该显示面板是液晶面板100。该显示面板可以是液晶面板、有机电致发光显示面板、等离子显示面板或电泳显示面板。图8所示的实施例描绘的是液晶面板,而本发明并不仅限于使用这种显示面板。任何适当类型的显示面板都是可以使用的。

顶壳180可以是矩形的,以便具有与显示面板80的形状相符合的开口区域,或者是将侧边在矩形顶壳180的拐角处沿对角线方向添加到矩形顶壳180的多边形。无论哪一种情况,顶壳180都被形成为与画面框相类似,以便露出显示面板80的中央部分。

红外传感器模块200的感测单元225可以是线性传感器阵列或是包含多个像素的区域传感器。在这种情况下,红外传感器模块200是通过在红外传感器模块200与PCB 400的连接器402a之间连接柔性印刷电缆403a、利用PCB 400中的触摸控制单元420来控制的。该柔性印刷电缆403a在红外传感器模块200的后侧弯曲,并且穿过顶壳180的内侧。在这种情况下,可以利用双面胶带(未显示)将柔性印刷电缆403a粘合到顶壳的内侧。

优选的是,感测单元225的分辨率在水平方向上高于500像素,以便检测500个以上的像素(传感器)。

逆反射板300被分别设置在液晶面板80的四个边缘上,并且逆反射板300分别附着到引导结构170的侧部。在这种情况下,在显示面板80的拐角的上侧边上设置的红外传感器模块200与包含逆反射板300的导引结构170都位于与导引结构170相同的平面上。

红外传感器模块200感测在逆反射板300处反射的光、或是在触摸点由触摸体(输入装置,例如手或笔)对来自红外传感器模块的光的阻挡。

如图8所示,作为显示面板提供了液晶面板100,其包括彼此相对的第一基板110和第二基板120,其间设置有液晶层(未显示),还包括分别在第一基板110和第二基板120的背面形成的第一偏振板131和第二偏振板132。

液晶面板100具有位于下侧的背光单元190,用于支撑背光单元190、液晶面板100和导引结构170的主支架160,以及用于收容背光单元190和主支架160的底盖350。

还提供了被配置成围绕并覆盖导引结构170、逆反射板300以及红外传感器模块200的顶壳180。在这种情况下,顶壳180被设置为从其一侧覆盖底盖350。顶壳180和底盖350可以是壳体结构或外壳的一部分,也可以被称为壳体结构或外壳。在一个实施例中,无论此类组件是否为分开和独立的部件,外壳或壳体结构都可以包括主支架160、导引结构170、顶壳180以及底盖350。

导引结构170具有朝着液晶面板100的上侧突出的下侧边,用于支撑逆反射板300,由此使得逆反射板300与导引结构170之间的紧固更加牢靠。

因此,光学传感框架的所有元件都被顶壳180覆盖,使得无法从液晶显示设备外部看到这些元件,并且通过将光学传感框架设置在顶壳中,可以使得液晶显示设备相对较薄。

参考图8,逆反射板300包括逆反射层303、在逆反射层303的下侧和上侧形成的第一粘合层304及第二粘合层302、以及在第二粘合层302上的光学滤波器301。

逆反射板300通过第一粘合层304附着到导引结构170的一侧,与拐角处的红外传感器模块200相邻。

逆反射层303是一个立方体拐角结构的立方体,其在入射角为0°~65°的宽角度时具有良好的效率,并且可以是连续形成的微棱镜。

参考图8,光学滤波器301具有透射波长仅仅约为700nm的红外线的属性。光学滤波器可以用丙烯酸基树脂制成,例如PMMA(聚甲基丙烯酸甲酯)或聚碳酸酯。

为使光学滤波器301具有吸收可见光而仅仅透射红外线的属性,可将光学滤波器301形成为具有黑树脂。

作为替换,光学滤波器可以用玻璃制成。

逆反射板300用于接收从红外传感器模块200发出的光,并且再次反射该光。

在具有光学传感框架的显示设备中,红外传感器模块200分别被布置在三个拐角,并且在单点触摸感测的情况中,通过使用两个传感器,光在逆反射板300处被反射,或是在触摸点处被触摸体(输入装置,例如手和笔)所阻挡。在两个或更多的接触点的多点触摸的情况中,该设备最初通过使用两个相邻的红外传感器模块来感测错误点,并再次使用第三个红外传感器模块以及与第三个红外传感器模块相邻的红外传感器模块来执行感测,以便应用重影去除算法,该算法允许实现正确的多点接触感测。

为了驱动多个红外传感器模块,可以提供从红外传感器模块经由FPC到达集成的显示面板驱动控制单元的信号布线,以及通过将该驱动控制单元设置在具有红外传感器模块的两个侧边之间,由此使FPC的长度最小化。

