首页> 中国专利> 针对独立事务确定和显示WAN优化属性的方法和装置

针对独立事务确定和显示WAN优化属性的方法和装置

摘要

一种用于将WAN优化属性与网络上的主机之间事务的性能度量相关联的装置包括网络管理设备、处理器和显示设备。网络管理设备监视在通过网络进行通信的主机之间的数据业务,并收集与该数据业务有关的WAN优化信息。数据业务包括主机之间的独立流,而独立流包括涉及到分组交换的独立事务。处理器计算针对主机之间独立事务的至少一个性能度量,并且在有WAN优化的情况下确定应用于独立事务的WAN优化是什么类型。显示设备在独立事务的基础上结合向独立事务应用的WAN优化的类型或者没有向独立事务应用WAN优化这一指示来显示性能度量。

著录项

  • 公开/公告号CN101815000A

    专利类型发明专利

  • 公开/公告日2010-08-25

    原文格式PDF

  • 申请/专利权人 福禄克公司;

    申请/专利号CN200910142513.5

  • 申请日2009-06-22

  • 分类号H04L12/24(20060101);H04L12/26(20060101);H04L12/56(20060101);H04L12/28(20060101);H04L29/06(20060101);

  • 代理机构11256 北京市金杜律师事务所;

  • 代理人王茂华

  • 地址 美国华盛顿州

  • 入库时间 2023-12-18 00:35:33

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-07-10

    未缴年费专利权终止 IPC(主分类):H04L12/24 授权公告日:20120530 终止日期:20170622 申请日:20090622

    专利权的终止

  • 2017-01-18

    专利权的转移 IPC(主分类):H04L12/24 登记生效日:20161229 变更前: 变更后: 申请日:20090622

    专利申请权、专利权的转移

  • 2012-05-30

    授权

    授权

  • 2010-10-13

    实质审查的生效 IPC(主分类):H04L12/24 申请日:20090622

    实质审查的生效

  • 2010-08-25

    公开

    公开

说明书

背景技术

广域网(WAN)优化越来越多地用来提高在地点之间传送数据的广域网的性能和效率。诸如Cisco Systems、Riverbed Technology、Juniper Networks、Citrix Systems等销售商提供各种WAN优化(也称为WAN加速)类型。通常,WAN优化产品包括一套不同类型的WAN优化,WAN优化通常可以分类为:业务或者流管理;高速缓存;压缩;协议优化;以及纠错。例如,Cisco的广域应用服务(WAAS)产品目前包括TCP流优化(TFO),该TFO优化诸如窗口尺寸、最大分段尺寸、分组序列编号等TCP参数以保证通过WAN的高效分组流。WAAS优化套件也包括压缩,诸如LZ、PLZ或者LZR压缩,其在传输之前压缩数据而在远端对数据解压缩。由WAAS产品执行的第三类型的优化是数据冗余消除(DRE),该DRE涉及到在两个端点处对数据高速缓存并且包括避免重传已经在远端接收的数据块这一能力。除了这些TCP级优化(TFO、LZ和DRE)之外,WAAS产品还包括应用特定优化,该优化包括用于诸如HTTP、某些类型的文件传递、视频流传输应用等多个特定协议或者应用的优化器。

服务提供商和企业过去已经通过将网络管理设备放置于网络中的关键点处来管理它们的网络。这些网络管理设备监视网络性能并且将信息传达到后端网络操作中心,以便进行故障查找和纠正举措。随着WAN优化变得越来越普遍,将希望增强以下能力,即从高级下至独立事务级监视各种类型的优化对网络性能的影响。

发明内容

这里描述了用于将WAN优化属性与网络上的主机之间的独立事务的性能度量相关联的方法和装置。一种网络管理设备监视通过网络进行通信的主机之间的数据业务并且收集与数据业务有关的WAN优化信息。数据业务包括主机之间的独立流,而独立流包括涉及到分组交换的独立事务。处理器计算主机之间的独立事务的至少一个性能度量,并且在有WAN优化的情况下确定应用于独立事务的WAN优化是什么类型。显示设备在独立事务的基础上结合向独立事务应用的WAN优化的类型或者没有向独立事务应用WAN优化这一指示来显示性能度量。可以在更高级、比如流级、应用级、主机(例如服务器或者设备)级、地点级和针对整个企业或者网络结合所用WAN优化来计算并显示性能度量。通过经由用户接口选择适当过滤选项,显示的性能结果可以仅限于感兴趣的那些事务、流、应用、主机、地点和/或性能级。

