首页> 中国专利> 半主动减震器的液压回路

半主动减震器的液压回路

摘要

本发明提供一种半主动减震器的液压回路,其包括:电磁比例溢流阀,其使从减震器流出的工作油产生与第1励磁电流相对应的阻尼力,并使该工作油流下;电磁式卸载阀,其使从减震器流出的工作油绕过电磁比例溢流阀而毫无阻力地流下。电磁比例溢流阀由通过断开励磁电流而使释放压力变为最大的阀构成。液压回路上还与电磁比例溢流阀并联设置有:溢流阀,其根据从半主动减震器流出的工作油的压力打开;常开的开闭阀,其与溢流阀串联配置,根据第1励磁电流动作。通过停电使电磁溢流阀变为最大释放压力的情况下,开闭阀打开,工作油在溢流阀的设定释放压力的作用下流下。

著录项

  • 公开/公告号CN102032306A

    专利类型发明专利

  • 公开/公告日2011-04-27

    原文格式PDF

  • 申请/专利权人 萱场工业株式会社;

    申请/专利号CN200910174155.6

  • 发明设计人 小川义博;牧宽司;

    申请日2009-09-30

  • 分类号F16F9/19(20060101);F16F9/34(20060101);B60G17/015(20060101);

  • 代理机构北京林达刘知识产权代理事务所(普通合伙);

  • 代理人刘新宇;张会华

  • 地址 日本东京都

  • 入库时间 2023-12-18 02:21:58

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-09-20

    未缴年费专利权终止 IPC(主分类):B60G17/015 专利号:ZL2009101741556 申请日:20090930 授权公告日:20140129

    专利权的终止

  • 2016-02-24

    专利权人的姓名或者名称、地址的变更 IPC(主分类):B60G17/015 变更前: 变更后: 申请日:20090930

    专利权人的姓名或者名称、地址的变更

  • 2014-01-29

    授权

    授权

  • 2011-06-15

    实质审查的生效 IPC(主分类):F16F9/19 申请日:20090930

    实质审查的生效

  • 2011-04-27

    公开

    公开

说明书

技术领域

发明涉及一种在铁道车辆等上使用的半主动减震器的液压回路。

背景技术

关于安装在铁道车辆的车体和台车之间的线性减震器的控制理论,公知有在架空的壁和车体之间设置有虚拟天棚阻尼器的天棚(Skyhook)阻尼理论。由于现实中不可能设置天棚阻尼器,因而,通过使阻尼力可变的线性减震器产生与虚拟天棚阻尼器的产生阻尼力相等的阻尼力,来实现天棚阻尼控制。

作为使减震器的阻尼力可变的方法,公知有使用驱动器的主动控制和半主动控制。半主动控制是如下的控制:在线性减震器的产生阻尼力与天棚阻尼器的产生阻尼力反向的情况下,使线性减震器的产生阻尼力无限地接近零。该控制方法被称为基于卡诺普(Karnopp)理论的天棚半主动控制。日本专利局1996公布的JPH08-082338A中公开有这种半主动控制系统。

该现有技术的半主动控制系统中,线性减震器包括:缸体;活塞,其在缸体内滑动;活塞杆,其固定在活塞上,沿轴向从缸体突出。由活塞将缸体内划分为活塞杆侧和非活塞杆侧两个油室。通过在活塞上设置允许工作油从非活塞杆侧油室向活塞杆侧油室移动的单向阀,将线性减震器构成为,在活塞杆相对于缸体伸出或回缩时工作油都从活塞杆侧油室流出的单向流动式结构。

从活塞杆侧的油室流出的工作油根据卸载阀的电磁开闭操作而穿过任一流出路,该任一流出路是产生阻尼力并通过电磁比例溢流阀的流出路、或是经由卸载阀没有阻力地流出的流出路。

卸载阀由开闭阀构成,其被设置在连通油室和油箱的流路的中途,或者设置在连通一个油室和另一个油室的流路的中途。在卸载阀关闭的状态下,相对于线性减震器的伸缩,工作油经由电磁比例溢流阀流动,根据电磁比例溢流阀的释放压力产生阻尼力。在卸载阀打开状态下,相对于线性减震器的伸缩,通过使工作油没有阻力地流过卸载阀,使线性减震器的产生阻尼力实质上为零。根据励磁电流来控制电磁比例溢流阀的释放压力。

