首页> 中国专利> 有机半导体取向用组合物、有机半导体取向膜、有机半导体元件及其制造方法

有机半导体取向用组合物、有机半导体取向膜、有机半导体元件及其制造方法

摘要

本发明涉及一种有机半导体取向用组合物、有机半导体取向膜、有机半导体元件及其制造方法。本发明的目的在于提供一种能够形成有机半导体取向膜的有机半导体取向用组合物,该取向膜的光取向灵敏度良好,可以实现源于高耐热性的载流子移动度稳定性,同时可以发挥出使有机半导体分子以高水平不同方向取向而发挥出优异的载流子移动度。本发明是一种包含[A]具有光取向性基团的聚有机硅氧烷化合物的有机半导体取向用组合物。上述光取向性基团优选为具有肉桂酸结构的基团。上述具有肉桂酸结构的基团是由来自下述式(1)所示的化合物的基团和来自(2)所示的化合物的基团构成的群组中选出的至少一种。

著录项

  • 公开/公告号CN102079876A

    专利类型发明专利

  • 公开/公告日2011-06-01

    原文格式PDF

  • 申请/专利权人 JSR株式会社;

    申请/专利号CN201010549602.4

  • 发明设计人 木村雅之;安田博幸;

    申请日2010-11-15

  • 分类号C08L83/04(20060101);C08L83/07(20060101);C08L79/08(20060101);C09D183/04(20060101);C09D183/07(20060101);C09D179/08(20060101);H01L51/05(20060101);H01L51/40(20060101);

  • 代理机构11216 北京三幸商标专利事务所;

  • 代理人刘激扬

  • 地址 日本国东京都

  • 入库时间 2023-12-18 02:39:01

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2014-10-15

    授权

    授权

  • 2012-09-05

    实质审查的生效 IPC(主分类):C08L83/04 申请日:20101115

    实质审查的生效

  • 2011-06-01

    公开

    公开

说明书

技术领域

本发明涉及适合作为用于形成有机半导体的取向膜的组合物的有机半导体取向用组合物、由该组合物形成的有机半导体取向膜、具有该有机半导体取向膜的有机半导体元件及其制造方法。

背景技术

近年来,液晶显示元件由于具有耗电量小以及容易小型化和平板化等优点,所以适合在从移动电话等小型液晶显示装置到液晶电视等大画面液晶显示装置的广泛的用途中使用。在这种液晶显示元件中,通过使分配到各点的液晶切换ON/OFF的状态,可以显示图像,该液晶的ON/OFF切换中,使用薄膜晶体管(TFT)。

作为以场效应型TFT为代表的半导体装置,广泛普及的是使用硅等的无机半导体,同时还逐渐开发有机半导体。有机半导体中包括低分子类有机半导体和高分子类有机半导体,作为构成它们的材料,广泛研究的低分子类有机半导体是并五苯、高分子类有机半导体是聚噻吩衍生物。低分子类有机半导体是通过蒸镀法形成半导体层,相对于此,高分子类有机半导体可以通过涂布法(离心浇注、喷墨法、印刷法等)形成半导体层,不使用真空、高温工艺,而是可以在大气中的室温下涂敷的工艺,所以具有可以低成本制造的优点。另外,还可以期待在树脂基板上形成,所以除了TFT以外,还期待在柔性显示器以及电子纸、塑料IC卡、有机EL、太阳能电池等多种领域中应用。

为了实现有机半导体的高性能化,例如对于开关TFT来说要求高运行频率(例如,几百kHz左右)和高的ON电流/OFF电流的比(ON/OFF比。例如,104~106左右)。为了显现出这样的功能,有效的是控制源极和漏极间的漏极电流。这里,饱和区域的漏极电流(Id)满足下述关系式(I)。

Id=(W/2L)μCi(Vg-Vt)2…(I)

(式中,W表示信道宽,L表示信道长,μ表示载流子移动度,Ci表示每单位面积的栅极绝缘膜的静电容量,Vg表示栅极电压,Vt表示栅极阈值电压。)

因此,为了满足上述要求,可以增大W/2L和Ci,但是如果增大前者W/2L,则必须形成高精度的电极图案,导致成本飞涨。另一方面,如果增大后者Ci,则栅极绝缘膜的电导率变大,必须使膜厚变薄,从防止在大面积工艺中产生气孔等缺陷的观点出发,有很大的限制。因此,逐渐开发出着眼于这种制约小的提高载流子的移动度μ的方法。作为提高载流子移动度μ的具体方法,尝试通过导入规定有机半导体分子的取向的取向膜,使有机半导体分子在规定方向取向,从而增加有助于电传导的π轨道(π电子)的重叠,提高载流子移动度。

有机半导体分子的取向引起的π轨道的重叠与载流子移动的关系大概可以认为是以下原因。对于构成高分子类有机半导体的π电子共轭型高分子而言,有机半导体高分子链在和取向膜的取向方向相同的方向(电极间的方向)取向,从而可能往主链的取向方向进行载流子移动。另外,对低分子类有机半导体而言,由于在和取向膜的取向方向形成直角的方向(电极间的方向)形成有机半导体分子的π堆积(stack),所以可以往π轨道重叠的方向进行载流子移动。

有机半导体分子的取向虽然包括在载流子移动方向上摩擦有机半导体层,提高各向异性的方法,但是还无法满足π轨道平面重叠的规定,或者担心产生摩擦损伤或污染。为了解决这种摩擦法的问题,开发出了非接触式光取向法。作为采用该光取向法的有机晶体管,例如在日本特开2009-289783号公报中,在实施例中,提出了依次形成基板、栅极、栅极绝缘层、取向层、源极和漏极以及含有特定材料的有机半导体层的有机场效应型晶体管。

然而,上述文献的有机晶体管虽然可以得到某种程度的载流子移动度,但是必须要相当于光取向性基团的取向的光照射量,无法认为光取向的灵敏度足够高。另外,在试图将有机半导体应用于各种领域时,即使在高温等苛刻的使用条件下,也必须有可以高比例地维持原始的载流子移动度的耐候性(耐热性)。然而,上述文献中,完全没有考虑作为有机半导体元件中的取向层而要求的耐热性(载流子移动度稳定性)。

根据这种情况,希望开出发一种有机半导体取向膜,该取向膜的光取向灵敏度良好,具有源于高耐热性的载流子移动度稳定性,同时可以实现由有机半导体分子的高水平的不同方向的取向引起的高载流子移动度;以及开发出可以形成该有机半导体取向膜的有机半导体取向用组合物。

【现有技术文献】

【专利文献】

【专利文献1】日本特开2009-289783号公报

发明内容

本发明是基于上述问题提出的,其目的在于提供一种有机半导体取向膜,该取向膜的光取向灵敏度良好,可以实现源于高耐热性的载流子移动度稳定性,同时可以发挥出使有机半导体分子以高水平不同方向取向而发挥出优异的载流子移动度;以及提供可以形成该有机半导体取向膜的有机半导体取向用组合物、具有上述有机半导体取向膜的有机半导体元件以及该有机半导体元件的制造方法。

为了解决上述问题而提出的发明,是一种包含[A]具有光取向性基团的聚有机硅氧烷化合物的有机半导体取向用组合物。

该有机半导体取向用组合物由于包含[A]具有光取向性基团的聚有机硅氧烷化合物,所以在使用其形成有机半导体取向膜时,由于良好的光取向灵敏度,可以降低光取向性基团取向所必需的光照射量,由此,可以提高有机半导体元件的生产效率。另外,在使用该有机半导体取向用组合物形成的有机半导体取向膜中,通过不同方向取向的[A]具有光取向性基团的聚有机硅氧烷化合物,有机半导体分子可以高水平地在不同方向取向,由此,可以在有机半导体元件中实现优异的载流子移动度。另外,该有机半导体取向用组合物的[A]具有光取向性基团的聚有机硅氧烷化合物由于采用聚有机硅氧烷作为主链,所以得到的取向膜的热稳定性以及化学稳定性高,显示出高耐热性,由此,即使在受热后,也可以长时间、高比例地维持原始的载流子移动度。

该有机半导体取向用组合物中,上述光取向性基团优选为具有肉桂酸结构的基团。通过使用具有以肉桂酸或其衍生物作为基本骨架的肉桂酸结构的基团作为光取向性基团,可以对得到的有机半导体取向膜引起的有机半导体分子的取向赋予高的各向异性,进一步提高有机半导体的载流子移动度。

该有机半导体取向用组合物中,上述具有肉桂酸结构的基团优选为由来自下述式(1)所示的化合物的基团和来自(2)所示的化合物的基团构成的群组中选出的至少一种(以下,将下述式(1)所示的化合物和下述式(2)所示的化合物的一种或两种简称为“特定肉桂酸衍生物”)。

式(1)中,R1是亚苯基、亚联苯基、亚三联苯基或者亚环己基,该亚苯基、亚联苯基、亚三联苯基或者亚环己基的氢原子的一部分或者全部可以被碳原子数为1~10的烷基、可以具有氟原子作为取代基的碳原子数为1~10的烷氧基、氟原子或者氰基取代。R2是单键、碳原子数为1~3的亚烷基、氧原子、硫原子、-CH=CH-、-NH-或者-COO-。a是0~3的整数,a为2以上时,R1和R2分别可以相同,也可以不同。R3是氟原子或者氰基,b是0~4的整数。

式(2)中,R4是亚苯基或者亚环己基,该亚苯基或者亚环己基的氢原子的一部分或全部可以被碳原子数为1~10的链状或环状的烷基、碳原子数为1~10的链状或环状的烷氧基、氟原子或者氰基取代。R5是单键、碳原子数为1~3的亚烷基、氧原子、硫原子或者-NH-。c是1~3的整数,c为2以上时,R4和R5分别可以相同,也可以不同。R6是氟原子或氰基,d是0~4的整数。R7是氧原子、-COO-*或者-OCO-*(其中,在上文中,带“*”的连接键和R8连接)。R8是2价芳香族基团、2价的脂环基团、2价的杂环基团或者2价的稠环基团。R9是单键、-OCO-(CH2)f-*或者-O(CH2)g-*(其中,在上文中,带“*”的连接键和羧基连接。f和g分别是1~10的整数,e是0~3的整数。

通过使用来自上述特定肉桂酸衍生物的基团作为上述具有肉桂酸结构的基团,可以进一步提高对有机半导体分子赋予各向异性的性能,也就是取向性能,容易固定有机半导体分子的π电子的共轭或者堆积,从而进一步提高有机半导体层的载流子移动度。

在该有机半导体取向用组合物中,[A]具有光取向性基团的聚有机硅氧烷化合物优选为由具有环氧基的聚有机硅氧烷、其水解物和其水解物的缩合物构成的群组中选出的至少一种与由上述式(1)所示的化合物和上述式(2)所示的化合物构成的群组中选出的至少一种的反应产物。该有机半导体取向用组合物中,通过利用具有环氧基的聚有机硅氧烷和特定肉桂酸衍生物间的反应性,可以在作为主链的聚有机硅氧烷中导入来自具有光取向性的特定肉桂酸衍生物的侧链基团。

该有机半导体取向用组合物中,上述环氧基优选由下述式(X1-1)或者(X1-2)表示。

式(X1-1)中,A是氧原子或者单键。h是1~3的整数,i是0~6的整数。其中,在i为0时,A是单键。

式(X1-2)中,j是1~6的整数。

式(X1-1)和(X1-2)中,“*”分别表示连接键。

通过采用上述式(X1-1)或者(X1-2)所示的环氧基作为上述环氧基,可以在该有机半导体取向用组合物的聚有机硅氧烷中容易地导入来自上述特定肉桂酸衍生物的侧链基团。

该有机半导体取向用组合物优选进一步含有[B]具有两个以上由羧酸的缩醛酯结构、羧酸的缩酮酯结构、羧酸的1-烷基环烷基酯结构和羧酸的叔丁基酯结构构成的群组中选出的至少一种结构的化合物。该有机半导体取向用组合物通过含有这种[B]成分的化合物(以下,简称为“含酯结构的化合物”),在曝光后的烧制工序(以下,称作“后烘焙”)中,产生酸,通过产生的酸,可以促进具有光取向性基团的聚有机硅氧烷化合物的交联,从而提高得到的有机半导体取向膜的耐热性。

该有机半导体取向用组合物优选进一步含有[C]由聚酰胺酸和聚酰亚胺构成的群组中选出的至少一种聚合物。

该有机半导体取向用组合物通过进一步含有[C]由聚酰胺酸和聚酰亚胺构成的群组中选出的至少一种聚合物,在使用其形成有机半导体取向膜时,可以发挥出高的绝缘性。另外,形成的有机半导体取向膜,由于具有有助于有机半导体分子的各向异性地取向的光取向性基团的聚有机硅氧烷化合物更多地存在于该取向膜表面附近,所以通过光取向性基团,有机半导体分子可以高水平地各向异性取向,从而可以在有机半导体元件中实现优异的载流子移动度。

在该有机半导体取向用组合物中,上述聚酰胺酸和聚酰亚胺优选为由脂肪族四羧酸二酐、脂环式四羧酸二酐和芳香族四羧酸二酐构成的群组中选出的至少一种四羧酸二酐,和由脂肪族二胺、脂环式二胺和芳香族二胺构成的群组中选出的至少一种二胺的反应产物。上述聚酰胺酸和聚酰亚胺是通过这种单体得到的聚合物时,可以进一步改善得到的有机半导体取向膜的以绝缘性为代表的电性质。

本发明的有机半导体取向膜由该有机半导体取向用组合物形成。结果是,该有机半导体取向膜即使受热,也会由于高耐热性显示出优异的载流子移动度稳定性,同时由于光取向性基团,容易地限定有机半导体分子的π电子共轭平面或者π堆积取向,可以在有机半导体层中发现优异的载流子移动度。另外,该有机半导体取向用组合物在含有[C]由聚酰胺酸和聚酰亚胺构成的群组中选出的至少一种聚合物时,该有机半导体取向膜可以显示出高的绝缘性。

本发明的有机半导体取向膜优选具有肉桂酸结构的基团不均匀地分布于从表面到膜厚的30%的范围内。有助于有机半导体的取向的具有肉桂酸结构的基团通过以上述范围不均匀地分布于取向膜的有机半导体侧的表面附近,可以更有效地诱发有机半导体分子的取向。

本发明的有机半导体元件包括在基板上形成的栅极,覆盖上述栅极形成的绝缘膜,通过该有机半导体取向用组合物在上述绝缘膜上形成的有机半导体取向膜,在上述有机半导体取向膜上形成的源极和漏极,以及至少在上述源极和漏极间形成的有机半导体层。该有机半导体元件由于采用通过该有机半导体取向用组合物形成的取向膜作为有机半导体用的取向膜,所以可以发挥出优异的光取向灵敏度,减少光照射量,同时可以提高有机半导体层中的载流子移动度。从而,可以在有机半导体元件中,实现高的运行频率和高ON/OFF比。另外,由于该有机半导体取向用组合物形成的取向膜的耐热性高,所以即使受热后,也可以长时间保持原始的载流子移动度。

本发明的有机半导体元件的制造方法包括形成绝缘膜,以覆盖基板上形成的栅极的绝缘膜形成工序;在上述绝缘膜上,通过该有机半导体取向用组合物形成涂膜的涂膜形成工序;在上述涂膜上形成源极和漏极的电极形成工序;以及至少在上述源极和漏极间形成有机半导体层的有机半导体层形成工序;在上述有机半导体层形成工序前,可以进一步具有对上述涂膜照射直线偏振光,形成有机半导体取向膜的工序。通过采用该半导体元件的制造方法,可以有效且简单地制造该有机半导体元件。

本发明的有机半导体元件包括在基板上形成的栅极,通过含有[C]成分的该有机半导体取向用组合物形成的用于覆盖上述栅极的有机半导体取向膜,在上述有机半导体取向膜上形成的源极和漏极,以及至少在上述源极和漏极间形成的有机半导体层。该有机半导体元件由于采用由含有[C]成分的该有机半导体取向用组合物形成的取向膜作为所谓的栅极绝缘膜,所以可以发挥出优异的绝缘性,同时还可以提高有机半导体层中的载流子移动度,从而可以在有机半导体元件中实现高的运行频率和高ON/OFF比。

本发明的有机半导体元件的制造方法包括通过该有机半导体取向用组合物形成涂膜以覆盖基板上形成的栅极的涂膜形成工序;在上述涂膜上形成源极和漏极的电极形成工序;以及至少在上述源极和漏极间形成有机半导体层的有机半导体层形成工序;在上述有机半导体层形成工序前,可以进一步具有对上述涂膜照射直线偏振光,形成有机半导体取向膜的工序。通过采用该半导体元件的制造方法,可以有效且简单地制造该有机半导体元件。

如上所述,通过本发明的有机半导体取向用组合物、有机半导体取向膜、有机半导体元件及其制造方法,光取向的灵敏度良好,通过高耐热性实现载流子移动度稳定性,同时可以使有机半导体分子高水平地各向异性地取向,发挥出优异的载流子移动度。

附图说明

图1是图示地表示本发明的有机半导体元件的一个例子的剖视图。

图2是图示地表示本发明的有机半导体元件的一个例子的剖视图。

图3是表示在实施例14中,通过TOF-SIMS观测的m/z=231的片段的膜厚方向的存在分布图。

图4是表示在实施例14中,通过TOF-SIMS观测的m/z=231的片段的膜厚方向的存在累积值的图。

具体实施方式

本发明的有机半导体取向用组合物由于包含[A]具有光取向性基团的聚有机硅氧烷化合物(以下,简称为“光取向性聚有机硅氧烷化合物”),所以可以通过高灵敏度的光取向性,降低取向必需的光照射量。另外,由于使用该有机半导体取向用组合物,得到的有机半导体取向膜显示出高耐热性,由此,可以发挥出受热后的高载流子移动度稳定性,此外该有机半导体取向膜由于具有优异的光取向性,所以在有机半导体层中,可以发挥高水平的各向异性取向。

该有机半导体取向用组合物在含有[A]光取向性聚有机硅氧烷化合物的同时,作为适合的成分还可以含有[B]含酯结构化合物、和/或者[C]由聚酰胺酸和聚酰亚胺构成的群组中选出的至少一种聚合物,此外,作为任选成分,还可以含有光取向性聚有机硅氧烷化合物以外的聚合物(以下,称作“其它聚合物”)、固化剂、固化催化剂、固化促进剂、在分子内具有至少一个环氧基的化合物(以下,称作“环氧化合物”)、官能性硅烷化合物、表面活性剂、光增敏性化合物等。以下,对该有机半导体取向用组合物进行说明。

