首页> 中国专利> 具有带有实质上阻挡固化处理期间紫外线辐射的光学带隙的材料的电介质盖帽以及相关的方法

具有带有实质上阻挡固化处理期间紫外线辐射的光学带隙的材料的电介质盖帽以及相关的方法

摘要

本发明公开了一种电介质盖帽(100)以及相关的方法。在一个实施例中,电介质盖帽(100)包括电介质材料(108),该电介质材料具有实质上阻挡固化处理期间紫外线辐射的光学带隙(例如,大于约3.0电子伏特),并且包括具有电子施主、双键电子的氮。电介质盖帽(100)表现出高的模数并且在用于例如铜低k后段工艺(BEOL)纳电子器件的后ULK UV固化处理下是稳定的,这引起较少的膜和器件开裂以及改进的可靠性。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-01-10

    未缴年费专利权终止 IPC(主分类):H01L23/12 授权公告日:20120905 终止日期:20190124 申请日:20080124

    专利权的终止

  • 2017-12-12

    专利权的转移 IPC(主分类):H01L23/12 登记生效日:20171123 变更前: 变更后: 申请日:20080124

    专利申请权、专利权的转移

  • 2012-09-05

    授权

    授权

  • 2011-02-02

    实质审查的生效 IPC(主分类):H01L23/12 申请日:20080124

    实质审查的生效

  • 2010-12-15

    公开

    公开

说明书

技术领域

本发明通常涉及集成电路(IC)芯片制造,并且更具体地涉及用于超低介电常数(ULK)层间电介质的电介质盖帽(gap)。

背景技术

在传统的IC芯片中,已经将铝和铝合金用作在器件的后段工艺(back-end-of-line,BEOL)层中提供到器件的电连接和来自器件的电连接的互连冶金(metallurgy)。虽然过去基于铝的冶金已经是选择用作金属互连的材料,但是随着IC芯片的电路密度和速度增加以及器件按比例缩小到纳米尺寸,铝不再满足要求。因此,由于与铝相比铜具有更低的电阻率以及更低的对电迁移失效的敏感度,因此正在使用铜作为铝的替代物。

关于使用铜的一个挑战在于随着工艺步骤的持续进行铜容易扩散到周围的电介质材料中。为了防止铜扩散,可以使用防护阻挡层来隔离铜互连。这样的阻挡层包括例如沿着铜互连的侧壁和底部的、以几乎纯的或合金形式的钽、钛或钨的导电扩散阻挡衬垫。在铜互连的顶面上提供了覆盖(capping)阻挡层。这样的覆盖阻挡层包括各种电介质材料,例如硅氮化物(Si3N4)。

传统的利用铜金属化和上述盖帽层的BEOL互连包括可以含有逻辑电路元件(例如晶体管)的下层的衬底。层间电介质(ILD)层覆在该衬底上面。该ILD层可以由例如二氧化硅(SiO2)形成。然而,在先进的互连中,ILD层优选地是低k聚合物的热固材料。可以将助粘剂层布置在衬底和ILD层之间。可选地将硅氮化物(Si3N4)层布置在ILD层上。硅氮化物层通常被称为硬掩模层或抛光停止层。将至少一个导体嵌入ILD层中。在先进的互连中该导体通常是铜,但是可替代地可以是铝或其它导电材料。当该导体是铜时,优选地将扩散阻挡衬垫布置在ILD层和铜导体之间。扩散阻挡衬垫通常由钽、钛、钨或者这些金属的氮化物组成。

通常通过化学机械抛光(CMP)步骤来使得导体的顶面与硬掩模氮化物层的顶面共面。通常为硅氮化物的盖帽层被布置在该导体和该硬掩模氮化物层上。该盖帽层用作扩散阻挡以防止在后续工艺步骤期间铜从该导体扩散到周围的电介质材料中。与等离子体增强(PE)化学气相淀积(CVD)膜相比,高密度等离子体(HDP)CVD膜(例如硅氮化物)提供更好的电迁移保护,这是因为HDP CVD膜更容易阻止铜原子沿着盖帽层中的互连表面移动。