通过根据线性减震器的伸缩方向来开闭卸载阀,使线性减震器的产生阻尼力根据该伸缩方向发生变化。将线性减震器的这种工作状态称为半主动状态。

另一方面,在卸载阀保持关闭状态,从活塞杆侧油室流出的工作油总是通过电磁比例溢流阀的状态下,使电磁比例溢流阀对于线性减震器的伸出动作和回缩动作这二者产生相等的阻尼力。将线性减震器的此时动作状态称为被动状态。

此外,在电气系统故障等导致电流供给中断时,卸载阀成为关闭状态,电磁比例溢流阀与产生阻尼力相关地被固定在最强或最弱的位置上。线性减震器在最强或最弱的阻尼力特性的基础上以被动状态工作。

但是,在将产生阻尼力固定在最强或最弱位置上时,线性减震器不能发挥对震动的充分的隔离能力。在半主动控制线性减震器因电气系统故障等被迫以被动状态工作的情况下,减震器得不到很好的震动隔离性能。

发明内容

有鉴于此,本发明的目的在于提供一种能对电流供给中断情况下的阻尼力特性进行任意设定的半主动减震器的液压回路。

为了实现上述目的,本发明提供如下一种半主动减震器的液压回路,其包括:减震器,其构成为与伸缩动作相对应地使工作油流出;电磁比例溢流阀,其使从减震器流出的工作油产生由释放压力所形成的阻尼力,并使该工作油流下,该释放压力与第1励磁电流相对应;电磁式卸载阀,其通过被供给第2励磁电流,使从减震器流出的工作油绕过电磁比例溢流阀而无阻力地流下,其中,电磁比例溢流阀由通过切断第1励磁电流而将释放压力形成为最大的阀构成,并且与电磁比例溢流阀并联设置有溢流阀以及常开的开闭阀,该常开的开闭阀与溢流阀串联配置,并根据第1励磁电流动作。

本发明的细节及其它特征、优点在说明书的下述记载中进行说明并在附图中表示。

附图说明

图1是本发明的半主动线性减震器的液压回路图。

图2是本发明的将电磁比例溢流阀、电磁阀、溢流阀一体化而成的集成阀的纵剖视图。

图3是用来说明线圈励磁时、线圈非励磁时的工作油流动的集成阀和溢流阀的纵剖视图。

图4是表示半主动线性减震器的阻尼力特性的图表。

图5是本发明第2实施例的半主动减震器的液压回路图。

图6是表示与电磁比例溢流阀和电磁阀的结构相关的、本发明第3实施例的液压回路图。

图7与图6相类似,但表示本发明的第4实施例。

具体实施方式

参照附图中图1,铁道车辆用线性减震器1包括:活塞3,其被滑动自如地收纳在缸体2内;活塞杆4,其与活塞3连接,沿轴向从缸体2突出。在缸体2和活塞杆4的端部分别固定有安装构件5、6。安装构件5被卡定在铁道车辆的车体上,安装构件6被连接在铁道车辆的台车上。

工作油被封入在缸体2内。缸体2内被活塞3划分为油室7和油室8。油室7位于活塞杆4的周围,油室8隔着活塞3位于与油室7相反的一侧。活塞3上设有单向阀9,该单向阀9允许工作油从油室8向油室7移动,而阻止工作油的反向移动。

活塞杆4根据车体和台车的相对位移而相对于缸体2伸缩,与之相对应,活塞3沿轴向在缸体2内滑动。在下面的说明中,将活塞3沿活塞杆4被从缸体2伸出的方向滑动时的动作称为线性减震器1的伸出动作;将活塞3沿活塞杆4进入缸体2的方向滑动时的动作称为线性减震器1的回缩动作。

在线性减震器1的伸出动作中,油室7缩小,油室8扩大。在线性减震器1的回缩动作中,油室7扩大,油室8缩小。

在线性减震器1上附设有用于进行半主动控制的液压回路10。液压回路10所具有的功能为根据线性减震器1的伸缩动作,使工作油从线性减震器1流出或者使工作油流入线性减震器1。此外,其还能在工作油流通过程中产生阻尼力。