<[A]成分:具有光取向性基团的聚有机硅氧烷化合物>

对[A]具有光取向性基团的聚有机硅氧烷化合物而言,在作为主链的来自由聚有机硅氧烷、其水解物及其水解物的缩合物构成的群组中选出的至少一种的部分上,导入光取向性基团作为侧链。用该有机半导体取向用组合物形成有机半导体取向膜时,如果在该光取向性基团照射偏光等具有各向异性的光,则在该有机半导体取向膜内,诱发带有分子的再次排列以及各向异性的化学反应等。通过带有该各向异性的取向膜分子结构变化,可以对有机半导体分子赋予各向异性。另外,由于光取向性基团和聚有机硅氧烷化合物,光取向的灵敏度良好,可以实现低的光照射量。同时,由于采用聚有机硅氧烷作为主链,所以由该具有半导体取向用组合物形成的有机半导体取向膜具有优异的化学稳定性、热稳定性,发挥出高的耐热性,所以即使受热后,也可以长时间维持载流子移动度。

(光取向性基团)

如上所述,光取向性基团通过具有各向异性的光照射,引发构成取向膜的分子的微观结构变化。作为这种光取向性基团没有特别的限定,可以采用来自显示出光取向性的各种化合物的基团。作为光取向性基团显现出各向异性的机理区分为光致反应型和光致异构化型两种。光致反应型进一步区分为二聚型、分解型、结合型、分解交联型。从不会污染有机半导体层的观点出发,优选光照射后不会残留杂质离子、自由基等的类型,所以优选光致异构化型、二聚型。

作为光取向性基团的具体例子,可以列举出含有偶氮苯或其衍生物作为基本骨架的含偶氮苯的基团,含有肉桂酸或其衍生物作为基本骨架的具有肉桂酸结构的基团,含有苯丙烯酰苯或其衍生物作为基本骨架的含苯丙烯酰苯的基团,含有二苯甲酮或其衍生物作为基本骨架的含二苯甲酮的基团,具有香豆素或其衍生物作为基本骨架的含香豆素的基团,含有聚酰亚胺或其衍生物作为基本骨架的含聚酰亚胺的结构等。这些光取向性基团中,如果考虑呈现出二聚型的各向异性,导入高取向能的容易性,优选含有肉桂酸或其衍生物作为基本骨架的具有肉桂酸结构的基团。另外,肉桂酸或其衍生物只要通过光照射可以二聚,就不限于顺式或反式。

具有肉桂酸结构的基团的结构只要是含有肉桂酸或其衍生物作为基本骨架,就没有特别的限定,优选来自上述式(1)所示的化合物和上述式(2)所示的化合物(也就是,特定的肉桂酸衍生物)中的至少一种的基团。另外,上述式(1)中,R1是亚苯基、亚联苯基、亚三联苯基或者亚环己基,该亚苯基、亚联苯基、亚三联苯基或者亚环己基的氢原子的一部分或全部可以被碳原子数为1~10的烷基、可以具有氟原子作为取代基的碳原子数为1~10的烷氧基、氟原子或者氰基取代。R2是单键、碳原子数为1~3的亚烷基、氧原子、硫原子、-CH=CH-、-NH-或者-COO-。a是0~3的整数,a为2以上时,R1和R2分别可以相同,也可以不同。R3是氟原子或者氰基,b是0~4的整数。

作为上述式(1)所示的化合物,可以列举出例如下述物质。

它们之中,作为R1优选未取代的亚苯基、或者可以被氟原子或碳原子数为1~3的烷基取代的亚苯基,R2优选单键、氧原子或-CH2=CH2-。b优选为0~1,a为1~3时,b特别优选为0。

上述式(2)中,R4是亚苯基或者亚环己基,该亚苯基或者亚环己基的氢原子的一部分或全部可以被碳原子数为1~10的链状或环状的烷基、碳原子数为1~10的链状或环状的烷氧基、氟原子或者氰基取代。R5是单键、碳原子数为1~3的亚烷基、氧原子、硫原子或者-NH-。c是1~3的整数,c为2以上时,R4和R5分别可以相同,也可以不同。R6是氟原子或氰基,d是0~4的整数。R7是氧原子、-COO-*或者-OCO-*(其中,在上文中,带“*”的连接键和R8连接)。R8是2价的芳香族基团、2价的脂环式基团、2价的杂环基团或者2价的稠环基团。R9是单键、-OCO-(CH2)f-*或者-O(CH2)g-*(其中,在上文中,带“*”的连接键和羧基连接。f和g分别是1~10的整数,e是0~3的整数。

作为上述式(2)所示的化合物,可以列举出例如下述式(2-1)和(2-2)所示的化合物。

上述式中,Q是碳原子数为1~10的链状或环状的烷基、碳原子数为1~10的链状或环状的烷氧基、氟原子或氰基,f和式(2)中的定义相同。

(特定肉桂酸衍生物的合成)

特定肉桂酸衍生物的合成步骤没有特别的限定,可以组合现有公知的方法进行。作为代表性的合成步骤,例如可以例示(1)在碱性条件下,使具有被卤原子取代的苯环骨架的化合物和丙烯酸,在过渡金属催化剂的存在下反应,得到特定肉桂酸衍生物的方法;(2)在碱性条件下,使苯环的氢原子被卤原子取代的肉桂酸和具有被卤原子取代的苯环骨架的化合物,在过渡金属催化剂的存在下反应,形成特定肉桂酸衍生物的方法等。但是,特定肉桂酸衍生物的合成步骤并不限于这些方法。

(来自由聚有机硅氧烷、其水解物及其水解物的缩合物构成的群组中选出的至少一种的部分)

作为在[A]光取向性聚有机硅氧烷化合物中作为主链含有的来自由聚有机硅氧烷、其水解物及其水解物的缩合物构成的群组中选出的至少一种的部分,只要是具有来自能够在其自身导入上述光取向性基团的结构的部分,就没有特别的限定。[A]光取向性聚有机硅氧烷化合物包含这种来自由聚有机硅氧烷、其水解物及其水解物的缩合物构成的群组中选出的至少一种的部分,与来自上述显示出光取向性的化合物的基团。

作为能导入上述光取向性基团的结构,可以列举出例如羟基、环氧基、氨基、羧基、巯基、酯基、酰胺等。它们之中,如果考虑到导入和制备的容易性,优选环氧基。

[A]具有光取向性基团的聚有机硅氧烷化合物优选为由具有环氧基的聚有机硅氧烷、其水解物及其水解物的缩合物构成的群组中选出的至少一种(以下,也简称为“具有环氧基的聚有机硅氧烷”),和上述式(1)和/或者(2)所示的化合物的反应产物。在该有机半导体取向用组合物中,通过利用具有环氧基的聚有机硅氧烷和特定肉桂酸衍生物间的反应性,可以容易地在作为主链的聚有机硅氧烷中导入具有光取向性的来自特定肉桂酸衍生物的基团。

(具有环氧基的聚有机硅氧烷)

该有机半导体取向用组合物中使用的具有环氧基的聚有机硅氧烷只要是在聚有机硅氧烷中导入环氧基作为侧链的,就没有特别的限定。作为上述具有环氧基的聚有机硅氧烷优选为由具有下述式(3)所示的重复单元的聚有机硅氧烷、其水解物及其水解物的缩合物构成的群组中选出的至少一种。

式(3)中,X1是具有环氧基的1价有机基团,Y1是羟基、碳原子数为1~10的烷氧基、碳原子数为1~20的烷基或者碳原子数为6~20的芳基。

另外,具有上述式(3)所示的重复单元的聚有机硅氧烷的水解缩合物,不仅是该聚有机硅氧烷之间的水解缩合物,而且还是包含了通过上述式(3)所示的重复单元的水解缩合,生成聚有机硅氧烷的过程中,主链产生枝化以及交联等得到的聚有机硅氧烷具有上述式(3)所示的重复单元时的水解缩合物的概念。

上述式(3)中的X1只要是具有环氧基的1价有机基团,就没有特别的限定,可以列举出例如包含缩水甘油基、缩水甘油氧基、环氧环己基的基团等。该X1相当于上述具有环氧基的聚有机硅氧烷的环氧基。作为上述环氧基(也就是,X1),优选为上述式(X1-1)或者(X1-2)表示,此外,在上述式(X1-1)或者(X1-2)所示的环氧基中,优选下述式(X1-1-1)或者(X1-2-1)所示的基团。

上述式中,“*”表示连接键。

上述式(3)中的Y1中,分别是,作为碳原子数为1~10的烷氧基,可以列举出例如甲氧基、乙氧基等;作为碳原子数为1~20的烷基,可以列举出例如甲基、乙基、正丙基、正丁基、正戊基、正己基、正庚基、正辛基、正壬基、正癸基、正月桂基、正十二烷基、正十三烷基、正十四烷基、正十五烷基、正十六烷基、正十七烷基、正十八烷基、正十九烷基、正二十烷基等;作为碳原子数为6~20的芳基,可以列举出例如苯基等。

具有环氧基的聚有机硅氧烷优选通过凝胶渗透色谱法(GPC)测定的聚苯乙烯换算的质均分子量为500~100,000,更优选为1,000~10,000,进一步优选为1,000~5,000。

这种具有环氧基的聚有机硅氧烷,优选通过将具有环氧基的硅烷化合物、或具有环氧基的硅烷化合物和其它硅烷化合物的混合物,优选在适当的有机溶剂、水和催化剂的存在下,通过水解或者水解、缩合合成。

作为上述具有环氧基的硅烷化合物,可以列举出例如3-缩水甘油氧基丙基三甲氧基硅烷、3-缩水甘油氧基丙基三乙氧基硅烷、3-缩水甘油氧基丙基甲基二甲氧基硅烷、3-缩水甘油氧基丙基甲基二乙氧基硅烷、3-缩水甘油氧基丙基二甲基甲氧基硅烷、3-缩水甘油氧基丙基二甲基乙氧基硅烷、2-(3,4-环氧环己基)乙基三甲氧基硅烷、2-(3,4-环氧环己基)乙基三乙氧基硅烷等。

作为上述其它硅烷化合物,可以列举出例如四氯代硅烷、四甲氧基硅烷、四乙氧基硅烷、四正丙氧基硅烷、四异丙氧基硅烷、四正丁氧基硅烷、四仲丁氧基硅烷、三氯代硅烷、三甲氧基硅烷、三乙氧基硅烷、三正丙氧基硅烷、三异丙氧基硅烷、三正丁氧基硅烷、三仲丁氧基硅烷、氟代三氯代硅烷、氟代三甲氧基硅烷、氟代三乙氧基硅烷、氟代三正丙氧基硅烷、氟代三异丙氧基硅烷、氟代三正丁氧基硅烷、氟代三仲丁氧基硅烷、甲基三氯代硅烷、甲基三甲氧基硅烷、甲基三乙氧基硅烷、甲基三正丙氧基硅烷、甲基三异丙氧基硅烷、甲基三正丁氧基硅烷、甲基三仲丁氧基硅烷、2-(三氟代甲基)乙基三氯代硅烷、

2-(三氟代甲基)乙基三甲氧基硅烷、2-(三氟代甲基)乙基三乙氧基硅烷、2-(三氟代甲基)乙基三正丙氧基硅烷、2-(三氟代甲基)乙基三异丙氧基硅烷、2-(三氟代甲基)乙基三正丁氧基硅烷、2-(三氟代甲基)乙基三仲丁氧基硅烷、2-(全氟代正己基)乙基三氯代硅烷、2-(全氟代正己基)乙基三甲氧基硅烷、2-(全氟代正己基)乙基三乙氧基硅烷、2-(全氟代正己基)乙基三正丙氧基硅烷、2-(全氟代正己基)乙基三异丙氧基硅烷、2-(全氟代正己基)乙基三正丁氧基硅烷、2-(全氟代正己基)乙基三仲丁氧基硅烷、2-(全氟代正辛基)乙基三氯代硅烷、2-(全氟代正辛基)乙基三甲氧基硅烷、2-(全氟代正辛基)乙基三乙氧基硅烷、

2-(全氟代正辛基)乙基三正丙氧基硅烷、2-(全氟代正辛基)乙基三异丙氧基硅烷、2-(全氟代正辛基)乙基三正丁氧基硅烷、2-(全氟代正辛基)乙基三仲丁氧基硅烷、羟基甲基三氯代硅烷、羟基甲基三甲氧基硅烷、羟基乙基三甲氧基硅烷、羟基甲基三正丙氧基硅烷、羟基甲基三异丙氧基硅烷、羟基甲基三正丁氧基硅烷、羟基甲基三仲丁氧基硅烷、3-(甲基)丙烯酰氧基丙基三氯代硅烷、3-(甲基)丙烯酰氧基丙基三甲氧基硅烷、3-(甲基)丙烯酰氧基丙基三乙氧基硅烷、3-(甲基)丙烯酰氧基丙基三正丙氧基硅烷、3-(甲基)丙烯酰氧基丙基三异丙氧基硅烷、3-(甲基)丙烯酰氧基丙基三正丁氧基硅烷、3-(甲基)丙烯酰氧基丙基三仲丁氧基硅烷、3-巯基丙基三氯代硅烷、3-巯基丙基三甲氧基硅烷、3-巯基丙基三乙氧基硅烷、3-巯基丙基三正丙氧基硅烷、3-巯基丙基三异丙氧基硅烷、3-巯基丙基三正丁氧基硅烷、3-巯基丙基三仲丁氧基硅烷、巯基甲基三甲氧基硅烷、

巯基甲基三乙氧基硅烷、乙烯基三氯代硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三正丙氧基硅烷、乙烯基三异丙氧基硅烷、乙烯基三正丁氧基硅烷、乙烯基三仲丁氧基硅烷、烯丙基三氯代硅烷、烯丙基三甲氧基硅烷、烯丙基三乙氧基硅烷、烯丙基三正丙氧基硅烷、烯丙基三异丙氧基硅烷、烯丙基三正丁氧基硅烷、烯丙基三仲丁氧基硅烷、苯基三氯代硅烷、苯基三甲氧基硅烷、苯基三乙氧基硅烷、苯基三正丙氧基硅烷、苯基三异丙氧基硅烷、苯基三正丁氧基硅烷、苯基三仲丁氧基硅烷、甲基二氯代硅烷、甲基二甲氧基硅烷、甲基二乙氧基硅烷、甲基二正丙氧基硅烷、甲基二异丙氧基硅烷、甲基二正丁氧基硅烷、甲基二仲丁氧基硅烷、二甲基二氯代硅烷、二甲基二甲氧基硅烷、二甲基二乙氧基硅烷、二甲基二正丙氧基硅烷、二甲基二异丙氧基硅烷、二甲基二正丁氧基硅烷、二甲基二仲丁氧基硅烷、(甲基)[2-(全氟代正辛基)乙基]二氯代硅烷、(甲基)[2-(全氟代正辛基)乙基]二甲氧基硅烷、(甲基)[2-(全氟代正辛基)乙基]二乙氧基硅烷、(甲基)[2-(全氟代正辛基)乙基]二正丙氧基硅烷、(甲基)[2-(全氟代正辛基)乙基]二异丙氧基硅烷、(甲基)[2-(全氟代正辛基)乙基]二正丁氧基硅烷、(甲基)[2-(全氟代正辛基)乙基]二仲丁氧基硅烷、(甲基)(3-巯基丙基)二氯代硅烷、(甲基)(3-巯基丙基)二甲氧基硅烷、(甲基)(3-巯基丙基)二乙氧基硅烷、(甲基)(3-巯基丙基)二正丙氧基硅烷、(甲基)(3-巯基丙基)二异丙氧基硅烷、(甲基)(3-巯基丙基)二正丁氧基硅烷、(甲基)(3-巯基丙基)二仲丁氧基硅烷、(甲基)(乙烯基)二氯代硅烷、(甲基)(乙烯基)二甲氧基硅烷、(甲基)(乙烯基)二乙氧基硅烷、(甲基)(乙烯基)二正丙氧基硅烷、(甲基)(乙烯基)二异丙氧基硅烷、(甲基)(乙烯基)二正丁氧基硅烷、(甲基)(乙烯基)二仲丁氧基硅烷、二乙烯基二氯代硅烷、二乙烯基二甲氧基硅烷、二乙烯基二乙氧基硅烷、二乙烯基二正丙氧基硅烷、二乙烯基二异丙氧基硅烷、二乙烯基二正丁氧基硅烷、二乙烯基二仲丁氧基硅烷、二苯基二氯代硅烷、二苯基二甲氧基硅烷、二苯基二乙氧基硅烷、二苯基二正丙氧基硅烷、二苯基二异丙氧基硅烷、二苯基二正丁氧基硅烷、二苯基二仲丁氧基硅烷、氯代二甲基硅烷、甲氧基二甲基硅烷、乙氧基二甲基硅烷、氯代三甲基硅烷、溴化三甲基硅烷、碘化三甲基硅烷、甲氧基三甲基硅烷、乙氧基三甲基硅烷、正丙氧基三甲基硅烷、异丙氧基三甲基硅烷、正丁氧基三甲基硅烷、仲丁氧基三甲基硅烷、叔丁氧基三甲基硅烷、(氯代)(乙烯基)二甲基硅烷、(甲氧基)(乙烯基)二甲基硅烷、(乙氧基)(乙烯基)二甲基硅烷、(氯代)(甲基)二苯基硅烷、(甲氧基)(甲基)二苯基硅烷、(乙氧基)(甲基)二苯基硅烷等具有1个硅原子的硅烷化合物,以及

以商品名表示,可以列举出例如KC-89、KC-89S、X-21-3153、X-21-5841、X-21-5842、X-21-5843、X-21-5844、X-21-5845、X-21-5846、X-21-5847、X-21-5848、X-22-160AS、X-22-170B、X-22-170BX、X-22-170D、X-22-170DX、X-22-176B、X-22-176D、X-22-176DX、X-22-176F、X-40-2308、X-40-2651、X-40-2655A、X-40-2671、X-40-2672、X-40-9220、X-40-9225、X-40-9227、X-40-9246、X-40-9247、X-40-9250、X-40-9323、X-41-1053、X-41-1056、X-41-1805、X-41-1810、KF6001、KF6002、KF6003、KR212、KR-213、KR-217、KR220L、KR242A、KR271、KR282、KR300、KR311、KR401N、KR500、KR510、KR5206、KR5230、KR5235、KR9218、KR9706(以上,信越化学工業(株)制造);グラスレジン(昭和電工(株)制造);SH804、SH805、SH806A、SH840、SR2400、SR2402、SR2405、SR2406、SR2410、SR2411、SR2416、SR2420(以上,東レ·ダウコ一ニング(株)制造);FZ3711、FZ3722(以上、日本ユニカ一(株)制造);DMS-S12、DMS-S15、DMS-S21、DMS-S27、DMS-S31、DMS-S32、DMS-S33、DMS-S35、DMS-S38、DMS-S42、DMS-S45、DMS-S51、DMS-227、PSD-0332、PDS-1615、PDS-9931、XMS-5025(以上,チツソ(株)制造);メチルシリケ一トMS51、メチルシリケ一トMS56(以上,三菱化学(株)制造);エチルシリケ一ト28、エチルシリケ一ト40、エチルシリケ一ト48(以上,コルコ一ト(株)制造);GR100、GR650、GR908、GR950(以上,昭和電工(株)制造)等部分缩合物。