近来,对于铜互连使用超低介电常数(ULK)电介质材料(即,k<3.0)已经转向低k二相或者聚合物的热固性电介质材料。这些电介质材料需要使用利用紫外线(UV)或者电子束(E-束)辐射的后固化步骤。后固化UV辐射,例如,导致盖帽层中增大的应力并且导致盖帽层和ULK层中的开裂。盖帽层中的任何裂缝可能引起铜通过缝隙扩散到ILD层中,导致在盖帽层下形成铜粒(nodule)。这样的铜粒可能导致由相邻互连线之间的电流泄漏引起的短路。特别在随后的电介质淀积、金属化和化学机械抛光期间,UV和/或E-束辐射还可能导致其它损害,例如增加的应力、剥离(delamination)和在图形化的铜线上方起泡(blister formation)。

鉴于前述事项,需要一种对UV和/或E-束辐射具有更高稳定性的电介质材料。

发明内容

本发明公开了一种电介质盖帽以及相关的方法。在一个实施例中,该电介质盖帽包括电介质材料,该电介质材料具有实质上阻挡固化处理期间紫外线辐射的光学带隙(例如,大于约3.0电子伏特),并且包括具有电子施主、双键电子的氮。该电介质盖帽表现出高的模数(modulus)并且在用于例如铜低k后段工艺(BEOL)纳电子器件的后ULK UV固化处理下是稳定的,引起较少的膜和器件开裂以及改进的可靠性。

本发明的第一方面提供了一种电介质盖帽,其包含:电介质材料,该电介质材料具有实质上阻挡固化处理期间紫外线辐射的光学带隙,并且包括具有电子施主、双键电子的氮。

本发明的第二方面提供了一种形成电介质盖帽的方法,该方法包含如下步骤:提供层间电介质(ILD);在该ILD上方形成电介质材料层,该电介质材料具有实质上阻挡紫外线辐射的光学带隙并且包括具有电子施主、双键电子的氮;以及使用该紫外线辐射固化该电介质材料层。

本发明的第三方面提供了一种电介质盖帽,其包含:基于硅氮的电介质材料,该电介质材料具有:a)实质上阻挡固化处理期间紫外线辐射的大于约3.0电子伏特(eV)的光学带隙;b)具有电子施主、双键电子的氮;以及c)碳成分。

本发明的示例性方面被设计成解决在此描述的问题和/或其它未讨论的问题。

附图说明

从以下结合附图的对本发明各个方面的详细描述中将更容易理解本发明的这些及其它特征,附图描述了本发明的各个实施例,在附图中:

图1示出了根据本发明实施例的电介质盖帽。

图2示出了形成电介质盖帽的方法的实施例。

请注意本发明附图没有按比例绘制。该附图意图为仅仅描述本发明的典型方面,并且因此不应该被认为限制本发明的范围。在附图中,附图之间相似的编号表示相似的元件。

具体实施方式

参考图1,公开了电介质盖帽100以及相关的方法。电介质盖帽100用于超大规模集成(ULSI)纳及微电子集成电路(IC)芯片中的互连结构中,该芯片包括例如高速微处理器、专用集成电路、存储器件以及相关的具有多层阻挡层的电子结构。电介质盖帽通常是非常稳定的覆盖阻挡层,尤其用于保护在紫外线(UV)和/或E-束辐射固化处理下后段工艺(BEOL)结构中的互连金属化。

