首页> 中国专利> 基于熔融方式的碘同位素嬗变量测量方法

基于熔融方式的碘同位素嬗变量测量方法

摘要

本发明涉及基于熔融方式的碘同位素嬗变量测量方法,包括以下步骤:1]靶芯制作;2]靶件制作;3]靶件辐照;4]将辐照后的靶件或靶芯熔融以完全释放辐照后产生的Xe气体;5]嬗变量的测量。本发明解决了现有碘的嬗变量测量方法中对辐照时间的依赖和释放率的依赖等技术问题。本发明的方法不受辐照时间的限制,仅与定量分析仪器的探测下限有关、不用考虑气体释放率、测量仪器只需要标定一次即可适用于各种大小和形状的靶件。

著录项

  • 公开/公告号CN101846748A

    专利类型发明专利

  • 公开/公告日2010-09-29

    原文格式PDF

  • 申请/专利权人 西北核技术研究所;

    申请/专利号CN201010207360.0

  • 申请日2010-06-23

  • 分类号G01T1/167;G01N27/62;

  • 代理机构西安智邦专利商标代理有限公司;

  • 代理人王少文

  • 地址 710024 陕西省西安市69信箱9分箱

  • 入库时间 2023-12-18 00:48:18

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-08-11

    未缴年费专利权终止 IPC(主分类):G01T1/167 授权公告日:20120530 终止日期:20160623 申请日:20100623

    专利权的终止

  • 2012-05-30

    授权

    授权

  • 2010-11-17

    实质审查的生效 IPC(主分类):G01T1/167 申请日:20100623

    实质审查的生效

  • 2010-09-29

    公开

    公开

说明书

技术领域

本发明涉及元素人工嬗变量的测量方法,具体涉及碘-127和长寿命裂变核素碘-129嬗变量的测量方法。

背景技术

碘-129是核能工业大量产生的超长寿命放射性裂变核素之一,活泼的化学性质,极快的迁移速率使之极易进入生物圈造成危害。人工嬗变技术可以直接将碘-129转化为稳定或短寿命的核素,这些短寿命核素在短时间内衰变为稳定的无害核素,从而达到无害处理的目的。对于碘-129,目前的发展的人工嬗变途径分为中子嬗变和光子嬗变。中子嬗变技术是将碘-129置于中子环境中,使之与中子发生(n,γ)反应生成短寿命(半衰期12.5小时)的碘-130,碘-130在短时间内衰变为稳定的Xe-130;光子嬗变是使碘-129与光子发生(γ,n)光核反应生成短寿命的碘-128(半衰期为25分钟),碘-128在短时间内衰变为稳定的Xe-128。由于碘-129存在于核废料(固体或液体)中,要想从核废料中分离出较高纯度的碘-129,工艺比较复杂,目前国际国内的相关技术正在研发中,因此,从安全、成本和等效性等多方面考虑,在前期实验中许多国家均以天然的碘-127代替碘-129摸索相关的条件实验。碘-127与中子发生(n,γ)反应生成短寿命的碘-128(半衰期25分钟),碘-128衰变为Xe-128,相关的技术途径可以直接应用于碘-129的人工嬗变技术。关于碘-129的嬗变处理,无论在实验阶段,还是以后实现了工业化处理,嬗变量都是一个重要的待测参数。在实验期,普遍采用压制靶件[11][12]。由于压制靶件非常密实,辐照后产生的气体较难完全释放。针对压制实验靶件的嬗变量,已有的测量方法有以下两种:

1、放射性γ测量法。由于碘靶在长时间辐照后放射性会达到饱和,因此该方法的仅适用于(n,γ)或(γ,n)反应时间小于4倍反应产物半衰期的实验,无法满足长时间辐照和以后的工业化应用需求。另外,还要考虑靶材料对γ射线的吸收等效应,不同大小和形状的靶件需要分别进行标定,测量准确度易受辐照射线源的稳定性的影响。

2、靶件开孔释放气体测量法。该方法首先是密封辐照的靶件,辐照完成后对靶件进行开孔,从而释放嬗变后的气体Xe,通过测量Xe的量和释放率计算靶件的嬗变量。该方法虽然不依赖于辐照时间,但有一个主要缺点是释放率的测量条件必须完全一致,否则释放率的测量不确定度就会较大,进而影响嬗变量的测量。