这些其它硅烷化合物中,从得到的有机半导体取向膜的取向性和化学的稳定性的观点出发,优选四甲氧基硅烷、四乙氧基硅烷、甲基三甲氧基硅烷、甲基三乙氧基硅烷、3-(甲基)丙烯酰氧基丙基三甲氧基硅烷、3-(甲基)丙烯酰氧基丙基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、烯丙基三甲氧基硅烷、烯丙基三乙氧基硅烷、苯基三甲氧基硅烷、苯基三乙氧基硅烷、3-巯基丙基三甲氧基硅烷、3-巯基丙基三乙氧基硅烷、巯基甲基三甲氧基硅烷、巯基甲基三乙氧基硅烷、二甲基二甲氧基硅烷或者二甲基二乙氧基硅烷。

本发明中使用的具有环氧基的聚有机硅氧烷为了导入足够量的具有光取向性的侧链,同时抑制环氧基导入量过量引起的不希望的副反应等,其环氧当量优选为100~10,000g/mol,更优选为150~1,000g/mol。因此,优选在合成具有环氧基的聚有机硅氧烷时,设定具有环氧基的硅烷化合物和其它硅烷化合物的使用比例,以使得到的聚有机硅氧烷的环氧当量为上述范围。

具体地,相对于具有环氧基的聚有机硅氧烷和其它硅烷化合物的总量,这种其它硅烷化合物优选使用0~50质量%,更优选使用5~30质量%。

作为合成具有环氧基的聚有机硅氧烷时可以使用的有机溶剂,可以列举出例如烃化合物、酮化合物、酯化合物、醚化合物、醇化合物等。

分别是,作为烃可以列举出例如甲苯、二甲苯等;作为上述酮,可以列举出例如甲基乙基酮、甲基异丁基酮、甲基正戊基酮、二乙基酮、环己酮等;作为上述酯,可以列举出例如乙酸乙酯、乙酸正丁酯、乙酸异戊酯、丙二醇单甲基醚乙酸酯、3-甲氧基丁基乙酸酯、乳酸乙酯等;作为上述醚,可以列举出例如乙二醇二甲基醚、乙二醇二乙基醚、四氢呋喃、二噁烷等;作为上述醇,可以列举出例如1-己醇、4-甲基-2-戊醇、乙二醇单甲基醚、乙二醇单乙基醚、乙二醇单正丙基醚、乙二醇单正丁基醚、丙二醇单甲基醚、丙二醇单乙基醚、丙二醇单正丙基醚等。它们之中,优选非水溶性的。这些有机溶剂可以单独或混合两种以上使用。

相对于100质量份全部的硅烷化合物,有机溶剂的用量优选为10~10,000质量份,更优选为50~1,000质量份。另外,制造具有环氧基的聚有机硅氧烷时,水的用量,相对于全硅烷化合物,优选为0.5~100倍摩尔,更优选为1~30倍摩尔。

作为上述催化剂,可以使用例如酸、碱金属化合物、有机碱、钛化合物、锆化合物等。

作为上述碱金属化合物,可以列举出例如氢氧化钠、氢氧化钾、甲氧基钠、甲氧基钾、乙氧基钠、乙氧基钾等。

作为上述有机碱,可以分别列举出例如像乙胺、二乙胺、哌嗪、哌啶、吡咯烷、吡咯这样的伯、仲有机胺;像三乙胺、三正丙基胺、三正丁基胺、吡啶、4-二甲基氨基吡啶、二氮杂二环十一烯这样的叔有机胺;像氢氧化四甲基铵这样的季型有机胺等。这些有机碱中,考虑到稳定进行反应的观点,优选像三乙胺、三正丙基胺、三正丁基胺、吡啶、4-二甲基氨基吡啶等有机叔胺;氢氧化四甲基铵这样的有机季铵盐。

作为制造具有环氧基的聚有机硅氧烷时的催化剂,优选碱金属化合物或有机碱。通过使用碱金属化合物或有机碱作为催化剂,可以不会产生环氧基的开环等副反应,以高的水解、缩合速度,得到目标的聚有机硅氧烷,所以生产稳定性优异,优选使用。另外,含有具有环氧基的聚有机硅氧烷和特定肉桂酸衍生物的反应产物的本发明的有机半导体取向用组合物,其中聚有机硅氧烷使用碱金属化合物或有机碱作为催化剂合成,由于保存稳定性极为优异,所以合适。

其理由如Chemical Reviews,第95卷,p1409(1995年)所指出的那样,推测是如果在水解、缩合反应中使用碱金属化合物或有机碱作为催化剂,则形成无规结构、梯型结构或笼型结构,无法得到含有硅烷醇基比例少的聚有机硅氧烷。推测是由于硅烷醇基的含有比例少,则抑制硅烷醇基之间的缩合反应,进而在本发明的有机半导体取向用组合物含有后述的其它聚合物时,抑制硅烷醇基和其它聚合物的缩合反应,从而导致保存稳定性优异。

作为催化剂,特别优选有机碱。有机碱的用量根据有机碱的种类、温度等反应条件等而异,可以适当设定。作为有机碱的具体的用量,例如相对于全部硅烷化合物,优选为0.01~3倍摩尔,更优选为0.05~1倍摩尔。

制造具有环氧基的聚有机硅氧烷时的水解或者水解、缩合反应,优选通过将具有环氧基的硅烷化合物和根据需要使用的其它硅烷化合物溶解到有机溶剂中,将该溶液与有机碱和水混合,通过例如油浴等加热进行。

水解、缩合反应时,希望油浴的加热温度优选为130℃以下,更优选为40~100℃,优选加热0.5~12小时,更优选加热1~8小时。加热时,可以搅拌混合液,也可以在回流下静置。

反应结束后,优选用水洗涤从反应液分取的有机溶剂层。该洗涤时,在容易进行洗涤操作方面,优选通过含有少量盐的水,例如0.2质量%左右的硝酸铵水溶液等洗涤。洗涤进行到洗涤后的水层为中性,之后根据需要用无水硫酸钙、分子筛等干燥剂干燥有机溶剂层后,除去溶剂,可以得到作为目标的具有环氧基的聚有机硅氧烷。

在本发明中,作为具有环氧基的聚有机硅氧烷可以使用市售的那些。作为这种商品,可以列举出例如DMS-E01、DMS-E12、DMS-E21、EMS-32(以上,チツソ(株)制造)等。

[A]光取向性聚有机硅氧烷化合物包含来自具有环氧基的聚有机硅氧烷本身水解生成的水解物的部分,以及来自具有环氧基的聚有机硅氧烷之间水解缩合形成水解缩合物的部分。作为该部分的构成材料的这些水解物或水解缩合物也和具有环氧基的聚有机硅氧烷的水解、缩合条件同样地制备。

([A]具有光取向性基团的聚有机硅氧烷化合物的合成)

本发明中使用的[A]具有光取向性基团的聚有机硅氧烷化合物,例如可以通过将如上所述的具有环氧基的聚有机硅氧烷和上述式(1)和/或者(2)所示的化合物(也就是,特定肉桂酸衍生物),优选在催化剂的存在下反应合成。

这里,特定肉桂酸衍生物,相对于1mol聚有机硅氧烷所具有的环氧基,优选使用0.001~10mol,更优选使用0.01~5mol,进一步优选使用0.05~2mol。

作为上述催化剂,可以使用有机碱、或者促进环氧化合物和酸酐的反应的所谓的固化促进剂而公知的化合物。

作为上述有机碱,可以列举出例如像乙胺、二乙胺、哌嗪、哌啶、吡咯烷、吡咯这样的伯、仲有机胺;

像三乙胺、三正丙基胺、三正丁基胺、吡啶、4-二甲基氨基吡啶、二氮杂二环十一烯这样的有机叔胺;

像氢氧化四甲基铵这样的有机季铵等。

这些有机碱中,优选像三乙胺、三正丙基胺、三正丁基胺、吡啶、4-二甲基氨基吡啶这样的有机叔胺;像氢氧化四甲基铵这样的有机季铵盐。

作为上述固化促进剂,可以列举出例如像苄基二甲基胺、2,4,6-三(二甲基氨基甲基)苯酚、环己基二甲基胺、三乙醇胺这样的叔胺;

像2-甲基咪唑、2-正庚基咪唑、2-正十一烷基咪唑、2-苯基咪唑、2-苯基-4-甲基咪唑、1-苄基-2-甲基咪唑、1-苄基-2-苯基咪唑、1,2-二甲基咪唑、2-乙基-4-甲基咪唑、1-(2-氰基乙基)-2-甲基咪唑、1-(2-氰基乙基)-2-正十一烷基咪唑、1-(2-氰基乙基)-2-苯基咪唑、1-(2-氰基乙基)-2-乙基-4-甲基咪唑、2-苯基-4-甲基-5-羟甲基咪唑、2-苯基-4,5-二(羟甲基)咪唑、1-(2-氰基乙基)-2-苯基-4,5-二[(2’-氰基乙氧基)甲基]咪唑、1-(2-氰基乙基)-2-正十一烷基咪唑鎓苯偏三酸盐、1-(2-氰基乙基)-2-苯基咪唑鎓苯偏三酸盐、1-(2-氰基乙基)-2-乙基-4-甲基咪唑鎓苯偏三酸盐、2,4-二氨基-6-[2’-甲基咪唑基-(1’)]乙基-s-三嗪、2,4-二氨基-6-(2’-正十一烷基咪唑基)乙基-s-三嗪、2,4-二氨基-6-[2’-乙基-4’-甲基咪唑基-(1’)]乙基-s-三嗪、2-甲基咪唑的异氰尿酸加成物、2-苯基咪唑的异氰尿酸加成物、以及2,4-二氨基-6-[2’-甲基咪唑基-(1’)]乙基-s-三嗪的异氰尿酸加成物这样的咪唑化合物;

像二苯基膦、三苯基膦、亚磷酸三苯基酯这样的有机磷化合物;

像氯化苄基三苯基鏻、溴化四正丁基鏻、溴化甲基三苯基鏻、溴化乙基三苯基鏻、溴化正丁基三苯基鏻、溴化四苯基鏻、碘化乙基三苯基鏻、乙基三苯基鏻乙酸盐、四正丁基鏻O,O-二乙基偶磷二硫代硫酸盐、四正丁基鏻苯并三唑盐、四苯基鏻四苯基硼酸盐、四正丁基鏻四氟硼酸盐、四正丁基鏻四苯基硼酸盐这样的季鏻盐;

像1,8-二偶氮二环[5.4.0]十一烯-7及其有机酸盐这样的二偶氮二环烯烃;

像辛酸锌、辛酸锡、乙酰丙酮铝络合物这样的有机金属化合物;

像溴化四乙基铵、溴化四正丁基铵、氯化四乙基铵、氯化四正丁基铵这样的季铵盐;

像三氟化硼、硼酸三苯基酯这样的硼化合物;

像氯化锌、氯化锡这样的金属卤化物;

二氰基二酰胺以及胺和环氧树脂的加成物等胺加成型促进剂等高熔点分散型潜在性固化促进剂;

上述咪唑化合物、有机磷化合物以及季鏻盐等固化促进剂的表面用聚合物覆盖形成的微胶囊型潜在性固化促进剂;

胺盐型潜在性固化促进剂;

路易斯酸盐、布仑斯惕酸(Bronsted acid)盐等高温分解型热阳离子聚合型潜在性固化促进剂等潜在性固化促进剂等。

这些催化剂中,优选像溴化四乙基铵、溴化四正丁基铵、氯化四乙基铵、氯化四正丁基铵这样的季铵盐。

相对于100质量份具有环氧基的聚有机硅氧烷,催化剂优选为以100质量份以下、更优选以0.01~100质量份,进一步优选以0.1~20质量份的量使用。

反应温度优选为0~200℃,更优选为50~150℃。反应时间优选为0.1~50小时,更优选为0.5~20小时。

[A]光取向性聚有机硅氧烷化合物根据需要可以在有机溶剂的存在下合成。作为该有机溶剂,可以列举出例如烃化合物、醚化合物、酯化合物、酮化合物、酰胺化合物、醇化合物等。它们之中,醚化合物、酯化合物、酮化合物,从原料和产物的溶解性以及产物精制的容易性的观点出发为优选。溶剂以固体成分浓度(反应溶液中的溶剂以外的成分的质量占据溶液的全部质量的比例)优选以0.1质量%以上、70质量%以下,更优选以5质量%以上、50质量%以下的量使用。

这样得到的[A]光取向性聚有机硅氧烷化合物通过凝胶渗透色谱法以聚苯乙烯换算的质量平均分子量没有特别的限定,优选为1,000~20,000,更优选为3,000~15,000。通过在这种分子量范围内,可以确保有机半导体取向膜有良好的取向性和稳定性。

上述[A]光取向性聚有机硅氧烷化合物,通过特定肉桂酸衍生物的羧基对环氧基的开环加成,在具有环氧基的聚有机硅氧烷中导入来自特定肉桂酸衍生物的结构。该制造方法简单,而且特别是在提高来自特定肉桂酸衍生物的结构的导入率方面,是极为合适的方法。

在本发明中,在不损害本发明的效果的范围内,可以用下述式(4)所示的化合物取代上述特定肉桂衍生物的一部分。在这种情况下,[A]光取向性聚有机硅氧烷化合物的合成可以通过使具有环氧基的聚有机硅氧烷与特定肉桂酸衍生物和下述式(4)所示的化合物的混合物反应进行。

R10——R11——R12             (4)

作为上述式(4)中的R10,优选为碳原子数为8~20的烷基或烷氧基、或者碳原子数为4~21的氟代烷基或氟代烷氧基,作为R11优选为单键、1,4-亚环己基或者1,4-亚苯基,而且作为R12优选为羧基。

作为上述式(4)所示的化合物的优选的例子,可以列举出例如下述式(4-1)~(4-3)任一项所示的化合物。

上述式(4)所示的化合物有助于使[A]光取向性聚有机硅氧烷化合物的活性部位失活,提高该有机半导体取向用组合物的稳定性。在本发明中,将上述式(4)所示的化合物和特定肉桂酸衍生物一起使用时,特定肉桂酸衍生物和上述式(4)所示的化合物的总使用比例,相对于1mol聚有机硅氧烷所具有的环氧基,优选为0.001~1.5mol,更优选为0.01~1mol,进一步优选为0.05~0.9mol。在这种情况下,上述式(4)所示的化合物,相对于和特定肉桂酸衍生物的总量,优选以50mol%以下,更优选以25mol%以下的范围使用。上述式(4)所示的化合物的使用比例如果超过50mol%,则担心可能产生有机半导体取向膜中的取向性低下的问题。

<[B]成分:含酯结构的化合物>

该有机半导体取向用组合物通过包含[B]含酯结构的化合物,可以在形成耐热性和耐光性优异有机半导体取向膜的同时,提高该有机半导体取向用组合物的保存稳定性。

[B]含酯结构的化合物是在分子内具有两个以上由羧酸的缩醛酯结构、羧酸的缩酮酯结构、羧酸的1-烷基环烷基酯结构和羧酸的叔丁基酯结构构成的群组中选出的至少一种结构的化合物。[B]含酯结构的化合物可以是具有两个以上这些结构中的同种结构的化合物,也可以是具有组合这些结构中的不同种类的结构的两个以上的化合物。作为上述羧酸的含缩醛酯结构的基团,可以列举出下述式(B-1)和(B-2)分别表示的基团。

式(B-1)中,R13和R14各自独立地是碳原子数为1~20的烷基、碳原子数为3~10的脂环式基、碳原子数为6~10的芳基或者碳原子数为7~10的芳烷基,

式(B-2)中,n1是2~10的整数。

其中,对上述式(B-1)中R13,分别是:

作为烷基,优选为甲基;

作为脂环式基,优选为环己基;

作为芳基,优选为苯基;

作为芳烷基,优选为苄基;

作为R14的烷基,优选为碳原子数为1~6的烷基;

作为脂环式基,优选为碳原子数为6~10的脂环式基;

作为芳基,优选为苯基;

作为芳烷基,优选为苄基或者2-苯基乙基。作为式(B-2)中的n1,优选为3或者4。

作为上述式(B-1)所示的基团,可以列举出例如1-甲氧基乙氧基羰基、1-乙氧基乙氧基羰基、1-正丙氧基乙氧基羰基、1-异丙氧基乙氧基羰基、1-正丁氧基乙氧基羰基、1-异丁氧基乙氧基羰基、1-仲丁氧基乙氧基羰基、1-叔丁氧基乙氧基羰基、1-环戊基氧基乙氧基羰基、1-环己基氧基乙氧基羰基、1-降冰片基氧基乙氧基羰基、1-冰片基氧基乙氧基羰基、1-苯氧基乙氧基羰基、1-(1-萘基氧基)乙氧基羰基、1-苄基氧基乙氧基羰基、1-苯乙基氧基乙氧基羰基、(环己基)(甲氧基)甲氧基羰基、(环己基)(乙氧基)甲氧基羰基、(环己基)(正丙氧基)甲氧基羰基、(环己基)(异丙氧基)甲氧基羰基、(环己基)(环己基氧基)甲氧基羰基、(环己基)(苯氧基)甲氧基羰基、(环己基)(苄基氧基)甲氧基羰基、(苯基)(甲氧基)甲氧基羰基、(苯基)(乙氧基)甲氧基羰基、(苯基)(正丙氧基)甲氧基羰基、(苯基)(异丙氧基)甲氧基羰基、(苯基)(环己基氧基)甲氧基羰基、(苯基)(苯氧基)甲氧基羰基、(苯基)(苄基氧基)甲氧基羰基、(苄基)(甲氧基)甲氧基羰基、(苄基)(乙氧基)甲氧基羰基、(苄基)(正丙氧基)甲氧基羰基、(苄基)(异丙氧基)甲氧基羰基、(苄基)(环己基氧基)甲氧基羰基、(苄基)(苯氧基)甲氧基羰基、(苄基)(苄基氧基)甲氧基羰基等;