液压回路10具有与油室7相连通的通路11和与油室8相连通的通路12。在通路12上经由单向阀13连接有工作油油箱14。在油室8的压力低于工作油油箱14的压力的情况下,单向阀13将工作油油箱14的工作油供给到油室8中。

通路11和通路12之间通过经由集成阀15的路径、经由节流件16的路径、以及经由卸载阀17、18的路径这3个并联配置的路径连接起来。

卸载阀17、18串联配置在通路11、12之间。卸载阀17、18由与线圈的励磁对应动作的电磁阀构成。连接卸载阀17、18的通路19还与油室8相连接。

卸载阀17在线圈非励磁时作为允许工作油从通路19流向通路11、但禁止工作油反向流动的单向阀而发挥作用。另一方面,卸载阀17在线圈励磁时允许工作油在通路11和通路19之间双向流动。

卸载阀18在线圈非励磁时作为允许工作油从通路12流向通路19但禁止工作油反向流动的单向阀而发挥作用。另一方面,卸载阀18在线圈励磁时允许工作油在通路19和通路12之间双向流动。

将卸载阀17、18的线圈的励磁电流称为第2励磁电流。

节流件16始终以规定的流通阻力允许工作油在通路11和通路12之间双向流动。

集成阀15由电磁比例溢流阀21、溢流阀23、开闭阀22构成。

溢流阀23和开闭阀22与电磁比例溢流阀21并联配置。

溢流阀23在通路11的压力超过规定的释放压力时打开。

电磁比例溢流阀21和开闭阀22由单一线圈驱动。为了将该单一线圈的励磁电流区别于第2励磁电流,将该励磁电流称为第1励磁电流。电磁比例溢流阀21经滑阀42与开闭阀22的动作联动,其具有随着滑阀42推力的增大而使释放压力下降的特性。

线圈式的开闭阀22在单一线圈的非励磁状态下打开,通过单一线圈的励磁而关闭。此外,开闭阀22通过在单一线圈的非励磁状态下使滑阀42后退,将电磁比例溢流阀21保持在最大释放压力。开闭阀22在单一线圈的励磁状态下,通过滑阀42向开阀方向推压电磁比例溢流阀21。开闭阀22作用于滑阀42的推力与单一线圈的励磁电流的增大一起增大。结果,电磁比例溢流阀21在随单一线圈励磁电流增大而下降的释放压力的作用下,使工作油从通路11流到工作油油箱14。

接下来,参照图2,说明集成阀15的具体构造。

集成阀15包括:阀壳体25,其收纳电磁比例溢流阀21和开闭阀22;阀壳体26,其收纳溢流阀23。

在阀壳体25上形成有与通路11连通的阀口27、与通路12连通的阀口28。

阀口27、28经由电磁比例溢流阀21连接起来。电磁比例溢流阀21具有被收纳在形成于阀壳体25上的滑阀孔31内的滑阀29。滑阀孔31朝向形成于阀壳体25内的空腔32开口。在滑阀29的顶端形成有圆锥形状的阀芯30,该阀芯30从滑阀孔31向空腔32突出。滑阀孔31的内侧与阀口27相连通,空腔32与阀口28相连通。

通过隔着空腔32与滑阀29相向配置的弹簧33,阀芯30被向其落位于滑阀孔31的开口部的方向施力。通过阀芯30落位于滑阀孔31的开口部上,将阀口27、28的连通断开。另一方面,通过阀芯30从滑阀孔31的开口部向图中左侧抬起,将阀口27、28连通。

开闭阀22的滑阀42安装在经由空腔43与滑阀孔31连续的滑阀孔41内。在阀壳体25上与滑阀孔41相面对地形成有阀口45。在滑阀42上形成有与滑阀孔41滑动接触的阀芯44。为了与电磁比例溢流阀21的阀芯30区别开,将阀芯44称为第2阀芯。阀口45和空腔43根据阀芯44的滑动位置,经由滑阀孔41连通或阀口45和空腔43的连通被阀芯44断开。阀壳体25上形成有将空腔32和空腔43连通的连通孔49。