综上所述,需要发展一种既不依赖于辐照时间,又不依赖于气体释放率的独立的测量技术来准确测量碘的嬗变量。

发明内容

本发明针对压制型实验靶件提出了一种熔融方法,解决了现有碘的嬗变量测量方法中对辐照时间的依赖和释放率的依赖等技术问题。

本发明的技术解决方案包括以下步骤:

1]靶芯制作:

选取纯碘化物或者较低熔点的金属材料与碘化物的混和物进行靶芯压制;所述碘化物中的碘为碘-127、碘-129或碘同位素的任意比例混和物;所述较低熔点的金属材料指熔点低于700℃的金属材料;

2]靶件制作:

将靶芯密封在金属靶壳内形成待辐照的靶件;

3]靶件辐照:

将制造好的靶件放入中子或伽马环境中按照预先计算的时间进行辐照;

4]将辐照后的靶件或靶芯熔融以完全释放辐照后产生的Xe气体:

如果靶壳使用的金属材料的熔点低于或等于靶芯材料的最高熔点,则将辐照后的靶件放置于金属熔融容器的底部,密封金属熔融容器,对金属熔融容器抽真空至10Pa以下,然后对靶件所处金属熔融容器的下半部分进行加热,温度高出靶芯材料最高熔点50℃至100℃,直至整个靶件熔融;

如果靶壳使用的金属材料的熔点比靶芯使用材料的最高熔点高,先将辐照后的靶件放置于金属熔融容器的底部,密封金属熔融容器,对金属熔融容器抽真空至10Pa以下之后,在靶件靶壳上开气体释放通道孔,然后对靶件所处金属熔融容器的下半部分进行加热,温度高出靶芯材料最高熔点50℃至100℃,直至整个靶芯熔融;

所述的金属熔融容器选用材料的熔点至少比靶芯所使用材料的最高熔点高300℃;

5]嬗变量的测量:

充满释放的Xe气体的密封金属熔融容器被冷却至室温,然后将该金属熔融容器接入气体定量分析仪器测量完全释放的Xe气体,根据测定的Xe气体量计算嬗变量。

上述加热炉是具有恒温控制的加热装置。

上述金属熔融容器的材料是铁、不锈钢或铜。

上述靶壳材料为铝或不锈钢。

上述较低熔点的金属材料为铝。

上述气体定量分析仪器是气体质谱计或气相色谱仪。

本发明的优点是:

1、本发明仅涉及到测量碘-127或碘-129经人工嬗变后的气体Xe,不受辐照时间的限制,仅与定量分析仪器的探测下限有关。

2、本发明一次性将靶芯熔融,使辐照后产生的Xe气体完全释放,不用考虑气体释放率。

3、本发明所涉及到的测量对象为稳定的Xe气体,测量仪器只需要标定一次即可适用于各种大小和形状的靶件。

具体实施方式

1]靶芯制作:

选取纯碘化物或者较低熔点的金属材料与碘化物的混和物进行靶芯的压制制作,可以将靶芯制作成各种形状。

所述的碘为碘-127、碘-129或碘同位素的任意比例混和物;所述的较低熔点是以碘化物的熔点为参考,以便金属材料与碘化物同时熔融,常用碘化物的熔点在600℃至700℃之间,因此此处较低熔点是指低于700℃。

2]靶件制作。根据权利要求1所述制作的靶芯被密封在金属靶壳内形成待辐照的靶件,可以保证辐照后产生的Xe气体不会逃逸出靶件。靶壳的金属材料和尺寸可根据靶芯和辐照要求选取。

3]将辐照后的靶件或靶芯熔融以完全释放辐照后产生的Xe气体。将步骤2中制得的靶件辐照后密封于金属熔融容器内,靶件位于金属熔融容器的底部。对金属熔融容器抽真空至10Pa以下之后关闭金属熔融容器,停止抽真空。如果步骤2中靶壳使用的金属材料的熔点低于或等于比权利要求1中靶芯材料的最高熔点,对靶件所处金属熔融容器的下半部分进行加热,温度高出步骤1所述靶芯材料最高熔点50℃至100℃,持续时间1小时,将整个靶件熔融(靶芯和靶壳),使靶芯辐照后产生的Xe气体完全释放到密封金属熔融容器内;如果权利要求2中靶壳使用的金属材料的熔点比权利要求1中靶芯使用材料的最高熔点高300℃以上时,首先对权利要求2中的靶壳进行开孔以打开气体释放通道,然后将靶件所处金属熔融容器的下半部分放入加热炉进行加热,温度高出权利要求1所述靶芯材料最高熔点50℃至100℃,持续时间1小时,将靶芯熔融,使靶芯辐照后产生的Xe气体完全释放到密封金属熔融容器内。