作为上述式(B-2)所示的基团,可以列举出例如2-四氢呋喃基氧基羰基、2-四氢吡喃基氧基羰基等

它们之中,优选1-乙氧基乙氧基羰基、1-正丙氧基乙氧基羰基、1-环己基氧基乙氧基羰基、2-四氢呋喃基氧基羰基、2-四氢吡喃基氧基羰基等。

作为上述羧酸的含缩酮酯结构的基团,可以列举出例如下述式(B-3)~(B-5)分别表示的基团。

式(B-3)中,R15是碳原子数为1~12的烷基,R16和R17各自独立地是碳原子数为1~12的烷基、碳原子数为3~20的脂环式基、碳原子数为6~20的芳基或者碳原子数为7~20的芳烷基。

式(B-4)中,R18是碳原子数为1~12的烷基,n2是2~8的整数。

式(B-5)中,R19是碳原子数为1~12的烷基,n3是2~8的整数。

其中,作为上述式(B-3)中的R15的烷基优选甲基,

对R16而言,分别是作为烷基优选甲基;

作为脂环式基优选环己基;

作为芳基优选苯基;

作为芳烷基优选苄基;

对R17而言,作为烷基,优选碳原子数为1~6的烷基;

对脂环式基而言,优选碳原子数为6~10的脂环式基;

作为芳基,优选苯基;

作为芳烷基,优选苄基或者2-苯基乙基;

作为式(B-4)中的R18的烷基优选甲基,作为n2优选3或者4;

作为式(B-5)中的R19的烷基优选甲基,作为n3优选3或者4。

分别是,作为上述式(B-3)所示的基团,可以列举出例如1-甲基-1-甲氧基乙氧基羰基、1-甲基-1-乙氧基乙氧基羰基、1-甲基-1-正丙氧基乙氧基羰基、1-甲基-1-异丙氧基乙氧基羰基、1-甲基-1-正丁氧基乙氧基羰基、1-甲基-1-异丁氧基乙氧基羰基、1-甲基-1-仲丁氧基乙氧基羰基、1-甲基-1-叔丁氧基乙氧基羰基、1-甲基-1-环戊基氧基乙氧基羰基、1-甲基-1-环己基氧基乙氧基羰基、1-甲基-1-降冰片基氧基乙氧基羰基、1-甲基-1-冰片基氧基乙氧基羰基、1-甲基-1-苯氧基乙氧基羰基、1-甲基-1-(1-萘基氧基)乙氧基羰基、1-甲基-1-苄基氧基乙氧基羰基、1-甲基-1-苯乙基氧基乙氧基羰基、1-环己基-1-甲氧基乙氧基羰基、1-环己基-1-乙氧基乙氧基羰基、1-环己基-1-正丙氧基乙氧基羰基、1-环己基-1-异丙氧基乙氧基羰基、1-环己基-1-环己基氧基乙氧基羰基、1-环己基-1-苯氧基乙氧基羰基、1-环己基-1-苄基氧基乙氧基羰基、1-苯基-1-甲氧基乙氧基羰基、1-苯基-1-乙氧基乙氧基羰基、1-苯基-1-正丙氧基乙氧基羰基、1-苯基-1-异丙氧基乙氧基羰基、1-苯基-1-环己基氧基乙氧基羰基、1-苯基-1-苯氧基乙氧基羰基、1-苯基-1-苄基氧基乙氧基羰基、1-苄基-1-甲氧基乙氧基羰基、1-苄基-1-乙氧基乙氧基羰基、1-苄基-1-正丙氧基乙氧基羰基、1-苄基-1-异丙氧基乙氧基羰基、1-苄基-1-环己基氧基乙氧基羰基、1-苄基-1-苯氧基乙氧基羰基、1-苄基-1-苄基氧基乙氧基羰基等;

作为上述式(B-4)所示的基团,可以列举出例如2-(2-甲基四氢呋喃基)氧基羰基、2-(2-甲基四氢吡喃基)氧基羰基等;

作为上述式(B-5)所示的基团,可以列举出例如1-甲氧基环戊基氧基羰基、1-甲氧基环己基氧基羰基等。

它们之中,优选1-甲基-1-甲氧基乙氧基羰基、1-甲基-1-环己基氧基乙氧基羰基等。

作为上述羧酸含1-烷基环烷基酯结构的基团,可以列举出例如下述式(B-6)所示的基团。

式(B-6)中,R20是碳原子数为1~12的烷基,n4是1~8的整数。

作为上述式(B-6)中的R20的烷基,优选碳原子数为1~10的烷基。

作为上述式(B-6)所示的基团,可以列举出例如1-甲基环丙氧基羰基、1-甲基环丁氧基羰基、1-甲基环戊氧基羰基、1-甲基环己氧基羰基、1-甲基环庚氧基羰基、1-甲基环辛氧基羰基、1-甲基环壬氧基羰基、1-甲基环癸氧基羰基、1-乙基环丙氧基羰基、1-乙基环丁氧基羰基、1-乙基环戊氧基羰基、1-乙基环己氧基羰基、1-乙基环庚氧基羰基、1-乙基环辛氧基羰基、1-乙基环壬氧基羰基、1-乙基环癸氧基羰基、1-(异)丙基环丙氧基羰基、1-(异)丙基环丁氧基羰基、1-(异)丙基环戊氧基羰基、1-(异)丙基环己氧基羰基、1-(异)丙基环庚氧基羰基、1-(异)丙基环辛氧基羰基、1-(异)丙基环壬氧基羰基、1-(异)丙基环癸氧基羰基、1-(异)丁基环丙氧基羰基、1-(异)丁基环丁氧基羰基、1-(异)丁基环戊氧基羰基、1-(异)丁基环己氧基羰基、1-(异)丁基环庚氧基羰基、1-(异)丁基环辛氧基羰基、1-(异)丁基环壬氧基羰基、1-(异)丁基环癸氧基羰基、1-(异)戊基环丙氧基羰基、1-(异)戊基环丁氧基羰基、1-(异)戊基环戊氧基羰基、1-(异)戊基环己氧基羰基、1-(异)戊基环庚氧基羰基、1-(异)戊基环辛氧基羰基、1-(异)戊基环壬氧基羰基、1-(异)戊基环癸氧基羰基、

1-(异)己基环丙氧基羰基、1-(异)己基环丁氧基羰基、1-(异)己基环戊氧基羰基、1-(异)己基环己氧基羰基、1-(异)己基环庚氧基羰基、1-(异)己基环辛氧基羰基、1-(异)己基环壬氧基羰基、1-(异)己基环癸氧基羰基、1-(异)庚基环丙氧基羰基、1-(异)庚基环丁氧基羰基、1-(异)庚基环戊氧基羰基、1-(异)庚基环己氧基羰基、1-(异)庚基环庚氧基羰基、1-(异)庚基环辛氧基羰基、1-(异)庚基环壬氧基羰基、1-(异)庚基环癸氧基羰基、1-(异)辛基环丙氧基羰基、1-(异)辛基环丁氧基羰基、1-(异)辛基环戊氧基羰基、1-(异)辛基环己氧基羰基、1-(异)辛基环庚氧基羰基、1-(异)辛基环辛氧基羰基、1-(异)辛基环壬氧基羰基、1-(异)辛基环癸氧基羰基等。

所述的上述羧酸的含叔丁基酯结构的基团是叔丁氧基羰基。

作为本发明中的[B]含酯结构的化合物,优选下述式(B)所示的化合物。

BnR            (B)

式(B)中,B是上述式(B-1)~(B-5)任一项所示的基团或者叔丁氧基羰基,n是2且R是单键,或者n是2~10的整数且R是从碳原子数为3~10的杂环化合物除去氢得到的n价的基团或者碳原子数为1~18的n价的烃基。

作为n,优选为2或3。

作为上述式(B)中的R的具体例子,分别是,在n为2时,可以列举出单键、亚甲基、碳原子数为2~12的亚烷基、1,2-亚苯基、1,3-亚苯基、1,4-亚苯基、2,6-亚萘基、5-钠磺基-1,3-亚苯基、5-四丁基鏻磺化-1,3-亚苯基等;

在n为3时,可以列举出下述式表示的基团、苯-1,3,5-三基等。

作为上述亚烷基,优选直链的。

上述式(B)所示的[B]含酯结构的化合物可以通过有机化学的常规方法,或者适当组合有机化学的常规方法合成。

例如,上述式(B)中的基团B为上述式(B-1)所示的基团的化合物(其中,除去R13为苯基的情形),优选在磷酸催化剂的存在下,通过将化合物R-(COOH)n(其中,R和n分别和上述式(B)中的定义相同)和化合物R14-O-CH=R13’(其中,R14和上述式(B-1)中的定义相同,R13’是从上述式(B-1)中的基团R13的一位碳除去氢原子得到的基团)加成来合成。

上述式(B)中的基团B是上述式(B-2)所示的基团的化合物,优选在对甲苯磺酸催化剂的存在下,使化合物R-(COOH)n(其中R和n分别和上述式(B)中的定义相同)和下述式所示的化合物加成来合成。

式中,n1和上述式(B-2)中的定义相同。

作为该有机半导体取向用组合物中的[B]含酯结构的化合物的含量,考虑要求的耐热性等决定,没有特别的限定,但是相对100质量份[A]光取向性聚有机硅氧烷化合物,[B]含酯结构的化合物优选为0.1~50质量份,更优选为1~20质量份,特别优选为2~10质量份。

<[C]成分:由聚酰胺酸和聚酰亚胺构成的群组中选出的至少一种聚合物>

该有机半导体取向用组合物优选含有由聚酰胺酸和聚酰亚胺构成的群组中选出的至少一种聚合物。该组合物通过含有该聚合物,可以提高得到的有机半导体用取向膜的绝缘性。另外,在提供热稳定性和化学的稳定性的同时,对绝缘层的密合性也良好。

以下,对由聚酰胺酸和聚酰亚胺构成的群组中选出的至少一种聚合物,以聚酰胺酸、聚酰亚胺的顺序进行说明。

(聚酰胺酸)

上述聚酰胺酸,可以通过使四羧酸二酐和二胺化合物反应得到。

作为可以用于合成聚酰胺酸的四羧酸二酐,可以列举出例如2,3,5-三羧基环戊基乙酸二酐、丁烷四羧酸二酐、1,2,3,4-环丁烷四羧酸二酐、1,3-二甲基-1,2,3,4-环丁烷四羧酸二酐、1,2,3,4-环戊四羧酸二酐、3,5,6-三羧基降冰片烷-2-乙酸二酐、2,3,4,5-四氢呋喃四羧酸二酐、1,3,3a,4,5,9b-六氢-5-(四氢-2,5-二氧代-3-呋喃基)-萘并[1,2-c]-呋喃-1,3-二酮、1,3,3a,4,5,9b-六氢-5-(四氢-2,5-二氧代-3-呋喃基)-8-甲基-萘并[1,2-c]-呋喃-1,3-二酮、5-(2,5-二氧代四氢呋喃基)-3-甲基-3-环己烯-1,2-二羧酸酐、二环[2.2.2]-辛-7-烯-2,3,5,6-四羧酸二酐、下述式(F-1)~(F-14)分别表示的四羧酸二酐等脂肪族四羧酸二酐和脂环式四羧酸二酐;

均苯四羧酸二酐、3,3’,4,4’-联苯基砜四羧酸二酐、1,4,5,8-萘四羧酸二酐、2,3,6,7-萘四羧酸二酐、3,3’,4,4’-联苯基醚四羧酸二酐、3,3’,4,4’-二甲基二苯基硅烷四羧酸二酐、3,3’,4,4’-四苯基硅烷四羧酸二酐、1,2,3,4-呋喃四羧酸二酐、4,4’-二(3,4-二羧基苯氧基)二苯基硫醚二酐、4,4’-二(3,4-二羧基苯氧基)二苯基砜二酐、4,4’-二(3,4-二羧基苯氧基)二苯基丙烷二酐、3,3’,4,4’-全氟代亚异丙基四羧酸二酐、3,3’,4,4’-联苯四羧酸二酐、二(邻苯二甲酸)苯基氧化膦二酐、对亚苯基-二(三苯基邻苯二甲酸)二酐、间亚苯基-二(三苯基邻苯二甲酸)二酐、二(三苯基邻苯二甲酸)-4,4’-二苯基醚二酐、二(三苯基邻苯二甲酸)-4,4’-二苯基甲烷二酐、下式(F-15)~(F-18)分别表示的四羧酸二酐等芳香族四羧酸二酐等。

它们之中作为优选的,可以列举出1,3,3a,4,5,9b-六氢-5-(四氢-2,5-二氧代-3-呋喃基)-萘并[1,2-c]-呋喃-1,3-二酮、1,3,3a,4,5,9b-六氢-5-(四氢-2,5-二氧代-3-呋喃基)-8-甲基-萘并[1,2-c]-呋喃-1,3-二酮、2,3,5-三羧基环戊基乙酸二酐、丁烷四羧酸二酐、1,3-二甲基-1,2,3,4-环丁烷四羧酸二酐、1,2,3,4-环丁烷四羧酸二酐、均苯四羧酸二酐、3,3’,4,4’-联苯砜四羧酸二酐、1,4,5,8-萘四羧酸二酐、2,3,6,7-萘四羧酸二酐、3,3’,4,4’-联苯基醚四羧酸二酐或上述式(F-1)、(F-2)和(F-15)~(F-18)分别表示的四羧酸二酐。这些四羧酸二酐可以单独使用或组合两种以上使用。

作为可以用于合成聚酰胺酸的二胺化合物,可以列举出例如对亚苯基二胺、间亚苯基二胺、4,4’-二氨基二苯基甲烷、4,4’-二氨基二苯基乙烷、4,4’-二氨基二苯基硫醚、4,4’-二氨基二苯基砜、3,3’-二甲基-4,4’-二氨基联苯、4,4’-二氨基苯酰替苯胺、4,4’-二氨基二苯基醚、4,4’-二氨基-2,2′-二甲基联苯、1,5-二氨基萘、3,3-二甲基-4,4’-二氨基联苯、5-氨基-1-(4’-氨基苯基)-1,3,3-三甲基茚满、6-氨基-1-(4’-氨基苯基)-1,3,3-三甲基茚满、3,4’-二氨基二苯基醚、2,2-二(4-氨基苯氧基)丙烷、2,2-二[4-(4-氨基苯氧基)苯基]丙烷、2,2-二[4-(4-氨基苯氧基)苯基]六氟丙烷、2,2-二(4-氨基苯基)六氟丙烷、2,2-二[4-(4-氨基苯氧基)苯基]砜、1,4-二(4-氨基苯氧基)苯、1,3-二(4-氨基苯氧基)苯、1,3-二(3-氨基苯氧基)苯、9,9-二(4-氨基苯基)-10-氢蒽、2,7-二氨基芴、9,9-二(4-氨基苯基)芴、4,4’-亚甲基-二(2-氯代苯胺)、2,2’,5,5’-四氯代-4,4’-二氨基联苯、2,2’-二氯代-4,4’-二氨基-5,5’-二甲氧基联苯、3,3’-二甲氧基-4,4’-二氨基联苯、4,4’-(对亚苯基亚异丙基)二(苯胺)、4,4’-(间亚苯基亚异丙基)二(苯胺)、2,2-二[4-(4-氨基-2-三氟甲基苯氧基)苯基]六氟丙烷、4,4’-二氨基-2,2’-二(三氟甲基)联苯、4,4’-二[(4-氨基-2-三氟甲基)苯氧基]-八氟代联苯、6-(4-查耳酮基氧基)己氧基(2,4-二氨基苯)、6-(4’-氟代-4-查耳酮基氧基)己氧基(2,4-二氨基苯)、8-(4-查耳酮基氧基)辛氧基(2,4-二氨基苯)、8-(4’-氟代-4-查耳酮基氧基)辛氧基(2,4-二氨基苯)、1-十二烷基氧基-2,4-二氨基苯、1-十四烷基氧基-2,4-二氨基苯、1-十五烷基氧基-2,4-二氨基苯、1-十六烷基氧基-2,4-二氨基苯、1-十八烷基氧基-2,4-二氨基苯、1-胆固醇基氧基-2,4-二氨基苯、1-胆甾烷基氧基-2,4-二氨基苯、十二烷基氧基(3,5-二氨基苯甲酰基)、十四烷氧基(3,5-二氨基苯甲酰基)、十五烷基氧基(3,5-二氨基苯甲酰基)、十六烷基氧基(3,5-二氨基苯甲酰基)、十八烷基氧基(3,5-二氨基苯甲酰基)、胆固醇基氧基(3,5-二氨基苯甲酰基)、胆甾烷基氧基(3,5-二氨基苯甲酰基)、(2,4-二氨基苯氧基)软脂酸酯、(2,4-二氨基苯氧基)硬脂酸酯、(2,4-二氨基苯氧基)-4-三氟甲基苯甲酸酯、下式(G-1)~(G-5)分别表示的二胺化合物等芳香族二胺;

二氨基四苯基噻吩等具有杂原子的芳香族二胺;

间二甲苯二胺、1,3-丙二胺、1,4-丁二胺、1,5-戊二胺、1,6-己二胺、1,7-庚二胺、1,8-辛二胺、1,9-壬二胺、4,4-二氨基-1,7-庚二胺、1,4-二氨基环己烷、环己烷二(甲基胺)、四氢亚二环戊二烯二胺、异佛尔酮二胺、六氢-4,7-桥亚甲基亚茚基(methanoindenylidene)二亚甲基二胺、亚三环[6.2.1.02,7]十一烯二甲基二胺、4,4’-亚甲基二(环己基胺)等脂肪族二胺或脂环式二胺;

二氨基六甲基二硅氧烷等二氨基有机硅氧烷等。

它们之中作为优选的,可以列举出对亚苯基二胺、4,4’-二氨基二苯基甲烷、4,4′-二氨基-2,2’-二甲基联苯、环己烷二(甲基胺)、1,5-二氨基萘、2,7-二氨基芴、4,4’-二氨基二苯基醚、4,4’-(对亚苯基亚异丙基)联苯胺、2,2-二[4-(4-氨基苯氧基)苯基]六氟丙烷、2,2-二(4-氨基苯基)六氟丙烷、2,2-二[4-(4-氨基-2-三氟甲基苯氧基)苯基]六氟丙烷、4,4’-二氨基-2,2’-二(三氟甲基)联苯、4,4’-二[(4-氨基-2-三氟甲基)苯氧基]-八氟代联苯、1-十六烷基氧基-2,4-二氨基苯、1-十八烷氧基-2,4-二氨基苯、1-胆固醇基氧基-2,4-二氨基苯、1-胆甾烷基氧基-2,4-二氨基苯、十六烷基氧基(3,5-二氨基苯甲酰)、十八烷氧基(3,5-二氨基苯甲酰)、胆固醇基氧基(3,5-二氨基苯甲酰)、胆甾烷基氧基(3,5-二氨基苯甲酰)或者上述式(G-1)~(G-5)表示的二胺。这些二胺可以单独或组合两种以上使用。