在隔着滑阀42而与滑阀29相反的一侧设置有由线圈驱动器48驱动的推杆46。线圈驱动器48固定在阀壳体25上,推杆46与滑阀42同轴地向滑阀孔41内突出。滑阀42被内装于阀壳体25的弹簧47向推杆46一侧施力,并与推杆46保持抵接。线圈驱动器48的线圈相当于所述单一线圈。

内装有溢流阀23的阀壳体26被固定在阀壳体25的侧面上。在阀壳体26上分别形成有与阀口27连通的阀口51、和与阀口45连通的阀口52。溢流阀23包括:阀孔53,其形成在阀口51和阀口52之间;阀芯54;弹簧55,其对阀芯54向阀孔53侧施力。

阀芯54包括:顶端部54A,其进入到阀孔53中;凸缘部54B,其落位于阀孔53周围的阀壳体26的壁面上。在顶端部54A上形成有狭缝,在阀芯54抬起、凸缘部54B离开阀壳体26的壁面时,阀孔53经由狭缝与内装阀芯54的空腔56相连通。阀孔53与阀口51相连通,空腔56与阀口52相连通,因而,阀芯54抬起的结果,阀口51和阀口52相连通。

在阀芯54上经由阀孔53作用有来自阀口51的压力。另一方面,经由空腔56向阀芯54反向地作用有来自阀口52的压力。因此,在阀口52和阀口51之间的压力差超过弹簧55的作用力的情况下,阀芯54抬起。

电磁比例溢流阀21在非励磁状态下的释放压力依赖于弹簧33的弹簧载荷。溢流阀23的释放压力依赖于弹簧55的弹簧载荷。本实施例中,电磁比例溢流阀21在非励磁状态下的释放压力、即最大释放压力被设定为比溢流阀23的释放压力大的值。

接下来,说明集成阀15的功能。

在线圈驱动器48的线圈未被励磁的、线圈驱动器48的非工作状态下,推杆46向从滑阀孔41脱出的方向后退,与之对应,滑阀42也后退。图2表示的是滑阀42后退的状态。在该状态下,阀芯30落位于滑阀孔31的开口部,只要阀口27和阀口28的压力差不超过弹簧33的作用力,阀芯30就不从滑阀孔31的开口部抬起。

此外,第2阀芯44使阀口45与滑阀孔41相连通。在本实施例中,滑阀孔41经由空腔43、连通孔49、空腔32与阀口28相连通,因此,使得阀口45与阀口28相连通。因而,只在阀口27和阀口28的压力差超过弹簧47的作用力的情况下,也就是只在通路11和通路12的压力差超过溢流阀23的释放压力的情况下,工作油才经由溢流阀23和开闭阀22从通路11流入通路12。

在线圈驱动器48的线圈被励磁、即线圈驱动器48的工作状态下,推杆46进入阀壳体25内很深,克服弹簧47的作用力向图中左侧驱动滑阀42。结果,在第2阀芯44从滑阀孔41处堵住阀口45的同时,滑阀42的顶端与滑阀29抵接,进而克服弹簧33的作用力向图中左侧驱动滑阀29。这样,线圈驱动器48的推力被传递给电磁比例溢流阀21,电磁比例溢流阀21随着线圈驱动器48的推力的增大使释放压力下降。

该状态下的电磁比例溢流阀21允许工作油从通路11流向通路12。电磁比例溢流阀21的开阀压力即释放压力依赖于线圈驱动器48的推力。线圈驱动器48的推力依赖于第1励磁电流。因此,能通过控制第1励磁电流,无级调整电磁比例溢流阀21所产生的阻尼力。结果,能无级调整线性减震器1所产生的阻尼力。

参照图3总结一下如上述说明的集成阀15内的工作油的流动,以虚线箭头表示线圈驱动器48的非工作状态下的集成阀15内的工作油的流动。以实线箭头表示线圈驱动器48的工作状态下的集成阀15内的工作油的流动。对于以实线表示的工作油的流动,电磁比例溢流阀21产生阻尼力。对于以虚线表示的工作油的流动,溢流阀23产生阻尼力。