电介质盖帽100可以例如在层间电介质(ILD)104中的导体102(例如铜(Cu)或者铝(Al))上方形成。ILD 104可以包括任何现在已知的或者以后开发的超低介电常数(ULK)材料,例如多孔的氢化的硅碳氧化物(pSiCOH)、包括p-SiCOH的旋涂的低k电介质或者有机的和无机的聚合物。在一个实施例中,电介质盖帽100包括电介质材料108,该电介质材料具有实质上阻挡固化处理期间紫外线辐射的光学带隙,并且包括具有电子施主、双键电子的氮。在此使用的光学带隙指的是透过材料所要求的光的能级。在一个实施例中,电介质材料108具有大于约3.0电子伏特(eV)(即+/-0.5eV)的光学带隙。例如可以使用光学曝光技术来测量光学带隙。在一个实例中,使用J.A.Woollam VUV-VASE设备来测量光学带隙。光学常数能带隙(optical constant band gap)数据拟合是Urbach吸收带尾与Cauchy的组合,其导致在400-800nm范围内非常轻微的吸收。去极化水平较低(表示理想化的膜)以及常见的模型(common model)改进(例如厚度不均匀性以及表面粗糙度)没有改善模型适配度。也使用线性的Bruggman和Maxwell-Garnet模型选项与Cauchy一起来得到带隙结果。应当理解,上述光学带隙测量技术意欲为示例性的而不要被认为是限制性的。

要强调的是,根据本发明实施例的电介质材料可以包括能够实现以上规定的光学带隙以及具有电子施主、双键电子的氮并且起电介质材料作用的任何现在已知的或者以后开发的材料。在本发明实施例中,电介质材料108可以包括例如硅氮化物(SixNy)、硼氮化物(BNx)、硅硼氮化物(SiBNx)、硅硼碳氮化物(silicon boron nitridecarbon)(SiBxNyCz)和碳硼氮化物(CBxNy),其中对于每一个化合物的x和y值可以根据为实现光学带隙和具有电子施主、双键电子的氮所必需的比例而变化。如上所指出的,电介质盖帽100的一些实施例可以包括碳(C)成分,然而这并不总是必需的。在那些含有碳的实施例中,碳可以在材料的原子组成的约1%到约40%的范围内。在任何情况下,与具有高光学带隙(即,>约3.0eV)和铜扩散阻挡性质(其通常意味着存在适当的氮键合(bonding)以形成铜氮复合体从而减少扩散)的陶瓷性质材料108的任何离子键合被认为在本发明范围内。

在一个实施例中,电介质材料108包含强健的(strong)硅-氮(SiN)、氮-硅-碳(NSiC)和硅-碳-氮(SiCN)键合基体中的一个,该基体在高温下与氧(O2)接触时通过形成氧扩散阻挡110来防止高温下的氧化。在该情况下,氧扩散阻挡110可以是硅-氮-氧(SiNO)、氮-硅-氧-碳(NSiOC)或者氧-硅-氮-碳(OSiNC)。在这些情况下,氧(O2)构成氧扩散阻挡110的原子组成的约1%到约20%。高温可以大于使用电介质的集成电路(IC)芯片的最高工作温度,例如,大于约120℃(+/-5℃)。

在另一实施例中,电介质材料108包含四面体键结构,其在高温下与氧(O2)接触时通过形成氧扩散阻挡110来防止高温下的氧化。同样,氧扩散阻挡110可以包括:硅-氮-氧(SiNO)、氮-硅-氧-碳(NSiOC)或者氧-硅-氮-碳(OSiNC)。此外,高温可以大于使用电介质的集成电路(IC)芯片的最高工作温度,例如,大于约120℃(+/-5℃)。

在另一实施例中,电介质材料108在暴露于紫外线(UV)辐射120或者E-束辐射122时具有大于约200MPa的压应力。

电介质盖帽100可以使用任何现在已知的或者以后开发的技术来形成,以便实现以上规定的光学带隙以及具有电子施主、双键电子的氮。在本发明实施例中,可以提供形成电介质盖帽100的方法。以任何现在已知的或者以后开发的方式(例如,淀积)来提供ILD104。如上所述,ILD 104可以包括任何现在已知的或者以后开发的超低介电常数(ULK)材料,例如多孔的氢化的硅碳氧化物(pSiCOH)、包括p-SiCOH的旋涂的低k电介质或者有机的和无机的聚合物。例如可以使用传统的镶嵌(Damascene)工艺来将导体102形成在ILD中。