作为聚酰胺酸的合成反应中使用的四羧酸二酐和二胺化合物的使用比例,相对于1当量二胺化合物中含有的氨基,四羧酸二酐的酸酐基优选0.2~2当量的比例,更优选0.3~1.2当量的比例。

聚酰胺酸的合成反应优选在有机溶剂中,优选在-20~150℃,更优选在0~100℃的温度条件下,优选进行0.5~24小时,更优选进行2~10小时。其中,作为有机溶剂,只要可以溶解合成的聚酰胺酸的就没有特别的限定,可以列举出例如N-甲基-2-吡咯烷酮、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、1,3-二甲基-2-咪唑烷酮、二甲基亚砜、γ-丁内酯、四甲基脲、六甲基磷酰三胺等非质子性极性溶剂;间甲酚、二甲酚、苯酚、卤代苯酚等酚性溶剂。有机溶剂的用量(a)优选为四羧酸二酐和二胺的总量(b)相对于反应溶液的全部量(a+b)是0.1~50质量%、更优选为5~30质量%的量。

如上,可以得到溶解聚酰胺酸形成的反应溶液。该反应溶液可以直接用于制备有机半导体取向用组合物,也可以在分离反应溶液中含有的聚酰胺酸后,用于制备有机半导体取向用组合物,或者将分离的聚酰胺酸精制后,用于制备有机半导体取向用组合物。聚酰胺酸的分离可以通过将上述反应溶液注入大量的不良溶剂中,得到析出物,将该析出物减压干燥的方法;或者通过蒸发器减压蒸馏反应溶液中的溶剂的方法进行。另外,也可以通过将该聚酰胺酸再次溶解到有机溶剂中,然后在不良溶剂中析出的方法;或者通过重复进行一次或多次用蒸发器减压馏出的工序的方法精制聚酰胺酸。

(聚酰亚胺)

上述聚酰亚胺可以将如上得到的聚酰胺酸具有的酰胺酸结构脱水闭环来制造。此时,可以将酰胺酸结构全部脱水闭环,完全酰亚胺化;或者也可以只将酰胺酸结构中的一部分脱水闭环,形成酰胺酸结构和酰亚胺环结构并存的部分酰亚胺化物。

聚酰胺酸的脱水闭环优选(i)以通过加热聚酰胺酸的方法,或者(ii)将聚酰胺酸溶解在有机溶剂中,在该溶液中添加脱水剂和脱水闭环催化剂,根据需要加热的方法进行。

上述(i)的加热聚酰胺酸的方法中的反应温度优选为50~200℃,更优选60~170℃。通过使反应温度为50℃以上,可以充分进行脱水闭环反应,通过使反应温度为200℃以下,可以抑制所得的酰亚胺化聚合物的分子量低下。加热聚酰胺酸的方法中的反应时间优选为0.5~48小时,更优选为2~20小时。

另一方面,上述(ii)的在聚酰胺酸溶液中添加脱水剂和脱水闭环催化剂的方法中,作为脱水剂,可以使用例如乙酸酐、丙酸酐、三氟乙酸酐等酸酐。作为脱水剂的用量,相对于1mol聚酰胺酸结构单元,优选为0.01~20mol。另外,作为脱水闭环催化剂,可以列举出例如吡啶、三甲基吡啶、二甲基吡啶、三乙胺等叔胺。但是,并不限于此。作为脱水闭环催化剂的用量,相对于1mol使用的脱水剂,优选为0.01~10mol。作为脱水闭环反应中使用的有机溶剂,可以列举出作为合成聚酰胺酸使用的溶剂例示的有机溶剂。脱水闭环反应的反应温度优选为0~180℃,更优选为10~150℃。反应时间优选为0.5~20小时,更优选为1~8小时。

在上述方法(ii)中,如上所述,可以得到含有聚酰亚胺的反应溶液。该反应溶液可以将其直接用于制备有机半导体取向用组合物,也可以从反应溶液除去脱水剂和脱水闭环催化剂后,用于制备有机半导体取向用组合物;还可以分离聚酰亚胺后,用于制备有机半导体取向用组合物;或者将分离的聚酰亚胺精制后,用于制备有机半导体取向用组合物。为了从反应溶液除去脱水剂和脱水闭环催化剂,例如适合使用溶剂置换等方法。聚酰亚胺的分离、精制可以通过作为聚酰胺酸的分离、精制方法而进行的上述同样的操作进行。

在本发明的有机半导体取向用组合物中,除了含有光取向性聚有机硅氧烷化合物以外,还含有由聚酰胺酸和聚酰亚胺构成的群组中选出的至少一种聚合物时,相对于100质量份光取向性聚有机硅氧烷化合物,两者适合的使用比例是聚酰胺酸和聚酰亚胺的总量为100~5,000质量份,更优选为200~2,000质量份。

(其它聚合物)

上述其它聚合物可以用于进一步改善本发明的有机半导体取向用组合物的溶液性质和所得的有机半导体取向膜的电性质。作为该其它聚合物,可以列举出例如由具有和上述式(3)所示的重复单元不同结构的重复单元的聚有机硅氧烷、其水解物及其水解物的缩合物构成的群组中选出的至少一种(以下,称作“其它聚有机硅氧烷”)、聚酰胺酸酯、聚酯、聚酰胺、纤维素衍生物、聚缩醛、聚苯乙烯衍生物、聚(苯乙烯-苯基马来酰亚胺)衍生物、聚(甲基)丙烯酸酯等。

(其它聚有机硅氧烷)

本发明的有机半导体取向用组合物如上所述除了含有光取向性聚有机硅氧烷化合物以外,还可以含有其它聚有机硅氧烷。在本发明中,在含有其它聚有机硅氧烷时,优选为具有由下述式(5)所示的重复单元的聚有机硅氧烷、其水解物及其水解物的缩合物构成的群组中选出的至少一种。

式(5)中,X2是羟基、卤原子、碳原子数为1~20的烷基、碳原子数为1~6的烷氧基或者碳原子数为6~20的芳基,Y2是羟基或碳原子数为1~10的烷氧基。

另外,该有机半导体取向用组合物在含有其它聚有机硅氧烷时,其它聚有机硅氧烷的大部分和光取向性聚有机硅氧烷化合物独立地存在,另一部分以和光取向性聚有机硅氧烷化合物的缩合物的形式存在。

该其它聚有机硅氧烷例如可以通过将由烷氧基硅烷化合物和卤代硅烷化合物构成的群组中选出的至少一种硅烷化合物(以下,称作“原料硅烷化合物”。),优选在合适的有机溶剂中,在水和催化剂的存在下,通过水解或者水解、缩合合成。

作为可以在这里使用的原料硅烷化合物,可以列举出例如四甲氧基硅烷、四乙氧基硅烷、四正丙氧基硅烷、四异丙氧基硅烷、四正丁氧基硅烷、四仲丁氧基硅烷、四叔丁氧基硅烷、四氯代硅烷;甲基三甲氧基硅烷、甲基三乙氧基硅烷、甲基三正丙氧基硅烷、甲基三异丙氧基硅烷、甲基三正丁氧基硅烷、甲基三仲丁氧基硅烷、甲基叔丁氧基硅烷、甲基三苯氧基硅烷、甲基三氯代硅烷、乙基三甲氧基硅烷、乙基三乙氧基硅烷、乙基三正丙氧基硅烷、乙基三异丙氧基硅烷、乙基三正丁氧基硅烷、乙基三仲丁氧基硅烷、乙基三叔丁氧基硅烷、乙基三氯代硅烷、苯基三甲氧基硅烷、苯基三乙氧基硅烷、苯基三氯代硅烷;二甲基二甲氧基硅烷、二甲基二乙氧基硅烷、二甲基二氯代硅烷;三甲基甲氧基硅烷、三甲基乙氧基硅烷、三甲基氯代硅烷等。它们之中,优选四甲氧基硅烷、四乙氧基硅烷、甲基三甲氧基硅烷、甲基三乙氧基硅烷、苯基三甲氧基硅烷、苯基三乙氧基硅烷、二甲基二甲氧基硅烷、二甲基二乙氧基硅烷、三甲基甲氧基硅烷或者三甲基乙氧基硅烷。

在合成其它聚有机硅氧烷时,作为可以任意使用的有机溶剂,可以列举出例如醇化合物、酮化合物、酰胺化合物或酯化合物或者其它非质子性化合物。它们可以单独或组合两种以上使用。

作为上述醇化合物,可以列举出例如甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、仲丁醇、叔丁醇、正戊醇、异戊醇、2-甲基丁醇、仲戊醇、叔戊醇、3-甲氧基丁醇、正己醇、2-甲基戊醇、仲己醇、2-乙基丁醇、仲庚醇、庚-3-醇、正辛醇、2-乙基己醇、仲辛醇、正壬醇、2,6-二甲基-4-庚醇、正癸醇、仲十一烷醇、三甲基壬醇、仲十四烷醇、仲十七烷醇、苯酚、环己醇、甲基环己醇、3,3,5-三甲基环己醇、苯甲醇、二丙酮醇等一元醇化合物;

乙二醇、1,2-丙二醇、1,3-丁二醇、2,4-戊二醇、2-甲基-2,4-戊二醇、2,5-己二醇、2,4-庚二醇、2-乙基-1,3-己二醇、二甘醇、二丙二醇、三甘醇、三丙二醇等多元醇化合物;

乙二醇单甲基醚、乙二醇单乙基醚、乙二醇单丙基醚、乙二醇单丁基醚、乙二醇单己基醚、乙二醇单苯基醚、乙二醇单-2-乙基丁基醚、二甘醇单甲基醚、二甘醇单乙基醚、二甘醇单丙基醚、二甘醇单丁基醚、二甘醇单己基醚、丙二醇单甲基醚、丙二醇单乙基醚、丙二醇单丙基醚、丙二醇单丁基醚、二丙二醇单甲基醚、二丙二醇单乙基醚、二丙二醇单丙基醚等多元醇化合物的部分醚等。这些醇化合物可以单独使用一种或组合使用两种以上

作为上述酮化合物,可以分别列举出例如丙酮、甲基乙基酮、甲基正丙基酮、甲基正丁基酮、二乙基酮、甲基异丁基酮、甲基正戊基酮、乙基正丁基酮、二异丁基酮、甲基正己基酮、三甲基壬酮、环己酮、2-己酮、甲基环己酮、2,4-戊二酮、葑酮(fenchone)、苯乙酮、丙酮基丙酮等单酮化合物;

乙酰基丙酮、2,4-己二酮、2,4-庚二酮、3,5-庚二酮、5-甲基-2,4-己二酮、2,4-辛二酮、3,5-辛二酮、2,4-壬二酮、3,5-壬二酮、2,2,6,6-四甲基-3,5-庚二酮、1,1,1,5,5,5-六氟代-2,4-庚二酮等β-二酮化合物等。这些酮化合物可以使用一种,也可以组合两种以上使用。

作为上述酰胺化合物,可以列举出例如甲酰胺、N-甲基甲酰胺、N,N-二甲基甲酰胺、N-乙基甲酰胺、N,N-二乙基甲酰胺、乙酰胺、N-甲基乙酰胺、N,N-二甲基乙酰胺、N-乙基乙酰胺、N,N-二乙基乙酰胺、N-甲基丙酰胺、N-甲基吡咯烷酮、N-甲酰基吗啉、N-甲酰基哌啶、N-甲酰基吡咯烷、N-乙酰基吗啉、N-乙酰基哌啶、N-乙酰基吡咯烷等。这些酰胺化合物可以使用一种,或者也可以组合两种以上使用。

作为酯化合物,可以列举出例如碳酸乙二酯、碳酸丙二酯、碳酸二乙酯、醋酸甲酯、醋酸乙酯、γ-丁内酯、γ-戊内酯、醋酸正丙酯、醋酸异丙酯、醋酸正丁酯、醋酸异丁酯、醋酸仲丁酯、醋酸正戊酯、醋酸仲戊酯、醋酸3-甲氧基丁基酯、醋酸甲基戊基酯、醋酸2-乙基丁基酯、醋酸2-乙基己基酯、醋酸苄基酯、醋酸环己基酯、醋酸甲基环己基酯、醋酸正壬基酯、乙酰乙酸甲酯、乙酰乙酸乙酯、乙二醇单甲基醚醋酸酯、乙二醇单乙基醚醋酸酯、二甘醇单甲基醚醋酸酯、二甘醇单乙基醚醋酸酯、二甘醇单正丁基醚醋酸酯、丙二醇单甲基醚醋酸酯、丙二醇单乙基醚醋酸酯、丙二醇单丙基醚醋酸酯、丙二醇单丁基醚醋酸酯、二丙二醇单甲基醚醋酸酯、二丙二醇单乙基醚醋酸酯、二醋酸乙二醇酯、甲氧基三甘醇醋酸酯、丙酸乙酯、丙酸正丁酯、丙酸异戊酯、丙二酸二乙基酯、草酸二乙酯、草酸二正丁基酯、乳酸甲酯、乳酸乙酯、乳酸正丁酯、乳酸正戊酯、邻苯二甲酸二甲酯、邻苯二甲酸二乙酯等。这些酯化合物可以使用一种,或者也可以组合两种以上使用。

作为其它非质子性化合物,可以列举出例如乙腈、二甲基亚砜、N,N,N’,N’-四乙基硫酰胺、六甲基磷酸三酰胺、N-甲基吗啉酮、N-甲基吡咯、N-乙基吡咯、N-甲基-Δ3-吡咯烷、N-甲基哌啶、N-乙基哌啶、N,N-二甲基哌嗪、N-甲基咪唑、N-甲基-4-哌啶酮、N-甲基-2-哌啶酮、N-甲基-2-吡咯烷酮、1,3-二甲基-2-咪唑烷酮、1,3-二甲基四氢-2(1H)-嘧啶酮等。

这些溶剂中,特别优选多元醇化合物、多元醇化合物的部分醚或酯化合物。

作为合成其它聚有机硅氧烷时使用的水的量,相对于原料硅烷化合物所具有的烷氧基和卤原子的总量1mol,优选为0.01~100mol,更优选为0.1~30mol,进一步优选为1~1.5mol的比例。

作为在合成其它聚有机硅氧烷时可以使用的催化剂,可以列举出例如金属螯合物、有机酸、无机酸、有机碱、氨、碱金属化合物等。

作为上述金属螯合物,可以列举出例如三乙氧基·单(乙酰基丙酮酸盐)钛、三正丙氧基·单(乙酰基丙酮酸盐)钛、三异丙氧基·单(乙酰基丙酮酸盐)钛、三正丁氧基·单(乙酰基丙酮酸盐)钛、三仲丁氧基·单(乙酰基丙酮酸盐)钛、三叔丁氧基·单(乙酰基丙酮酸盐)钛、二乙氧基·二(乙酰基丙酮酸盐)钛、二正丙氧基·二(乙酰基丙酮酸盐)钛、二异丙氧基·二(乙酰基丙酮酸盐)钛、二正丁氧基·二(乙酰基丙酮酸盐)钛、二仲丁氧基·二(乙酰基丙酮酸盐)钛、二叔丁氧基·二(乙酰基丙酮酸盐)钛、单乙氧基·三(乙酰基丙酮酸盐)钛、单正丙氧基·三(乙酰基丙酮酸盐)钛、单-异丙氧基·三(乙酰基丙酮酸盐)钛、单正丁氧基·三(乙酰基丙酮酸盐)钛、单-仲丁氧基·三(乙酰基丙酮酸盐)钛、单叔丁氧基·三(乙酰基丙酮酸盐)钛、四(乙酰基丙酮酸盐)钛、

三乙氧基·单(乙酰乙酸乙酯)钛、三正丙氧基·单(乙酰乙酸乙酯)钛、三异丙氧基·单(乙酰乙酸乙酯)钛、三正丁氧基·单(乙酰乙酸乙酯)钛、三仲丁氧基·单(乙酰乙酸乙酯)钛、三叔丁氧基·单(乙酰乙酸乙酯)钛、二乙氧基·二(乙酰乙酸乙酯)钛、二正丙氧基·二(乙酰乙酸乙酯)钛、二异丙氧基·二(乙酰乙酸乙酯)钛、二正丁氧基·二(乙酰乙酸乙酯)钛、二仲丁氧基·二(乙酰乙酸乙酯)钛、二叔丁氧基·二(乙酰乙酸乙酯)钛、单乙氧基·三(乙酰乙酸乙酯)钛、单正丙氧基·三(乙酰乙酸乙酯)钛、单异丙氧基·三(乙酰乙酸乙酯)钛、单正丁氧基·三(乙酰乙酸乙酯)钛、单仲丁氧基·三(乙酰乙酸乙酯)钛、单-叔丁氧基·三(乙酰乙酸乙酯)钛、四(乙酰乙酸乙酯)钛、单(乙酰基丙酮酸盐)三(乙酰乙酸乙酯)钛、二(乙酰基丙酮酸盐)二(乙酰乙酸乙酯)钛、三(乙酰基丙酮酸盐)单(乙酰乙酸乙酯)钛等钛螯合物;

三乙氧基·单(乙酰基丙酮酸盐)锆、三正丙氧基·单(乙酰基丙酮酸盐)锆、三异丙氧基·单(乙酰基丙酮酸盐)锆、三正丁氧基·单(乙酰基丙酮酸盐)锆、三仲丁氧基·单(乙酰基丙酮酸盐)锆、三叔丁氧基·单(乙酰基丙酮酸盐)锆、二乙氧基·二(乙酰基丙酮酸盐)锆、二正丙氧基·二(乙酰基丙酮酸盐)锆、二异丙氧基·二(乙酰基丙酮酸盐)锆、二正丁氧基·二(乙酰基丙酮酸盐)锆、二仲丁氧基·二(乙酰基丙酮酸盐)锆、二叔丁氧基·二(乙酰基丙酮酸盐)锆、单乙氧基·三(乙酰基丙酮酸盐)锆、单正丙氧基·三(乙酰基丙酮酸盐)锆、单异丙氧基·三(乙酰基丙酮酸盐)锆、单正丁氧基·三(乙酰基丙酮酸盐)锆、单仲丁氧基·三(乙酰基丙酮酸盐)锆、单叔丁氧基·三(乙酰基丙酮酸盐)锆、四(乙酰基丙酮酸盐)锆、三乙氧基·单(乙酰乙酸乙酯)锆、三正丙氧基·单(乙酰乙酸乙酯)锆、三异丙氧基·单(乙酰乙酸乙酯)锆、三正丁氧基·单(乙酰乙酸乙酯)锆、三仲丁氧基·单(乙酰乙酸乙酯)锆、三叔丁氧基·单(乙酰乙酸乙酯)锆、