所述的金属熔融容器选用材料的熔点至少比靶芯所使用材料的最高熔点高300℃,可以是铁、钢和铜,也可以是其它高熔点的金属材料。

所述加热炉是具有恒温控制的加热装置,恒温控制精度好于±5℃,最高可加热温度不小于900℃。

4]嬗变量的测量。根据权利要求3所述最终得到充满释放的Xe气体的密封金属熔融容器,将该密封金属熔融容器冷却至室温,然后将该金属熔融容器接入气体定量分析仪器测量释放的Xe气体,根据测定的Xe气体量计算嬗变量。

实施例1

采用1g的纯碘化亚铜粉末(熔点651℃)在400MPa的压强下压制成直径为10mm的靶芯,此处的碘可以为碘-127、碘-129或碘-127和碘-129的同位素混和。

靶壳材料使用铝(熔点661℃),铝壳包裹靶芯后进行密封,之后放入中子环境中辐照2小时。

取出辐照后的靶件放入SS316不锈钢材料制作的可密封柱形容器底部,密封后连接到真空泵系统,抽真空至10Pa以下,关闭阀门密封不锈钢柱形容器。将靶件所处的柱形容器的下半部分放入恒温加热炉,设置加热炉的温度为720℃,待温度达到720℃后,持续加热1小时,靶件(靶壳和靶芯)被熔融后完全释放辐照后产生的气体Xe。停止加热后取出不锈钢柱形容器,使之自然冷却到室温,被熔融的靶件和靶芯冷却后凝固。

然后将不锈钢柱形容器接入气体质谱计的进样系统进行Xe气体的定量分析,根据定量分析的结果计算碘的嬗变量。

实施例2

采用1g纯碘化亚铜粉末(熔点651℃)和1g铝粉(熔点661℃)均匀混合后在400MPa的压强下压制成直径为10mm的靶芯,此处的碘可以为碘-127、碘-129或碘-127和碘-129的同位素混和。

靶壳材料使用铝(熔点661℃),铝壳包裹靶芯后进行密封,之后放入中子环境中辐照2小时。

取出辐照后的靶件放入SS316不锈钢材料制作的可密封柱形容器底部,密封后连接到泵系统,抽真空至10Pa以下,关闭阀门密封不锈钢柱形容器。将靶件所处的柱形容器的下半部分放入恒温加热炉,设置加热炉的温度为720℃,待温度达到720℃后,持续加热1小时,靶件(靶壳和靶芯)被熔融后完全释放辐照后产生的气体Xe。停止加热后取出不锈钢柱形容器,使之自然冷却到室温,被熔融的靶件和靶芯冷却后凝固。

然后将不锈钢柱形容器接入气体质谱计的进样系统进行Xe气体的定量分析,根据定量分析的结果计算碘的嬗变量。

实施例3

采用2g纯碘化钠粉末(熔点605℃)和1g铝粉(熔点661℃)均匀混合后在400MPa的压强下压制成直径为10mm的靶芯,此处的碘可以为碘-127、碘-129或碘-127和碘-129的同位素混和。

靶壳材料使用SS316不锈钢,靶壳包裹靶芯后进行密封,之后放入中子环境中辐照2小时。

取出辐照后的靶件放入SS316不锈钢材料制作的可密封柱形容器底部,密封后连接到泵系统,抽真空至10Pa以下,关闭阀门密封不锈钢柱形容器,使用预先设计的微型开孔装置对SS316不锈钢靶壳进行开孔,为气体的释放打开通道。然后将靶件所处的柱形容器的下半部分放入恒温加热炉,设置加热炉的温度为720℃,待温度达到720℃后,持续加热1小时,此时只有靶芯被熔融,完全释放辐照后产生的气体Xe。停止加热后取出不锈钢柱形容器,使之自然冷却到室温,被熔融的靶芯冷却后凝固。

然后将不锈钢柱形容器接入气体质谱计的进样系统进行Xe气体的定量分析,根据定量分析的结果计算碘的嬗变量。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号