接下来,说明由液压回路10进行的线性减震器1的半主动控制。

在线性减震器1的通常动作中,通过控制通向卸载阀17、18的线圈的励磁电流即第2励磁电流,以及控制通向集成阀15的线圈驱动器48的线圈的励磁电流即第1励磁电流,能以卸载状态或加载状态实施线性减震器1的伸出动作,也能以卸载状态或加载状态实施线性减震器的回缩动作。

另外,在线性减震器1的工作过程中,始终向线圈驱动器48的线圈供给第1励磁电流。停止第1励磁电流的供给只限于在线性减震器1非工作时或者第1励磁电流的电源故障等异常情况时。在这种异常情况下,也断开向卸载阀17、18的线圈供给第2励磁电流。

在线性减震器1动作时,液压回路10以加载状态进行线性减震器1的伸出、回缩这两种动作而产生伸出时和收缩时的阻尼力,或液压回路10以加载状态进行伸出、回缩中的一个动作,并以卸载状态进行另一个动作,从而只对伸出和回缩中的任一个动作产生阻尼力,或以卸载状态进行伸出和回缩中的一个动作。

具体而言,在保持卸载阀18的线圈的非励磁的状态而对卸载阀17的线圈进行励磁后,相对于线性减震器1的伸出动作,缩小的油室7内的工作油没有阻力地从卸载阀17流入扩大的油室8中。此外,不足量的工作油从工作油油箱14流入油室8。

从该状态起,线性减震器1进行回缩动作后油室8缩小,工作油从油室8向缸体2外流出被卸载阀18和单向阀13断开。因此,油室8的工作油经单向阀9流入扩大的油室7中。结果,在油室7中剩余有活塞杆4的进入所占据的体积那样的量的工作油。过剩的工作油流出到通路11中,经由集成阀15和节流件16流出到通路12中。此时,在集成阀15中线圈驱动器48处于工作状态,集成阀15产生与供向线圈驱动器48的第1励磁电流相对应的阻尼力,并使工作油从通路11向工作油油箱14流出。此外,与集成阀15并联的节流件16也在规定的流通阻力的作用下产生阻尼力,并使工作油从通路11流通向工作油油箱14。总的产生阻尼力根据向线圈驱动器48供给的供给电流来控制。

这样,在保持卸载阀18的线圈的非励磁的状态而对卸载阀17的线圈进行励磁时,使线性减震器1的伸出动作毫无阻力地进行,在伴随阻尼力产生的状态下进行线性减震器1的回缩动作。将该状态称为线性减震器1的伸出卸载状态。

在保持卸载阀17的线圈的非励磁的状态而对卸载阀18的线圈进行励磁时,对于线性减震器1的伸出动作,卸载阀17作为阻止工作油从通路11流出的单向阀而起作用。因此,通路11的工作油与线性减震器1的伸出卸载状态下的回缩动作相同地经由集成阀15和节流件16而产生阻尼力并流出到工作油油箱14。该情况下的总的产生阻尼力根据向线圈驱动器48供给的供给电流来控制。

另一方面,对于线性减震器1的回缩动作,缩小的油室8的工作油的一部分经由单向阀9毫无阻力地流入油室7中。活塞杆4的进入所占据的体积那样的量的工作油过剩,这部分工作油从油室8通过通路19和励磁状态的卸载阀18毫无阻力地流出到工作油油箱14。

这样,在保持卸载阀17的线圈的非励磁的状态而对卸载阀18的线圈进行励磁时,在伴随着阻尼力产生的状态下进行线性减震器1的伸出动作,毫无阻力地进行线性减震器1的回缩动作。将该状态称为线性减震器1的回缩卸载状态。

在使卸载阀17、18都处于非励磁状态的情况下,对于线性减震器1的伸出动作,从油室7流出到通路11中的工作油被卸载阀17阻止流入到油室8中,因此,通路11的工作油与在线性减震器1的伸出卸载状态下的回缩动作相同地经由集成阀15和节流件16而产生阻尼力并流出到工作油油箱14。