二乙氧基·二(乙酰乙酸乙酯)锆、二正丙氧基·二(乙酰乙酸乙酯)锆、二异丙氧基·二(乙酰乙酸乙酯)锆、二正丁氧基·二(乙酰乙酸乙酯)锆、二仲丁氧基·二(乙酰乙酸乙酯)锆、二叔丁氧基·二(乙酰乙酸乙酯)锆、单乙氧基·三(乙酰乙酸乙酯)锆、单正丙氧基·三(乙酰乙酸乙酯)锆、单异丙氧基·三(乙酰乙酸乙酯)锆、单正丁氧基·三(乙酰乙酸乙酯)锆、单仲丁氧基·三(乙酰乙酸乙酯)锆、单叔丁氧基·三(乙酰乙酸乙酯)锆、四(乙酰乙酸乙酯)锆、单(乙酰基丙酮酸盐)三(乙酰乙酸乙酯)锆、二(乙酰基丙酮酸盐)二(乙酰乙酸乙酯)锆、三(乙酰基丙酮酸盐)单(乙酰乙酸乙酯)锆等锆螯合物;

三(乙酰基丙酮酸盐)铝、三(乙酰乙酸乙酯)铝等铝螯合物等。

作为上述有机酸,可以列举出例如乙酸、丙酸、丁酸、戊酸、己酸、庚酸、辛酸、壬酸、癸酸、草酸、马来酸、己二酸、甲基丙二酸、癸二酸、没食子酸、丁酸、苯六酸、花生油烯酸、莽草酸、2-乙基己酸、油酸、硬脂酸、亚油酸、亚麻二烯酸、水杨酸、苯甲酸、对氨基苯甲酸、对甲苯磺酸、苯磺酸、单氯乙酸、二氯乙酸、三氯乙酸、三氟乙酸、甲酸、丙二酸、磺酸、邻苯二甲酸、富马酸、柠檬酸、酒石酸等。

作为上述无机酸,可以列举出例如盐酸、硝酸、硫酸、氢氟酸、磷酸等。

作为上述有机碱,可以列举出例如吡啶、吡咯、哌嗪、吡咯烷、哌啶、甲基吡啶、三甲基胺、三乙基胺、单乙醇胺、二乙醇胺、二甲基单乙醇胺、单甲基二乙醇胺、三乙醇胺、二氮杂二环辛烷(ジアザビシクロオクラン)、二氮杂二环壬烷、二氮杂二环十一碳烯、氢氧化四甲基铵等。

作为上述碱金属化合物,可以列举出例如氢氧化钠、氢氧化钾、氢氧化钡、氢氧化钙等。这些催化剂可以使用一种,或将两种以上一起使用。

这些催化剂中,优选金属螯合化合物、有机酸或无机酸。作为金属螯合化合物,更优选钛螯合化合物。

催化剂的用量相对于100质量份原料硅烷化合物,优选为0.001~10质量份,更优选为0.001~1质量份。

催化剂可以预先添加到作为原料的硅烷化合物中或硅烷化合物溶解到有机溶剂形成的溶液中,或者也可以溶解或分散到添加的水中。

合成其它聚有机硅氧烷时添加的水可以间歇性或连续地添加到在作为原料的硅烷化合物中或硅烷化合物溶解到有机溶剂形成的溶液中。

作为合成其它聚有机硅氧烷时的反应温度优选为0~100℃,更优选为15~80℃。反应时间优选为0.5~24小时,更优选为1~8小时。

(其它聚合物的使用比例)

本发明的有机半导体取向用组合物在含有其它聚合物和前述光取向性聚有机硅氧烷化合物时,作为其它聚合物的含量,相对于100质量份光取向性聚有机硅氧烷化合物,优选为10,000质量份以下。其它聚合物的更优选的含量根据其它聚合物的种类而异。

另一方面,本发明的有机半导体取向用组合物在含有光取向性聚有机硅氧烷化合物和其它聚有机硅氧烷时,两者优选的使用比例是,相对于100质量份光取向性聚有机硅氧烷化合物,其它聚有机硅氧烷的量是100~2,000质量份。本发明的有机半导体取向用组合物在含有光取向性聚有机硅氧烷化合物和其它聚合物时,作为其它聚合物的种类优选为其它聚有机硅氧烷。

(固化剂和固化催化剂、以及固化促进剂)

上述固化剂和固化催化剂以使光取向性聚有机硅氧烷化合物的交联反应更牢固的目的在光取向性聚有机硅氧烷化合物中含有。上述固化促进剂以促进固化剂的针对固化反应的目的,而在本发明的有机半导体取向用组合物中含有。

作为上述固化剂,可以使用包含具有环氧基的固化性化合物或具有环氧基的化合物的固化性组合物的固化时常用的固化剂。作为这种固化剂,可以例示例如多元胺、多元羧酸酐、多元羧酸。

作为上述多元羧酸酐,可以列举出例如环己烷三酸的酸酐以及其它多元羧酸酐。

作为环己烷三酸酐的具体例子,可以列举出例如环己烷-1,3,4-三羧酸-3,4-酐、环己烷-1,3,5-三羧酸-3,5-酐、环己烷-1,2,3-三羧酸-2,3-酐等,作为其它多元羧酸酐,可以列举出例如4-甲基四氢邻苯二甲酸酐、甲基纳迪克酸酐、十二烯基琥珀酸酐、琥珀酸酐、马来酸酐、邻苯二甲酸酐、苯偏三酸酐、下述式(6)所示的化合物、

(式(6)中,p是1~20的整数。)

和聚酰胺酸的合成中常用的四羧酸二酐,以及α-萜烯、别罗勒烯等具有共轭双键的脂环式化合物和马来酸酐的Diels-Alder反应产物以及它们的氢添加物等。

作为固化催化剂,可以使用例如六氟化锑化合物、六氟化磷化合物、铝三乙乙酰基丙酮酸盐等。这些催化剂可以通过加热催化环氧基的阳离子聚合。

上述固化促进剂,可以列举出例如咪唑化合物;

季鏻化合物;

季胺化合物;

像1,8-二偶氮二环[5.4.0]十一烯-7及其有机酸盐这样的二偶氮二环烯烃;

像辛酸锌、辛酸锡、乙酰丙酮铝络合物这样的有机金属化合物;

像三氟化硼、硼酸三苯基酯这样的硼化合物;

像氯化锌、氯化锡这样的金属卤化物;

像二氰基二酰胺、胺和环氧树脂的加成物这样的胺加成型促进剂等高熔点分散型潜在性固化促进剂;

季鏻盐等的表面用聚合物覆盖形成的微胶囊型潜在性固化促进剂;

胺盐型潜在性固化促进剂;

像路易斯酸盐、布仑斯惕酸(Bronsted acid)盐这样的高温分解型热阳离子聚合型潜在性固化促进剂等。

(环氧化合物)

上述环氧化合物从进一步提高形成的有机半导体取向膜对绝缘膜表面的粘合性的观点出发,可以在本发明的有机半导体取向用组合物中含有。

作为该环氧化合物,可以列举出例如乙二醇二缩水甘油醚、聚乙二醇二缩水甘油醚、丙二醇二缩水甘油醚、三丙二醇二缩水甘油醚、聚丙二醇二缩水甘油醚、新戊二醇二缩水甘油醚、1,6-己二醇二缩水甘油醚、甘油二缩水甘油醚、2,2-二溴代新戊二醇二缩水甘油醚、1,3,5,6-四缩水甘油基-2,4-己二醇、N,N,N’,N’-四缩水甘油基-间二甲苯二胺、1,3-二(N,N-二缩水甘油基氨基甲基)环己烷、N,N,N’,N’-四缩水甘油基-4,4’-二氨基二苯基甲烷、N,N-二缩水甘油基-苄基胺、N,N-二缩水甘油基-氨基甲基环己烷等作为优选的化合物。

本发明的有机半导体取向用组合物含有环氧化合物时,作为其含有比例,相对于上述光取向性聚有机硅氧烷化合物和任意使用的其它聚合物总计100质量份,优选为0.01~40质量份以下,更优选为0.1~30质量份。

另外,本发明的有机半导体取向用组合物含有环氧化合物时,基于有效地产生该交联反应的目的,可以和1-苄基-2-甲基咪唑等碱性催化剂一起使用。

(官能性硅烷化合物)

上述官能性硅烷化合物,可以基于进一步提高所得的有机半导体取向膜和基板或栅极的粘合性的目的使用。作为官能性硅烷化合物,可以列举出例如作为官能性硅烷化合物,可以列举出例如3-氨基丙基三甲氧基硅烷、3-氨基丙基三乙氧基硅烷、2-氨基丙基三甲氧基硅烷、2-氨基丙基三乙氧基硅烷、N-(2-氨基乙基)-3-氨基丙基三甲氧基硅烷、N-(2-氨基乙基)-3-氨基丙基甲基二甲氧基硅烷、3-酰脲丙基三甲氧基硅烷、3-酰脲丙基三乙氧基硅烷、N-乙氧基羰基-3-氨基丙基三甲氧基硅烷、N-乙氧基羰基-3-氨基丙基三乙氧基硅烷、N-三乙氧基甲硅烷基丙基三亚乙基三胺、N-三甲氧基甲硅烷基丙基三亚乙基三胺、10-三甲氧基甲硅烷基-1,4,7-三氮杂癸烷、10-三乙氧基甲硅烷基-1,4,7-三氮杂癸烷、9-三甲氧基甲硅烷基-3,6-二氮杂壬基乙酸酯、9-三乙氧基甲硅烷基-3,6-二氮杂壬基乙酸酯、N-苄基-3-氨基丙基三甲氧基硅烷、N-苄基-3-氨基丙基三乙氧基硅烷、N-苯基-3-氨基丙基三甲氧基硅烷、N-苯基-3-氨基丙基三乙氧基硅烷、N-二(氧化亚乙基)-3-氨基丙基三甲氧基硅烷、N-二(氧化亚乙基)-3-氨基丙基三乙氧基硅烷、2-(3,4-环氧环己基)乙基三甲氧基硅烷、3-缩水甘油基丙基三甲氧基硅烷等,此外还可以列举出日本特开昭63-291922号公报记载的四羧酸二酐和具有氨基的硅烷化合物的反应物等。

本发明的有机半导体取向用组合物在含有官能性硅烷化合物时,作为其含有比例,相对于上述光取向性聚有机硅氧烷化合物和任意使用的其它聚合物总计100质量份,优选为50质量份以下,更优选为20质量份以下。

(表面活性剂)

作为上述表面活性剂,可以列举出例如非离子性表面活性剂、阴离子性表面活性剂、阳离子性表面活性剂、两性表面活性剂、有机硅表面活性剂、聚烯化氧表面活性剂、含氟表面活性剂等。

该有机半导体取向用组合物含有表面活性剂时,作为其含有比例,相对于有机半导体取向用组合物整体100质量份,优选为10质量份以下,更优选为1质量份以下。

(光增敏性化合物)

能在该有机半导体取向用组合物中含有的光增敏性化合物是具有由羧基、羟基、-SH、-NCO、-NHR(其中,R是氢原子或者碳原子数为1~6的烷基)、-CH=CH2和SO2Cl构成的群组中选出的至少一种基团以及光增敏性结构的化合物。通过使上述具有环氧基的聚有机硅氧烷与特定肉桂酸衍生物和光增敏性化合物的混合物反应,本发明的有机半导体取向用组合物中含有的光取向性聚有机硅氧烷化合物兼具来自特定肉桂酸衍生物的感光性结构(肉桂酸结构)和来自光增敏性化合物的光增敏性结构。该光增敏性结构具有通过光照射激发,在聚合物内提供接近该激发能的感光性结构的功能。该激发状态可以是单态的,也可以是三态的,但是考虑到长寿命以及能量有效地移动,优选为三态。上述光增敏性结构吸收的光优选为波长为150~600nm的范围的紫外线或可视光线。波长比上述下限更短的光,由于无法在通常的光学系统中处理,所以无法适用于光取向法。另一方面,波长比上述上限更长的光,能量小,难以激发上述光增敏性结构的激发状态。

作为该光增敏性结构可以列举出例如苯乙酮结构、二苯甲酮结构、蒽醌结构、联苯结构、咔唑结构、硝基芳基结构、芴结构、萘结构、蒽结构、吖啶结构、吲哚结构等,它们可以单独或组合两种以上使用。这些光增敏性结构是由分别从苯乙酮、二苯甲酮、蒽醌、联苯、咔唑、硝基苯或二硝基苯、萘、芴、蒽、吖啶或者吲哚,除去1~4个氢原子得到的基团形成的结构。其中,苯乙酮结构、咔唑结构和吲哚结构分别优选为由除去苯乙酮、咔唑或者吲哚的苯环所具有的氢原子中的1~4个而得到的基团形成的结构。这些光增敏性结构中,优选由苯乙酮结构、二苯甲酮结构、蒽醌结构、联苯结构、咔唑结构、硝基芳基结构和萘结构构成的群组中选出的至少一种,特别优选由苯乙酮结构、二苯甲酮结构和硝基芳基结构构成的群组中选出的至少一种。

作为光增敏性化合物优选为具有羧基和光增敏性结构的化合物,作为更优选的化合物可以列举出例如下述式(H-1)~(H-10)分别表示的化合物等。

式中,q是1~6的整数。

本发明中使用的光取向性聚有机硅氧烷化合物通过组合如上所述的具有环氧基的聚有机硅氧烷和特定肉桂酸衍生物以及光增敏性化合物,优选在催化剂的存在下,优选在有机溶剂中反应合成。在这种情况下,特定肉桂酸衍生物,相对于1mol具有环氧基的聚有机硅氧烷的硅原子,优选以0.001~1mol,更优选以0.1~1mol、进一步优选以0.2~0.9mol的范围使用。光增敏性化合物相对于1mol具有环氧基的聚有机硅氧烷的硅原子,优选以0.0001~0.5mol、更优选以0.0005~0.2mol、进一步优选以0.001~0.1mol的范围使用。

(有机半导体取向用组合物的制备)

本发明的有机半导体取向用组合物如上所述,含有光取向性聚有机硅氧烷化合物为必须成分,根据需要可以含有其它任意成分,优选将各成分溶解到有机溶剂中,调配为溶液状的组合物。另外,所述的光取向性聚有机硅氧烷化合物和其它含有成分(例如,由聚酰胺酸和聚酰亚胺构成的群组中选出的至少一种聚合物以及其它聚有机硅氧烷等)在有机半导体取向用组合物和有机半导体取向膜的任意状态下,一部分可以相互连接。

作为可以用于调配本发明的有机半导体取向用组合物的有机溶剂,优选溶解光取向性聚有机硅氧烷化合物和使用的其它成分,而不会与它们反应的溶剂。可以在本发明的有机半导体取向用组合物中优选使用的有机溶剂,根据任意添加的其它聚合物的种类而异。

本发明的有机半导体取向用组合物中,相对于光取向性聚有机硅氧烷化合物,作为优选的有机溶剂,可以列举出作为合成聚酰胺酸使用的溶剂而在上文中例示的有机溶剂。此时,还可以和作为在本发明的聚酰胺酸的合成中使用的有机溶剂而例示的不良溶剂一起使用。这些有机溶剂可以单独使用或组合两种以上使用。

另一方面,本发明的有机半导体取向用组合物在含有光取向性聚有机硅氧烷化合物和其它聚有机硅氧烷作为聚合物时,作为优选的有机溶剂,可以列举出例如1-乙氧基-2-丙醇、丙二醇单乙基醚、丙二醇单丙基醚、丙二醇单丁基醚、丙二醇单乙酸酯、二丙二醇甲基醚、二丙二醇乙基醚、二丙二醇丙基醚、二丙二醇二甲基醚、乙二醇单甲基醚、乙二醇单乙基醚、乙二醇单丙基醚、乙二醇单丁基醚(丁基溶纤剂)、乙二醇单戊基醚、乙二醇单己基醚、二甘醇、甲基溶纤剂乙酸酯、乙基溶纤剂乙酸酯、丙基溶纤剂乙酸酯、丁基溶纤剂乙酸酯、甲基卡必醇、乙基卡必醇、丙基卡必醇、丁基卡必醇、醋酸正丙酯、醋酸异丙基酯、醋酸正丁基酯、醋酸异丁基酯、醋酸仲丁基酯、醋酸正戊基酯、醋酸仲戊基酯、醋酸3-甲氧基丁基酯、醋酸甲基戊基酯、醋酸2-乙基丁基酯、醋酸2-乙基己基酯、醋酸苄基酯、醋酸正己基酯、醋酸环己基酯、醋酸辛酯、醋酸戊酯、醋酸异戊酯等。其中,优选醋酸正丙酯、醋酸异丙酯、醋酸正丁酯、醋酸异丁酯、醋酸仲丁酯、醋酸正戊基酯、醋酸仲戊基酯等。

本发明的有机半导体取向用组合物制备时使用的优选的溶剂,可以根据有无使用其它聚合物及其种类,组合上述有机溶剂的一种或两种以上得到。这种溶剂不会在下述优选的固体成分浓度下,析出有机半导体取向用组合物中含有的各成分,而且有机半导体取向用组合物的表面张力为25~40mN/m的范围。

本发明的有机半导体取向用组合物的固体成分浓度,也就是有机半导体取向用组合物中的溶剂以外的全部成分的质量占据有机半导体取向用组合物的全部质量的比例考虑粘性、挥发性等选择,优选为1~10质量%的范围。本发明的有机半导体取向用组合物涂敷到绝缘膜上,或者涂敷到基板上以覆盖栅极,形成有机半导体取向膜形成的涂膜,但是在固体成分浓度为1质量%以上时,该涂膜的膜厚不会过小,可以得到良好的有机半导体取向膜。另一方面,在固体成分浓度为10质量%以下时,可以抑制涂膜的膜厚过大,得到良好的有机半导体取向膜,而且可以防止有机半导体取向用组合物的粘性增大,涂敷性质良好。特别优选的固体成分浓度的范围根据在绝缘膜或基板上涂敷有机半导体取向用组合物时采用的方法而异。例如,在使用旋涂法进行时,固体成分浓度特别优选为1.5~4.5质量%的范围。在使用印刷法进行时,特别优选固体成分浓度为3~9质量%的范围,由此,溶液粘度为12~50mPa·s的范围。在使用喷墨法进行时,特别优选固体成分浓度为1~5质量%的范围,由此,溶液粘度为3~15mPa·s的范围。

制备本发明的有机半导体取向用组合物时的温度优选为0℃~200℃,更优选为0℃~40℃。

(有机半导体取向膜)