这里描述的系统使得WAN优化属性能够与得到的性能测量一起显示,该WAN优化属性当流和/或事务穿越网络时对该流和/或事务有影响。用以计算和显示应用于具体流和事务的WAN优化策略和优化类型的能力提供如下特有能力,该特有能力用以对与WAN优化环境有关的应用性能问题进行监视和故障检查。从网络中的高级下至独立事务层提供WAN优化属性对一个或者多个度量的影响的可视化和量化。

在考虑本发明具体实施例的如下限定、描述和说明附图时,本发明的上述和更多特征及优点将变得清楚,其中各图中的相似标号用来表示相似部件。尽管这些描述探究本发明的具体细节,但是应当理解变化可以存在并且确实存在,并且基于这里的描述将为本领域技术人员所清楚。

附图说明

图1是这里描述的网络监视和分析技术可以运用于其中的网络环境的框图。

图2是在网络上的客户端与服务器之间的TCP事务中涉及到的分组交换定时的表示图。

图3是在网络上的客户端与服务器之间的非TCP事务中涉及到的分组交换定时的表示图。

图4是由网络管理系统执行的用于将WAN优化信息与对应性能度量相关联并且显示该WAN优化信息的操作的功能流程图。

图5是根据本发明一个实施例的显示跨企业的三个不同应用的高级视图的示例性屏幕截图。

图6是根据本发明一个实施例的显示事务视图的示例性屏幕截图,该屏幕截图包括事务日志,该事务日志包含性能信息和向独立事务应用的WAN优化的类型。

图7是图示了用于事务查看器显示窗的显示配置选项的示例性屏幕截图。

具体实施方式

以下对图1-7和示例实施例的具体说明揭示本发明的方法和装置。图1在非常一般的层次上图示了包括用于监视网络性能的网络管理系统的数据传输系统(通信网络)。如图1中所示,示例数据传输系统10包括多个地点(包括地点A和B)和用以有助于地点之间通信的交换网16(比如广域网(WAN))。各地点A和B可以例如包括一个或者多个局域网(LAN)。路由器(图1中未示出)可以将本地地点LAN最终地互连到由图1中的交换网群团16代表的WAN。在端点地点处的设备之间跨WAN行进的分组穿越连接地点的一个或者多个网络路径。通常,分组的路径包括若干物理通信链路和中间设备(例如交换机和/或路由器),这些链路和设备沿着正确路由将分组从一个地点传输到另一地点并且在相反方向上跨网络传回响应分组。

地点A可以包括经由16与在地点B的服务器14通信的客户端12。术语“客户端”和“服务器”是由于它们在本领域中的普遍使用为了便利和描述而在这里使用的参考标记,并且用于避免在以下对处于两个位置的设备之间交换的描述中关于指代哪个端点的混淆。然而,将认识到本发明不限于任何特定设备或者装置,并且本发明可应用于在通过网络传达或者交换信息的任何计算设备或者网络装置的上下文中。一般而言,在通过网络的交换中涉及到的两个设备也可以视为“主机”设备或者简单地视为“用户”设备。

WAN优化单元(WAN优化器)18设置于客户端12与WAN 16之间的地点A处并且能够执行一种或者多种先前描述的WAN优化技术。这样的WAN优化器的一个非限制例子是Cisco System的提供前述WAAS优化选项的广域应用引擎(WAE)设备。一般而言,WAN优化器可以提高一套优化技术(如先前描述的优化技术),并且可以被配置成适应在该地点支持的网络设备的需要。类似的WAN优化器20可以设置于服务器14与WAN 16之间的地点B处。在每个端上的WAN优化器18和20截取跨网络的TCP连接(例如)并且优化该TCP连接。尽管图1中所示两个地点均包括WAN优化器,但是有可能的是通过网络16通信的其它地点或者设备可能缺乏WAN优化器,而客户端12和/或服务器14可能与在这样的其它地点的设备通信。