另一方面,对于线性减震器1的回缩动作,缩小的油室8的工作油的一部分经由单向阀9流向油室7,活塞杆4的进入所占据的体积那样的工作油过剩,该部分工作油经由卸载阀17从油室8流出到通路11中,或从油室7流出到通路11中。该工作油与线性减震器1的伸出卸载状态下的回缩动作相同地经由集成阀15和节流件16而产生阻尼力并流出到工作油油箱14。该情况下的总的产生阻尼力根据线圈驱动器48的线圈的励磁电流来控制。

这样,在使卸载阀17、18一起处于非励磁状态的情况下,线性减震器1的伸出动作和回缩动作都产生阻尼力地进行。将本状态称为被动状态。

另一方面,在使卸载阀17、18都处于励磁的情况下,工作油能经由卸载阀17、18从通路11毫无阻力地流向工作油油箱14,并且能经由卸载阀18从油室8毫无阻力地流向工作油油箱14。因此,线性减震器1与外力相对应地任意伸缩,不发挥减震器功能。

此外,在例如因电源故障而供向卸载阀17、18的各线圈及线圈驱动器48的线圈的励磁电流中断的情况下,线性减震器1变为被动状态。在线圈驱动器48的线圈上被供给第1励磁电流的状态下,对应于被动状态下的线性减震器1的伸出动作和回缩动作产生的阻尼力与第1励磁电流相对应地变化。但是,由于在电源故障的情况下不供给第1励磁电流,因此,在集成阀15中,电磁比例溢流阀21的释放压力被维持在最大释放压力。结果,通路11内的工作油将通过溢流阀23和节流件16而流向工作油油箱14。此时的产生阻尼力依赖于节流件16的流动阻力和溢流阀23的开阀压力。

在该液压回路10中,工作油经由溢流阀23的流通只限于线圈驱动器48的线圈未被励磁的情况。在线性减震器1的动作过程中,除被动状态外,线圈驱动器48的线圈始终被第1励磁电流励磁。第1励磁电流的供给中断限于电源故障等异常时刻、即被动状态。

换言之,在该液压回路10中,溢流阀23的释放压力完全不会对通常动作时的线性减震器1的阻尼力特性造成影响。另一方面,在异常时刻,由溢流阀23的释放压力确定线性减震器1在伸出动作和回缩动作这两个动作时的产生阻尼力。

因此,在异常时的动作中,可以与被认为是最好的阻尼力特性一并设定溢流阀23的释放压力。

参照图4,采用液压回路10,在线性减震器1的通常动作中,通过对线圈驱动器48的线圈的励磁电流进行控制,即,通过对第1励磁电流进行控制,可以彼此独立地任意控制伸出动作和回缩动作,而将产生阻尼力控制在0%-100%的范围内。本实施例中所提及的产生阻尼力为0%,是指线圈驱动器48施加于电磁比例溢流阀21的推力为最大的情况;产生阻尼力为100%,相当于线圈驱动器48完全不推压电磁比例溢流阀21的情况。

另一方面,图示的卸载状态相当于如下情况:在线性减震器1的伸出动作中,卸载阀17使油室7的工作油流出,在线性减震器1的回缩动作中,卸载阀18使油室8的工作油流出。

图示的被动状态相当于向卸载阀17、18的各自线圈及线圈驱动器48的线圈供给的励磁电流完全中断的情况。换言之,是指第1励磁电流和第2励磁电流都中断的情况。该状态的阻尼力特性在线性减震器1的伸出动作和回缩动作中是相同的,对供给第1励磁电流和第2励磁电流并进行的通常动作时的产生阻尼力完全没有影响。因此,通过预先适当地设定溢流阀23的释放压力,能将停电等异常时的线性减震器1的产生阻尼力设定得最合适。

在本实施例中,与集成阀15并联设置有节流件16。这样设置的效果在于,在加载状态下在打开集成阀15之前,允许少量工作油从通路11流向通路12,从而使阻尼力的增长变得平滑。但是,也可以省略掉节流件16。