本发明的有机半导体取向用组合物适合用于通过光取向法形成对有机半导体层赋予各向异性的取向膜或栅极绝缘膜,特别是形成场效应型有机半导体元件中使用的取向膜或栅极绝缘膜。

作为形成有机半导体取向膜的方法,可以列举出例如在形成栅极的基板上形成绝缘膜,在该绝缘膜上形成本发明的有机半导体取向用组合物的涂膜,或者在形成栅极的基板上形成本发明的有机半导体取向用组合物的涂膜,然后通过对该涂膜照射具有各向异性的偏光等的光取向法,赋予有机半导体分子取向能的方法。

首先,通过例如辊涂法、旋涂法、印刷法、喷墨法等适当的涂布方法,涂布本发明的有机半导体取向用组合物。然后,通过将该涂布面预加热(预烘焙),然后烧制(后烘焙)形成涂膜。预烘焙条件例如是在40~120℃下进行0.1~5分钟,后烘焙条件优选在120~300℃、更优选为150~250℃下,优选进行5~200分钟,更优选进行10~100分钟。后烘焙后的涂膜的膜厚优选为0.001~1μm,更优选为0.005~0.5μm。

接着,通过对上述涂膜照射直线偏光或部分偏光的光或者无偏光的光,赋予有机半导体分子取向能。这里,作为光,例如可以使用包含150nm~800nm的波长的光的紫外线和可视光线,优选包含300nm~400nm的波长的光的紫外线。在使用的光直线偏光或部分偏光时,照射可以从和基板面垂直的方向进行,也可以从倾斜的方向进行,或者可以组合它们进行。照射无偏光的光时,照射的方向必须是倾斜方向。

作为使用的光源,可以使用例如低压水银灯、高压水银灯、重氢灯、金属卤化物灯、氩共振灯、氙灯、准分子激光等。前述优选波长区域的紫外线可以通过将前述光源和例如滤光器以及衍射光栅等一起使用的机构等得到。

光的照射量没有特别的限定,优选为1J/m2以上、不足10,000J/m2,更优选为10~3,000J/m2。另外,通过光取向法在由目前已知有机半导体取向用组合物形成的涂膜上赋予有机半导体分子取向能时,必须要10,000J/m2以上的光照射量。但是,如果使用本发明的有机半导体取向用组合物,光取向法时的放射线照射量即使为3,000J/m2以下,进而为1,000J/m2以下,也可以赋予良好的有机半导体分子取向能,有助于提高有机半导体元件的生产性和削减制造成本。

这样形成的该有机半导体取向膜导致光取向性聚有机硅氧烷化合物的极性低,或者光取向性基团不均匀地分布于该有机半导体取向膜的表面附近。特别是在该有机半导体取向膜中,具有肉桂酸结构的基团优选从表面到膜厚30%的范围不均匀地分布。有助于有机半导体取向的具有肉桂酸结构的基团通过不均匀地分布于取向膜的有机半导体侧的表面附近,可以更有效地诱发有机半导体分子的取向。

涂布有机半导体取向用组合物时,为了使绝缘膜和涂膜的粘合性更好,可以在绝缘膜上预先涂敷官能性硅烷化合物、钛酸酯等。

(有机半导体元件)

参照附图对本发明的有机半导体元件进行说明。图1是图示地表示本发明的有机半导体元件的一个例子的剖视图。有机半导体元件1包括在基板2上形成的栅极3、覆盖栅极3形成的栅极绝缘膜(绝缘膜)4、在栅极绝缘膜4上形成的取向膜5、在该取向膜5上形成的源极6和漏极7、以及至少在上述源极6和漏极7之间形成的有机半导体层8。在本发明中,作为取向膜5使用由该有机半导体取向用组合物形成的上述有机半导体取向膜。对本发明的有机半导体取向膜已经详细描述过了,所以在这里省略说明。

在有机半导体元件的源极6和漏极7之间施加电压(源-漏极间电压)的同时,如果改变施加到栅极3上的电压(栅极电压:Vg),则有机半导体层8和取向膜5的界面中的电荷(载流子)量依赖于栅极电压变化,可以改变流过源极6和漏极7之间的有机半导体层8的部分(信道)的电流(源-漏极间电流)。这样,在有机半导体元件中,通过控制栅极电压Vg,可以控制漏极电流Id。

参照附图对本发明的有机半导体元件进行说明。图2是图示地表示本发明的有机半导体元件的一个例子的剖视图。有机半导体元件9包括在基板10上形成的栅极11、为了覆盖栅极11形成的绝缘膜12、在栅极绝缘膜12上形成的源极13和漏极14、以及至少在上述源极13和漏极14之间形成的有机半导体层15。在本发明中,作为栅极绝缘膜12使用含有[C]成分的该有机半导体取向用组合物形成的上述有机半导体取向膜。

在有机半导体元件的源极13和漏极14间施加电压(源-漏极间电压)时,如果改变施加到栅极11上的电压(栅极电压:Vg),则有机半导体层15和栅极绝缘膜12的界面中,电荷(载流子)的量依赖于栅极电压变化,流过源极13和漏极14间的有机半导体层15的部分(信道)的电流(源-漏极间电流)。这样,在有机半导体元件中,通过控制栅极电压Vg,可以控制漏极电流Id。

有机半导体材料的π轨道共轭平面或者π堆积与载流子移动方向关系密切。为了提高载流子在有机半导体层中的移动度μ,不仅使有机半导体分子的方向在一个方向上一致,而且重要的是规定π轨道共轭平面或者π堆积。对本发明的有机半导体元件而言,通过光取向法使取向膜取向,由此可以对有机半导体分子的取向赋予各向异性,所以通过有机半导体分子的微观配列,可以规定π轨道共轭面或π堆积,还可以形成没有取向不匀的平整性优异的有机半导体取向膜,此外,可以消除摩擦产生的摩擦损伤,消除交叉污染粘附的问题,抑制关态电流。

作为绝缘性基板没有特别的限定,可以使用例如玻璃、石英等无机材料,以及丙烯酸类、乙烯类、酯类、酰亚胺类、氨基甲酸乙酯类、二偶氮类、肉桂酰基类等感光性高分子化合物、聚偏氟乙烯、聚对苯二甲酸乙二酯、聚乙烯等有机材料,有机无机杂化材料。另外,还可以层叠使用两层以上的这些材料,在提高绝缘耐压性的目的是有效的。

本发明的有机半导体元件形成的栅极绝缘膜可以是一层或两层以上。作为图1的有机半导体元件1形成的栅极绝缘膜4的材料,可以组合使用各种公知的材料。作为公知的材料,没有特别的限定,可以使用SiO2、SiN、Al2O3、Ta2O5等无机材料,聚酰胺酸、聚酰亚胺、聚丙烯腈、聚四氟乙烯、聚乙烯醇、聚乙烯基苯酚、聚对苯二甲酸乙二酯、聚偏氟乙烯等有机材料以及有机无机杂化材料。优选的是从可以利用低成本的液相工艺的观点出发,优选有机材料。另外,作为聚酰胺酸和聚酰亚胺可以使用能够在该有机半导体取向用组合物中含有的上述聚酰胺酸和聚酰亚胺。另外,图2的有机半导体元件9形成的栅极绝缘膜12可以是一层或两层以上,至少一层是通过含有[C]成分的该有机半导体取向用组合物形成的有机半导体取向膜。作为形成这以外的层的栅极绝缘膜的材料,可以使用和作为图1的有机半导体元件1形成的栅极绝缘膜4的材料,而在上述例示的材料相同的材料。

构成本发明的有机半导体元件的有机半导体层的有机半导体分子只要是具有共轭双键的共轭化合物,就没有特别的限定。例如合适的是以下所示的化合物:

聚乙炔衍生物、具有噻吩环的聚噻吩衍生物、聚(3-烷基噻吩)衍生物、聚(3,4-亚乙基二氧基噻吩)衍生物、聚噻吩乙炔衍生物、具有苯环的聚亚苯基衍生物、聚对苯乙炔衍生物、具有氮原子的聚吡啶衍生物、聚吡咯衍生物、聚苯胺衍生物、聚喹啉衍生物等共轭高分子化合物;

以二甲基六噻吩、八噻吩为代表的低聚物;

以二萘嵌苯、萘并萘、并五苯为代表的并苯类;

以铜酞菁衍生物为代表的堆积有机分子;

以三亚苯基衍生物为代表的盘状液晶;

以苯基萘衍生物、苯并噻唑衍生物为代表的碟形液晶;以及

以聚(9,9-二烷基芴-联噻吩)共聚合物为代表液晶聚合物等。其中,有机半导体分子并不限于此。

这些有机半导体分子中,从可以利用液相工艺这样的观点出发,合适的是具有上述共轭结构的高分子化合物。这些共轭高分子化合物的分子量没有特别的限定,如果考虑到对溶剂的可溶性、成膜性等,质均分子量优选为5,000~500,000。

该有机半导体元件中使用的有机半导体层可以含有适当的掺杂剂以调节其电传导度。作为掺杂剂的种类,可以列举出受电子性的I2、Br2、Cl2、ICl、BF3、PF5、H2SO4、FeCl3、TCNQ(四氰基醌二甲烷)、供电子性的Li、K、Na、Eu、作为表面活性剂的烷基磺酸盐、烷基苯磺酸盐等。

本发明的有机半导体元件中使用的栅极、源极和漏极只要是导电体就没有特别的限定。作为各电极的构成材料,可以使用例如Al、Cu、Ti、Au、Pt、Ag、Cr等金属材料,多晶硅、硅化物、ITO(Indium Tin Oxide)、SnO2等无机材料,以重掺杂的聚吡啶、聚乙炔、聚苯胺、聚吡咯、聚噻吩为代表的导电性高分子材料,以及分散碳粒子、银粒子等的导电性油墨等。特别是在用于柔性电子纸等时,各电极是分散了导电性高分子和碳粒子、银粒子等的导电性油墨等的话,热膨胀性容易和基板一致,所以优选。

(有机半导体元件的制造方法)

本发明的有机半导体元件的制造方法包括形成绝缘膜以覆盖在基板上形成的栅极的绝缘膜形成工序,通过该有机半导体取向用组合物在上述绝缘膜上形成涂膜的涂膜形成工序,在上述涂膜上形成源极和漏极的电极形成工序,以及至少在上述源极和漏极间形成有机半导体层的有机半导体层形成工序,进而还包括在上述有机半导体层形成工序前,对上述涂膜照射直线偏振光,形成有机半导体取向膜的工序。

作为本发明的其它实施方案的有机半导体元件的制造方法,包括通过该有机半导体取向用组合物形成涂膜以覆盖在基板上形成的栅极的涂膜形成工序,在上述涂膜上形成源极和漏极的电极形成工序,以及至少在上述电极和漏极间形成有机半导体层的有机半导体层形成工序,进而包括在上述有机半导体层形成工序前,对上述涂膜照射直线偏振光,形成有机半导体取向膜的工序。

构成本发明的有机半导体元件的栅极绝缘膜和有机半导体层的形成方法没有特别的限定,可以通过例如电解聚合法、浇注法、旋涂法、丝网印刷法、浸涂法、微型模具法(micro mould method)、微接触法、喷墨法、辊涂法、LB法等形成。另外,各电极的形成方法根据使用的材料,可以采用真空蒸镀法、CVD法、电子束蒸镀法、电阻加热蒸镀法、淋溅法等。

另外,它们可以通过照相平版和蚀刻处理形成所希望形状的图案。此外,软蚀刻、喷墨法也是有效的形成图案的方法。另外,根据需要,可以形成从各电极引出的电极和保护膜等。

【实施例】

以下,通过实施例对本发明进行更具体地的说明,但是本发明并不受到这些实施例的限定。

以下的实施例中得到的具有环氧基的聚有机硅氧烷和光取向性聚有机硅氧烷化合物的质均分子量(Mw)是通过下述方式的凝胶渗透色谱法(GPC)测定的聚苯乙烯换算的值。

柱:東ソ一公司,TSKgelGRCXLII

溶剂:四氢呋喃

温度:40℃

压力:68kgf/cm2

另外,根据需要通过重复进行下述合成例所示的合成路线,合成原料化合物和聚合物,从而确保以下实施例中使用的原料化合物和聚合物的必要量。

<具有环氧基的聚有机硅氧烷的合成>

[合成例1]

在带有搅拌器、温度计、滴液漏斗和回流冷凝管的反应容器中,加入100.0g的2-(3,4-环氧环己基)乙基三甲氧基硅烷(ECETS)、500g甲基异丁基酮以及10.0g三乙胺,在室温下混合。

接着,从滴液漏斗分30分钟滴加100g去离子水后,在回流下,边混合边在80℃下反应6小时。反应结束后,取出有机层,通过0.2质量%硝酸铵水溶液洗涤直到洗涤后的水为中性后,减压下馏出溶剂和水,得到具有环氧基的聚有机硅氧烷,为粘稠的透明液体。

对该具有环氧基的聚有机硅氧烷进行1H-NMR分析,在化学位移(δ)=3.2ppm附近得到理论强度的基于环氧基的峰,确认在反应中环氧基没有产生副反应。得到的具有环氧基的聚有机硅氧烷的粘度、Mw和环氧当量在表1中表示。

[合成例2~3]

除了加入的原料如表1所示以外,和合成例1同样地分别得到具有环氧基的聚有机硅氧烷,为粘稠的透明液体。得到的具有环氧基的聚有机硅氧烷的Mw和环氧当量在表1中表示。

另外,在表1中,原料硅烷化合物的简称分别是以下含义。

ECETS:2-(3,4-环氧环己基)乙基三甲氧基硅烷

MTMS:甲基三甲氧基硅烷

PTMS:苯基三甲氧基硅烷

【表1】

<特定肉桂酸衍生物的合成>

特定肉桂酸衍生物的合成反应全部在不活泼气氛中进行。

[合成例4]

在具有冷凝管的500mL的三口烧瓶中,加入20g的4-溴代二苯基醚、0.18g乙酸钯、0.98g三(2-甲苯基)膦、32.4g三乙胺、135mL二甲基乙酰胺。接着,用注射器加入7g丙烯酸混合溶液搅拌。该混合溶液再在120℃下加热搅拌3小时。通过TLC确认反应结束后,将反应溶液冷却到室温。过滤沉淀物后,将滤液注入300mL的1N盐酸水溶液后,回收沉淀物。该沉淀物通过乙酸乙酯和己烷1∶1溶液重结晶,得到8.4g下述式(K-1)所示的化合物(特定肉桂酸衍生物(K-1))。

[合成例5]

在具有冷凝管的300mL的三口烧瓶中,混合6.5g的4-氟代苯基硼酸、10g的4-溴代肉桂酸、2.7g四(三苯基膦)钯、4g碳酸钠、80mL四氢呋喃、39mL纯水。接着在80℃下将反应溶液加热搅拌8小时,用TLC确认反应结束。反应溶液冷却到室温后,注入200mL的1N的盐酸水溶液,过滤析出固体。得到的固体溶解到乙酸乙酯中,依次用100mL的1N的盐酸水溶液、100mL纯水、100mL饱和食盐水分液洗涤。接着,有机层用无水硫酸镁干燥,馏出溶剂。得到的固体真空干燥,得到9g下述式(K-2)所示的化合物(特定肉桂酸衍生物(K-2))。

[合成例6]

在带有冷凝管的200mL三口烧瓶中,混合3.6g的4-氟代苯乙烯、6g的4-溴代肉桂酸、0.059g乙酸钯、0.32g三(2-甲苯基)膦、11g三乙胺、50mL二甲基乙酰胺。该溶液在120℃下加热搅拌3小时,通过TLC确认反应结束后,反应溶液冷却到室温。过滤沉淀物后,将滤液注入300mL的1N盐酸水溶液,回收沉淀物。用乙酸乙酯将该沉淀物重结晶,得到4.1g下述式(K-3)所示的化合物(特定肉桂酸衍生物(K-3))。

[合成例7]

在具有冷凝管的200mL的三口烧瓶中,加入9.5g的4-乙烯基联苯、10g的4-溴代肉桂酸、0.099g乙酸钯、0.54g三(2-甲苯基)膦、18g三乙胺、80mL二甲基乙酰胺。将该溶液在120℃下加热搅拌3小时,用TLC确认反应结束后,反应溶液冷却到室温。过滤沉淀物后,滤液注入500mL的1N盐酸水溶液,回收沉淀物。该沉淀物用二甲基乙酰胺、乙醇1∶1溶液重结晶,得到11g下述式(K-4)所示的化合物(特定肉桂酸衍生物(K-4))。

[合成例8]

在1L的茄型烧瓶中加入91.3g的4-羟基苯甲酸甲酯、182.4g碳酸钾和320mL的N-甲基-2-吡咯烷酮,在室温下搅拌1小时后,加入99.7g的1-溴代戊烷,在100℃下搅拌5小时。反应结束后,用水再次沉淀。接着,在该沉淀中加入48g氢氧化钠和400mL水,回流3小时,进行水解反应。反应结束后,用盐酸中和,生成的沉淀通过乙醇重结晶,得到102g的4-戊氧基苯甲酸的白色结晶。取出得到的4-戊氧基苯甲酸中的10.41g到反应容器中,在其中加入100mL亚硫酰氯和77mL的N,N-二甲基甲酰胺,在80℃下搅拌1小时。接着,在减压下馏出亚硫酰氯,加入二氯甲烷,用碳酸氢钠水溶液洗涤,用硫酸镁干燥,浓缩后,加入四氢呋喃,形成溶液。接着,在和上述不同的500mL的三口烧瓶中,加入7.39g的4-羟基肉桂酸、13.82g碳酸钾、0.48g四丁基铵、50mL四氢呋喃和100mL水。冰冷却该水溶液,缓慢滴加上述四氢呋喃溶液,然后搅拌2小时进行反应。反应结束后,加入盐酸中和,用乙酸乙酯萃取后,用硫酸镁干燥,浓缩后,用乙醇重结晶,从而得到9.0g下述式(K-5)所示的化合物(特定肉桂酸衍生物(K-5))的白色结晶。

[合成例9]

除了在合成例8中,使用110.9g的1-碘化-4,4,4-三氟代丁烷代替1-溴代戊烷以外,和合成例8同样地进行,得到9.2g下述式(K-6)所示的化合物(特定肉桂酸衍生物(K-6))的白色结晶。

<[A]光取向性聚有机硅氧烷化合物的合成>

[合成例10]