如下面将更加详细描述的,将电介质材料108层形成在ILD 104上方,该电介质材料具有实质上阻挡紫外线辐射的光学带隙并且包括具有电子施主、双键电子的氮。如上所述,该光学带隙可以例如大于约3.0电子伏特(eV)。用来形成电介质材料108的特定的工艺可以根据使用的材料而变化。在一个实施例中,电介质材料108包括硅氮化物(SixNy),其中x=1-3并且y=1-4。在该情况下,如图2所示,形成电介质材料108层可以包括在平行板等离子体增强化学气相淀积(PECVD)反应器130中提供前体。平行板反应器130具有约85cm2到约750cm2的衬底卡盘(chuck)134的导电区域132(即,下电极)以及在衬底110与上电极136之间的约1cm到约12cm的间隙G。当衬底卡盘134的导电区域132改变X倍时,施加到衬底卡盘134的RF功率也改变X倍。前体可以包括:a)选自如下中的基于硅的前体:i)硅烷、ii)乙硅烷和iii)包含硅(Si)、氮(N)和氢(H)的原子以及选自氦(He)和氩(Ar)中的惰性载体的含氮的硅前体;以及b)含氮的前体。可替代地,还可以使用气相或液相的氨基硅烷基材料。一个示例性的含氮的前体包括氨(NH3);然而,还存在其它形式,例如三氟化氮(NF3)、联氨(N2H4)或者氮气(N2)。将在约0.45MHz到约200MHz之间的频率下的第一射频(RF)功率施加到电极134、142中的一个。例如可以将第一RF功率密度设置在约0.1W/cm2到约5.0W/cm2之间,并且在约50W到约1000W之间。可选地,可以将比第一RF功率的频率低的第二RF功率施加到电极134、142中的一个,例如,将第二RF功率设置为在约0.04W/cm2到约3W/cm2之间,并且具有约20W到约600W之间的功率。

在一个实施例中,可以将衬底温度设置在约100℃到约425℃之间。可以将惰性载气(例如,氦(He)或者氩(Ar))流速设置为约10标准立方厘米/分钟(sccm)到约5000sccm之间。可以将反应器130的压力设置在约100mTorr到约10,000mTorr之间,其中1000-1700mTorr的压力是优选范围。

使用紫外线辐射120(图1)固化电介质材料108层结果形成电介质盖帽100。然而,在固化120期间,仅仅具有大于约3.0eV的能级的辐射将可能透过电介质盖帽100。

关于上述实施例请注意用于淀积步骤的条件可以根据电介质盖帽100的所期望的最终介电常数而变化。

将如上所述的材料和方法用于集成电路芯片的制造中。结果形成的集成电路芯片可以由制造者以未加工的晶片(raw wafer)的形式(也就是说,作为具有多个未封装芯片的单个晶片)作为裸露的管芯或者以封装的形式进行分发。在后一种情况中,将芯片安装在单个芯片封装体(例如塑料载体,其具有固定到母板或其它更高层载体的导线)中或者在多芯片封装体(例如具有任一个表面或两个表面互连或者埋置的互连的陶瓷载体)中。在任何情况下,然后将该芯片与其它芯片、分立电路元件和/或其它信号处理器件结合起来,作为(a)中间产品(例如母板)或者(b)最终产品的一部分。最终产品可以是包括集成电路芯片的任何产品,其范围从玩具及其它低端应用到具有显示器、键盘或其它输入设备以及中央处理器的先进的电脑产品。

为了示例和描述起见已经给出了本发明各个方面的以上的描述。其不意图是穷举的或者将本发明限制到所公开的精确形式,并且显而易见地,许多修改和变化是可能的。对本领域技术人员可能显而易见的这样的修改和变化意图被包括在如由随附的权利要求所限定的本发明范围内。

工业实用性本发明对半导体器件领域、并且更具体地对在这样的器件中使用的电介质盖帽是有用的。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号