由于上述结构,可将用于驱动显示面板和光学传感框架的印刷电路板集成在一起,并且可将光学传感框架安装在包围显示面板的顶壳中,由此减小显示设备的厚度。

此外,通过在类似顶壳的壳体结构中将具有感测光学信号功能的红外传感器模块以及逆反射板设置在相同平面上,并利用FPC在红外传感器模块背面连接到集成板上,可以改进组装工艺。

由于一个驱动印刷电路板和/或一个集成芯片同时驱动显示面板和光学传感框架两者,因此,可以减少单个集成电路IC的数量,并且由此降低了成本。

如果显示面板80是光接收设备,可以提供背光单元。

例如,如果显示面板80是液晶面板,那么该液晶面板具有第一和第二基板以及填充在其间的液晶层,其中在第一基板上形成彼此交叉以限定像素区域的多条栅极线和数据线、以及在每个像素区域处具有薄膜晶体管的薄膜晶体管阵列(未显示)。在第二基板上形成黑矩阵层和具有滤色器层的滤色器阵列。

在这种情况下,印刷电路板400被设置在显示面板80的一侧,并且,连接到与栅极线和数据线的末端相对的焊垫电极的COF(膜上芯片)被连接到印刷电路板400的一侧。

在这种情况下,COF包括用于将栅极线或数据线的信号转发到由多条数据线或栅极线组成的群组之一。根据情况,栅极线的信号可以作为栅极驱动信号转发到在第一基板的边缘处形成的LOG(玻璃上线路)。在这种情况下,向COF之一额外地提供与栅极驱动信号输出端子连接的连接布线,以便连接到LOG布线焊垫电极。

印刷电路板400进一步包括与COF的另一侧相连接的控制器(未显示),用于接收来自主系统(未显示)的图像数据并将图像数据处理为适合面板,并产生各种控制信号,该控制器还包括用于固定和产生各种信号的电压电平的电源单元。

如果在LOG布线模式中提供栅极驱动单元,而不使用单独的栅极PCB,则即使只提供为数据线的焊垫电极制造的一个源PCB,仍能够提供印刷电路板400。

在具有光学传感框架的显示设备中,在一个板(PCB 400)或电路上一起提供显示面板控制单元410(例如时序控制器)和触摸控制单元420(触摸控制器)。在这种情况下,电源电压单元是连同触摸控制单元420一起提供到该板的,并且显示面板控制单元410与相同的电源电压相连接。而且,所述一个板(PCB 400)被设置在底盖350的外表面上,并固定到该底盖350的外表面。

对于现有技术的电阻型触摸面板来说,在考虑到由于使用两个红外传感器模块而导致的盲区的情况下,定义了大于显示面板的触摸面板尺寸来进行补偿,而由于具有本发明实施例的光学传感框架的显示设备提供有三个或更多的照相机传感器,因而避免了盲区。可以去除重影,允许光学传感框架的尺寸几乎与显示面板的边缘相适合。由于触摸控制单元420被集成到印刷电路板,因此,减少了相应的连接布线长度。

通过将红外传感器模块的连接部分设置到集成板的左/右相对端,可以使照相机模块的布线长度最小化。

通过将触摸坐标信号连接部分设置在集成板上,可以简化布线结构。

用于控制感测单元和发光单元的电信号可以被集成为一个FPCB(柔性印刷电路板)的布线。

正如所描述的那样,具有本发明实施例的嵌入式光学传感框架的显示设备具有下列优点。

首先,通过在相同的板上提供用于驱动液晶面板的控制单元和触摸控制单元,可以允许实现集成的控制单元或控制器。

其次,通过在三个拐角处提供三个红外传感器模块,可以允许去除重影。

第三,通过用第三个红外传感器模块进行感测来防止出现盲区,可以允许在不需要与显示面板横向端部的周边具有间隔的情况下布置红外传感器模块和逆反射板,由此能够生产窄外型。

第四,为了驱动多个红外传感器模块,来自红外传感器模块的信号布线可以通过FPC连接到集成的显示面板驱动控制单元,此外,通过将该驱动控制单元相应地设置在具有红外传感器模块的两个侧边之间,可以使FPC的长度最小化。

第五,通过将光学传感框架安装在包围显示面板的顶壳中,可以减小显示设备的整体厚度。

第六,通过在壳体结构中将感测触摸的红外传感器模块与逆反射板设置在相同平面上,以及在红外传感器模块背面将FPC连接到集成板上,可以改进组装工艺。

第七,由于显示面板驱动和触摸检测驱动是由单个驱动印刷电路板或集成芯片执行的,因此可以省略当通过两个印刷电路板或芯片执行驱动时所需要的各个集成电路,由此降低了成本。

对于本领域技术人员来说都是显而易见的是,在不脱离本发明的实质或范围的情况下,可以在本发明中作出各种修改和变化。因此,只要针对本发明的这些修改和变化落入附加权利要求及其等价物的范围以内,本发明便覆盖这些修改和变化。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号