在100mL的三口烧瓶中,加入9.3g上述合成例1得到的具有环氧基的聚有机硅氧烷、26g甲基异丁基酮、3g上述合成例4得到的特定肉桂酸衍生物(K-1)和0.10g的UCAT 18X(商品名。サンアプロ(株)制造的季铵盐),在80℃下搅拌12小时。反应结束后,用甲醇再次沉淀,沉淀物溶剂到乙酸乙酯中,得到溶液,该溶液水洗3次后,馏出溶剂,得到6.3g光取向性聚有机硅氧烷化合物(S-1),为白色粉末。光取向性聚有机硅氧烷化合物(S-1)的质均分子量Mw是3,500。

[合成例11]

除了使用3g合成例5得到的特定肉桂酸衍生物(K-2)代替上述K-1以外,和合成例10同样地进行,得到7.0g光取向性聚有机硅氧烷化合物(S-2)的白色粉末。光取向性聚有机硅氧烷化合物(S-2)的质均分子量Mw为4,900。

[合成例12]

除了使用4g合成例6得到的特定肉桂酸衍生物(K-3)代替上述K-1以外,和合成例10同样地进行,得到10g光取向性聚有机硅氧烷化合物(S-3)的白色粉末。光取向性聚有机硅氧烷化合物(S-3)的质均分子量Mw为5,000。

[合成例13]

除了使用4.1g合成例7得到的特定肉桂酸衍生物(K-4)代替上述K-1以外,和合成例10同样地进行,得到10g光取向性聚有机硅氧烷化合物(S-4)的白色粉末。光取向性聚有机硅氧烷化合物(S-4)的质均分子量Mw为4,200。

[合成例14]

除了使用3g合成例8得到的特定肉桂酸衍生物(K-5)代替上述K-1以外,和合成例10同样地进行,得到10g光取向性聚有机硅氧烷化合物(S-5)的白色粉末。光取向性聚有机硅氧烷化合物(S-5)的质均分子量Mw为4,200。

[合成例15]

在200mL的三口烧瓶中,加入5.0g上述合成例1得到的具有环氧基的聚有机硅氧烷、46.4g甲基异丁基酮、5.3g合成例9得到的特定肉桂酸衍生物(K-6)(相对于具有环氧基的聚有机硅氧烷所具有的硅原子,相当于50mol%)、1.08g作为光增敏性化合物的下述式所示的化合物(相对于具有环氧基的聚有机硅氧烷所具有的硅原子,相当于20mol%)和0.10g溴化四丁基铵,在80℃下搅拌12小时进行反应。反应结束后,用甲醇再次沉淀,将沉淀物溶解到乙酸乙酯中,得到溶液,水洗3次该溶液后,馏出溶剂,得到2.8g光取向性聚有机硅氧烷化合物(S-6),为白色粉末。光取向性聚有机硅氧烷化合物(S-6)的质均分子量Mw为12,500。

[合成例16]

除了使用5g月桂酸以外,和合成例10同样地进行。结果是得到11g光取向性聚有机硅氧烷化合物(S-7)的白色粉末。光取向性聚有机硅氧烷化合物(S-7)的质均分子量Mw是6,000。

<[B]含酯结构的化合物的合成>

根据下述流程路线,合成含酯结构的化合物(B-1-1)。

[合成例17]

在具有回流管、温度计和氮气导入管的500mL的三口烧瓶中,加入21g均苯三酸、60g正丁基乙烯基醚和0.09g磷酸,在50℃下搅拌30小时进行反应。反应结束后,在反应混合物中加入500mL己烷,对得到的有机层依次使用1M的氢氧化钠水溶液分液洗涤两次和用水分液洗涤3次。之后,从有机层馏出溶剂,得到50g含酯结构的化合物(B-1-1),为无色透明液体。

<聚酰胺酸的合成>

[合成例18]

将19.61g(0.1mol)环丁烷四羧酸二酐和21.23g(0.1mol)4,4’-二氨基-2,2’-二甲基联苯溶解到367.6g的N-甲基-2-吡咯烷酮中,在室温下反应6小时。接着,将反应混合物注入大量过剩的甲醇中,使反应产物沉淀。沉淀物用甲醇洗涤,减压下,在40℃下干燥15小时,得到35g聚酰胺酸(PA-1)。

[合成例19]

将22.4g(0.1mol)的2,3,5-三羧基环戊基乙酸二酐和14.23g(0.1mol)环己烷二(甲基胺)溶解到329.3g的N-甲基-2-吡咯烷酮中,在60℃下反应6小时。接着,将反应混合物注入大量过剩的甲醇中,使反应产物沉淀。沉淀物用甲醇洗涤,减压下,在40℃下干燥15小时,得到32g聚酰胺酸(PA-2)。

[合成例20]

将作为四羧酸二酐109g(0.50mol)的均苯四羧酸二酐和98g(0.50mol)的1,2,3,4-环丁烷四羧酸二酐,以及作为二胺化合物的200g(1.0mol)4,4’-二氨基二苯基醚溶解到2,290g的N-甲基-2-吡咯烷酮中,在40℃下反应3小时后,追加1,350g的N-甲基-2-吡咯烷酮,得到约3,590g含有10质量%聚酰胺酸(PA-3)的溶液(聚酰胺酸的量以质量换算是359g)。

[合成例21]

通过使10g(0.022mol)作为四羧酸二酐的2,3,5-三羧基环戊基乙酸二酐和5g(0.022mol)作为二胺的具有光取向性的下述式(RA-2-1-1)所示的化合物反应,得到聚酰胺酸(RPA-1)。

<聚酰亚胺的合成>

[合成例22]

取出17.5g上述合成例17得到的PA-2,在其中添加232.5g的N-甲基-2-吡咯烷酮,3.8g吡啶和4.9g乙酸酐,在120℃下反应4小时,酰亚胺化。接着,将反应混合液注入大量过量的甲醇中,使反应产物沉淀。沉淀物用甲醇洗涤,减压下,干燥15小时,得到15g聚酰亚胺(PI-1)。

<有机半导体取向用组合物的制备>

[实施例1]

在组成为N-甲基-2-吡咯烷酮∶丁基溶纤剂=50∶50(质量比)的溶剂中,溶解100质量份上述合成例10得到的光取向性聚有机硅氧烷化合物(S-1),形成固体成分浓度4.0质量%的溶液。该溶液通过孔径1μm的过滤器过滤,制备有机半导体取向用组合物(A-1)。

[实施例2~5]

通过改变光取向性聚有机硅氧烷化合物,和实施例1同样地制备各种有机半导体取向用组合物(A-2)~(A-5)。另外,在实施例4中,相对于100质量份光取向性聚有机硅氧烷化合物,再添加5质量份合成例17得到的含酯结构的化合物(B-1-1),制备有机半导体取向用组合物。它们的配比在表2中表示。

[比较例1]

将13.1g聚(甲基丙烯酸2-羟基乙基酯)在50mL的N-甲基-2-吡咯烷酮中加热溶解,冷却到室温后,添加10mL吡啶。在其中加入17.0g肉桂酰氯,搅拌8小时。用N-甲基-2-吡咯烷酮稀释反应混合物后,加入到甲醇中,充分水洗沉淀,干燥,得到25g聚合物。在其中加入N-甲基-2-吡咯烷酮和丁基溶纤剂,形成溶剂组成N-甲基-2-吡咯烷酮∶丁基溶纤剂=50∶50(质量比)、固体成分浓度4.0质量%的溶液。该溶液通过孔径1μm的过滤器过滤,制备组合物(CA-1)。

[比较例2]

将1.00g的4-(2-甲基丙烯酰氧基乙氧基)偶氮苯和0.01g的2,2’-偶氮二(异丁腈)和2.00g干燥的苯加入安瓿中,排气后,封管,将其注入到甲醇中,得到高分子化合物的沉淀物。将其过滤后,再次将沉淀物溶解到苯中,重复进行两次用甲醇再次沉淀、过滤的操作后,干燥。在其中加入N-甲基-2-吡咯烷酮和丁基溶纤剂,形成溶剂组成N-甲基-2-吡咯烷酮∶丁基溶纤剂=50∶50(质量比)、固体成分浓度4.0质量%的溶液。该溶液通过孔径1μm的过滤器过滤,制备组合物(CA-2)。

<有机半导体取向膜的形成和有机半导体元件的制造>

通过使用Al作为电极材料的真空蒸镀法,在玻璃基板上形成厚度20nm的栅极。之后,通过旋涂去涂布合成例18制备的聚酰胺酸(PA-1),在内部氮气置换的烘箱中,在200℃下加热1小时(烘焙),形成膜厚0.2μm的绝缘膜。接着,在该绝缘膜上通过旋涂器涂布实施例1制备的有机半导体取向用组合物(A-1),在80℃的热板上预烘焙1分钟后,在内部氮气置换的烘箱中,在200℃下加热1小时(后烘焙),形成膜厚0.1μm的涂膜。为了使形成后的膜厚为0.1μm,使旋涂器的转速为2000rpm,有机半导体取向用组合物(A-1)的固体成分浓度为4.0质量%。接着,在该涂膜表面,使用Hg-Xe灯和格兰-泰勒棱镜,从基板法线垂直地照射包含313nm的辉线的直线偏光紫外线,形成有机半导体取向膜。测定此时形成的涂膜中的光取向性基团取向所必须的光照射量,作为光取向性的灵敏度指标。另外,光取向性基团的取向使用偏光显微镜确认。

接着,在上述有机半导体取向膜中,通过金蒸镀,形成源极、漏极,使信道长为30μm,信道宽为50μm。接着,为了覆盖上述两个电极,通过蒸镀法,形成改性并五苯的膜厚的有机半导体分子膜,制造前栅(top gate)型有机半导体元件。

对实施例2~5和比较例1~2制备的组合物,也同样地制造有机半导体元件。对这些有机半导体元件通过以下的方法评价。评价结果在表2中表示。

<有机半导体元件的评价>

(1)初期载流子移动度的评价

对上述步骤制造的前栅型有机半导体元件,使用半导体参数分析仪(Semiconductor parameter analyzer HP4155a、ヒユ一レツト·パツカ一ド公司制造)测定初期载流子移动度。

(2)受热后的载流子移动度的评价

将该有机半导体元件置于加热条件下,测定受热后的载流子移动度,评价对热的稳定性。具体地,将上述步骤制造的前栅型有机半导体元件,在设定为70℃的烘箱中,加热500小时,之后,和上述“(1)初期载流子移动度的评价”同样的步骤,测定受热后的载流子移动度。评价结果在表2中表示。受热后的载流子移动度的维持率也合并在表2中表示。

从表2的结果表明,对实施例1~5的有机半导体取向用组合物而言,使用它们制造有机半导体取向膜时,光取向所必要的光照射量极低,光取向的灵敏度良好。另外,具有该取向膜的该有机半导体元件,可以实现高的载流子移动度,此外该有机半导体元件即使受热后,也可以高比例地维持起始的载流子移动度,从而得到优异的耐热性。另一方面,使用比较例1的组合物制造的取向膜,虽然光取向性的灵敏度和半导体元件的载流子移动度良好,但是受热后的载流子移动度约为一半的值,表示耐热性差。使用比较例2的组合物制造的取向膜的结果是也需要20000J/m2的光取向的光照射量,而且载流子移动度也低于实施例的有机半导体元件的载流子移动度的一半的值。

<具有绝缘性的有机半导体取向用组合物的制备>

[实施例6]

选取上述合成例17得到含有聚酰胺酸(PA-1)的溶液,换算其中含有的聚酰胺酸(PA-1)相当于1,000质量份的量,在其中加入100质量份上述合成例10得到的光取向性聚有机硅氧烷化合物(S-1),然后加入N-甲基-2-吡咯烷酮和丁基溶纤剂,形成溶剂组成N-甲基-2-吡咯烷酮∶丁基溶纤剂=50∶50(质量比)、固体成分浓度为3.0质量%的溶液。该溶液通过孔径1μm的过滤器过滤,制备有机半导体取向用组合物(A-6)。

[实施例7~14]

通过改变光取向性聚有机硅氧烷化合物、聚酰胺酸、聚酰亚胺的组合,制备各种有机半导体取向用组合物(A-7)~(A-14)。它们在表2中表示。另外,实施例7中的光取向性聚有机硅氧烷化合物(S-1)和(S-7)分别加入50质量份,在实施例14中,使用上述合成例20得到的含有聚酰胺酸(PA-3)的溶液,换算为聚酰胺酸(PA-3),相当于2,000质量份的量。

[比较例3]

除了不添加光取向性聚有机硅氧烷化合物以外,和实施例6同样地制备组合物(CA-3)。

[比较例4]

除了不添加光取向性聚有机硅氧烷化合物,使用合成例19得到的聚酰胺酸(PA-2)作为聚酰胺酸以外,和实施例6同样地制备组合物(CA-4)。

[比较例5]

除了不添加光取向性聚有机硅氧烷化合物,使用合成例21得到的聚酰胺酸(RPA-1)作为聚酰胺酸以外,和实施例6同样地制备组合物(CA-5)。

[比较例6]

将13.1g聚(甲基丙烯酸2-羟基乙基酯)在50mL的N-甲基-2-吡咯烷酮中加热溶解,冷却到室温后,添加10mL吡啶。在其中加入17.0g肉桂酰氯,搅拌8小时。用N-甲基-2-吡咯烷酮稀释反应混合物后,加入到甲醇中,充分水洗沉淀,干燥,得到25g聚合物。在其中加入N-甲基-2-吡咯烷酮和丁基溶纤剂,形成溶剂组成N-甲基-2-吡咯烷酮∶丁基溶纤剂=50∶50(质量比)、固体成分浓度3.0质量%的溶液。该溶液通过孔径1μm的过滤器过滤,制备组合物(CA-6)。

<具有绝缘性的有机半导体性取向膜的形成和有机半导体元件的制造>

通过使用Al的真空蒸镀法,在玻璃基板上形成厚度20nm的栅极。然后,通过旋涂器涂布实施例6制备的有机半导体取向用组合物(A-6),通过80℃的热板预烘焙1分钟后,在内部氮气置换的烘箱中,在200℃下加热1小时(后烘焙),形成膜厚0.2μm的涂膜。为了使形成的膜厚为0.2μm,使旋涂器的转速为2000转,取向膜溶剂的固体成分浓度为4%。接着,在该涂膜表面,使用Hg-Xe灯和格兰-泰勒棱镜,从基板法线垂直地照射包含13nm的辉线的直线偏光紫外线1,000J/m2,形成有机半导体取向膜。

接着,通过金蒸镀,在上述有机半导体取向膜中形成源极、漏极,使信道长30μm,信道宽50μm。接着,为了覆盖上述两个电极,通过蒸镀法,形成改性的并五苯的膜厚的有机半导体分子膜,制造前栅型有机半导体元件。

对实施例7~14和比较例3~6制备的组合物也同样地制造有机半导体元件。这些有机半导体元件通过下述方法评价。评价结果在表3中表示。

<有机半导体元件的评价>

(1)体积固有电阻(绝缘性)的评价

使用硅晶片作为基板,通过旋涂器涂布有机半导体取向用组合物(A-6),通过80℃的热板预烘焙1分钟后,在内部氮气置换的烘箱中,在200℃下加热1小时(预烘焙),形成膜厚0.2μm的涂膜。为了使形成后的膜厚为0.2μm,使旋涂器转数为2000转,取向膜的溶剂和固体成分浓度为4%。接着,在该涂膜表面使用Hg-Xe灯和格兰-泰勒棱镜,从基板法线垂直地照射包含13nm的辉线的直线偏光紫外线1,000J/m2,形成有机半导体取向膜。在该取向膜表面上,蒸镀Al作为上部电极,形成膜体积固有电阻测定用基板。在相同的测定用基板中,以硅晶片为下电极,以Al电极为上电极,施加1V电压,通过静电计(アドバンテスト公司制造的R12706A)测定电流,算出电阻率。

(2)载流子移动度的评价

对上述步骤制造的前栅型有机半导体元件,使用半导体参数分析仪(Semiconductor parameter analyzer HP4155a、ヒユ一レツト·パツカ一ド公司制造),测定载流子移动度。

【表3】

如表3的结果表明,使用实施例6~14的有机半导体取向用组合物制造的有机半导体取向膜绝缘性优异,而且具有该取向膜的该有机半导体元件可以实现极高的载流子移动度。另一方面,使用比较例3和4的组合物制造的绝缘膜虽然绝缘性高,但是由于在绝缘膜分子中没有光取向性基团,半导体元件的载流子移动度下降到实施例的十分之一。具有使用比较例5的组合物制造的绝缘膜的半导体元件,虽然具有来自具有光取向性的二胺结构,或者可以得到高的载流子移动度,但是绝缘性低下。使用没有聚有机硅氧烷骨架的比较例6的组合物制造的绝缘膜,电阻率低1个位数以上,绝缘性差。

<有机半导体取向膜中的特定肉桂酸衍生物的存在分布的评价>

在带有由ITO膜形成的透明电极的玻璃基板的透明电极面上,通过旋涂器涂布上述实施例14制备的有机半导体取向用组合物(A-14),在80℃的热板上预烘焙1分钟后,在内部氮气置换的烘箱中,在210℃下加热20分钟,形成膜厚80nm的涂膜。

使用ULVAC-PHI公司制造的TOF-SIMS测定装置,使用加速电压25kV的Bi3++簇离子作为一次离子源,通过离子电流0.05pA、测定视野100μm、测定质量范围0~1,850amu的条件下,对上述形成的涂膜面,重复进行C60溅射和TOF-SIMS分析,进行测定直到检测出来自ITO的铟离子,研究检测出铟离子的时间下,从涂膜表面到80nm的深度的涂膜膜厚方向的组成分布。表示此时的m/z=231的片段的分布的图在图3(存在分布)和图4(累计值)中表示。另外,这些图中表示的图表是将各深度下的该片段的计算数除以噪音等级规范化的值。

可以认为上述m/z=231的片段相当于来自桂酸衍生物(K-6)的下述式所示的片段。因此,从图3的结果,可以推测在本实施例中形成的涂膜中,来自特定肉桂酸衍生物的基团以最高的浓度存在于涂膜表面,而且不均匀地分布于从表面到厚度20%这样范围(最多在30%的范围)。

工业实用性

本发明的有机半导体取向用组合物由于含有光取向性聚有机硅氧烷化合物,所以如上所述,光取向性的灵敏度良好,受热后的载流子移动度的稳定性优异,具有该有机半导体取向膜的有机半导体元件通过该有机半导体取向膜表面的光取向性基团,可以高等级地诱发有机半导体分子的各向异性取向,从而可以实现优异的载流子移动度。

另外,在使用含有光取向性聚有机硅氧烷化合物与聚酰胺酸和/或者聚酰亚胺的本发明的有机半导体取向用组合物时,所得的有机半导体取向膜除了上述性质以外,具有高的绝缘性,所以适合在有机半导体元件等中使用。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号