参照图5说明本发明的第2实施例。

本实施例涉及集成阀15的结构。液压回路10的其它部分的结构与第1实施例相同。

本实施例的集成阀15具有与溢流阀23并联的节流件61。

在第1实施例中,在卸载阀17、18的各自线圈的励磁电流和线圈驱动器48的线圈的励磁电流都中断的情况下,直至溢流阀23的阀芯54抬起,工作油都不在集成阀15内流通。通过具有与溢流阀23并联的节流件61,可在溢流阀23的阀芯54抬起之前的期间内,使少量的工作油也经由集成阀15从通路11流向通路12。

因此,本实施例具有如下效果:在卸载阀17、18的各线圈的励磁电流和线圈驱动器48的线圈的励磁电流全都中断的情况下,溢流阀23的阻尼力平滑地上升。

参照图6说明本发明的第3实施例。

在第1实施例中,用一个线圈驱动器48驱动电磁比例溢流阀21和开闭阀22。在本实施例中,使用分别独立的线圈来驱动电磁比例溢流阀21和开闭阀22。具体而言,替代第1实施例的电磁比例溢流阀21,设置电磁比例溢流阀21A,替代第1实施例的开闭阀22,设置开闭阀22A。另外,关于工作油从通路11向通路12的流动,在本实施例中,在开闭阀22A的下游设置溢流阀23,但也可与第1实施例相同地在溢流阀23的下游设置开闭阀22A。其它结构与第1实施例相同。

电磁比例溢流阀21A和开闭阀22A分别具有各自的线圈。

电磁比例溢流阀21A是根据线圈励磁电流使释放压力下降的阀,其被设定为在未供给励磁电流的情况下,其释放压力为最大释放压力。开闭阀22A是根据线圈的励磁电流的供给进行关闭的常开阀。

在本实施例中,与第1实施例不同,电磁比例溢流阀21A和开闭阀22A并不机械地联动。因此,在向电磁比例溢流阀21A的线圈供给励磁电流的期间,以向开闭阀22A的线圈也供给励磁电流的方式控制励磁电流。电磁比例溢流阀21A在与励磁电流相应的释放压力的作用下,允许工作油从通路11向通路12流动,在该状态下,开闭阀22A保持切断工作油流动的状态。另一方面,在因电源故障等励磁电流中断时,电磁比例溢流阀21A变为最大释放压力,而开闭阀22A打开,溢流阀23在通路11的规定的释放压力的作用下打开,允许工作油从通路11向通路12流动。

因此,在励磁电流中断的状态下,与第1实施例相同,线性减震器1以被动状态工作,相对于伸缩产生依赖于节流件16的流通阻力和溢流阀23的开阀压力的阻尼力。

参照图7说明本发明的第4实施例。

第1实施例构成为被线圈驱动器48驱动的开闭阀22经由滑阀42对电磁比例溢流阀21的滑阀29进行驱动,而在本实施例中,具有用于根据电磁比例溢流阀21B的动作位置使开闭阀22B工作的滑阀62。另外,也可以替代滑阀62,使用具有相同功能的任何形式的机械式联动装置。

电磁比例溢流阀21B是与第2实施例的电磁比例溢流阀21A相同的、使释放压力与励磁电流相应地下降的阀。开闭阀22B被弹簧向打开方向施力。在电磁比例溢流阀21B被供给励磁电流的情况下,开闭阀22B通过滑阀62克服弹簧的作用力而保持在关闭位置。在电磁比例溢流阀21B未被供给励磁电流时,电磁比例溢流阀21B变为最大释放压力,与此同时,经由滑阀62而使作用在开闭阀22B上的压力下降。结果,开闭阀22B在弹簧的施力的作用下被切换到打开位置。

在第1实施例中,通过滑阀42将线圈式开闭阀22的动作位置传递给电磁比例溢流阀21,从而使电磁比例溢流阀21的释放压力变化。在本实施例中,通过滑阀62,将电磁比例溢流阀21B的动作位置传递给开闭阀22B,进行开闭阀22B的开闭操作。

在使用机械式联动装置而使电磁比例溢流阀和开闭阀联动的情况下,对于这样的机械式的联动机构,可以进行各种各样的变化。

如上所述,通过几个特定的实施例说明了本发明,但本发明并不限于所述各实施例。对于本领域的技术人员来说,可在权利要求书的技术范围内,对这些实施例进行各种修正或变更。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号