在图1中所示一般例子中,数据传输系统10可以包括多个通信线路类型和各种数据通信连接中的任何一种。地点A和B每个都可以按照通信线路所用各种协议来发送和接收数据分组。如这里所用,术语“数据网”、“交换网”、“网络”、“LAN”、“WAN”等指代实际上可以运送任何类型的信息的网络并且该网络不限于任何特定类型的硬件、技术、协议、应用或者数据(音频、视频、数字数据、电话等)。出于说明目的,在图1中仅示出了两个地点(A和B)。然而将理解数据通信系统可以包括多个地点,其中每个地点一般通过交换网内的对应传输电路连接到多个其它地点。

网络管理系统实质上包括位置遍布网络的多个网络管理设备(NMD)22、24和至少一个后端处理系统26,其中多个网络管理设备(NMD)22、24监视网络活动并且收集网络性能数据,至少一个后端处理系统26协调和控制系统、收集和处理从NMD接收的测量数据、监视和分析网络性能、显示网络性能并且在检测到性能问题时通知网络运营商。这样的网络管理系统可以例如提供:性能度量的准确和可靠测量,这些性能度量比如是网络延时、抖动、数据递送率和吞吐量;灵敏度可配置的用户性能要求管理;上下文敏感的数据存储库,该存储库实现相对于电路、时间、带宽和性能要求为参考的网络性能评价和评估;和/或对潜在或发展中的网络性能问题的预测。

如图1中所示,网络管理设备(NMD)22和26分别设置于地点A和B或者分别在WAN 16与地点A与B之间的某点。一般而言,NMD可以放置于网络中的几乎任何点处或者企业LAN内的任何点(例如本地地点、本地地点与WAN之间的中间点以及WAN本身内)。NMD的放置至少部分地依赖于网络服务提供商或者其它方希望通过其来监视数据业务流性能的系统或者网络的一部分。例如,NMD可以连接到本地路由器或者交换机,从而使得NMD并非按照一个或者多个LAN与WAN之间经过路由器的数据流路径。例如,NMD也可以内联(in-1ine)于本地路由器与客户边缘路由器(CER)之间或者内联连接于CER与WAN之间。

NMD可以是任何类型的监视设备或者探测器,并且可以包括独立硬件/软件设备或者向诸如PC、路由器、CSU/DSU(信道服务单元/数据服务单元)、FRADS、语音交换机、电话等网络装置添加的软件和/或硬件。嵌入于NMD中的软件可以收集与各种性能度量中的任一性能度量有关的用于具体分析和报告生成的网络性能数据。通过非限制例子,NMD可以是这样的CSU/DSU,其既作为标准CSU/DSU又作为能够监视和插入网络管理业务的受管理设备来操作;驻留于DSU与路由器之间的内联设备,该设备监视网络业务并且插入网络管理业务;或者被动监视设备,其仅监视网络业务。NMD也可以是能够将测试分组或者消息插入到数据业务中的“主动”监视设备。

在图1中所示例子中,NMD分别位于客户端地点A和服务器地点B处;然而,也有可能仅在客户端-服务器交换中涉及到的两个地点中的一个地点具有NMD。在图1中所示布置中,在客户端地点A处的NMD 22没有与客户端12、WAN优化器18和WAN 16之间的业务流内联;然而,NMD 22可以布置为与客户端12和WAN优化器18内联。NMD 22可以被动地监视来自客户端12与WAN 16之间信号线路的业务并且从WAN优化器18接收WAN优化策略信息。作为备选方案,NMD 22可以主动地与WAN优化器18通信和/或在业务流中具有主动作用(roll)。对于在服务器地点B的NMD 24存在相同配置选项。

各NMD可以收集与关联于网络操作的各种性能度量中的任何性能度量有关的测量数据,这些性能度量包括但不限于延时、响应时间、网络往返时间、抖动、数据递送率、吞吐量以及指示递送效率和故障率的其它测量。将理解本发明不限于任何特定性能度量或者任何特定度量组合的测量或者分析。

图1中所示网络管理系统的后端处理系统26从NMD直接地或者间接地接收测量数据,并且收集和存储测量数据而且处理数据以产生监视网络及其部件的性能而需要的各种显示和报告。图1中所示架构是图示了主要功能单元的概念图,并且不必要示出后端处理系统内或者后端处理系统与NMD之间的物理关系或者具体物理设备。后端处理系统的配置和部件可以采用许多形式并且这里在上下文中仅用一般性的术语来描述。本领域技术人员将认识到,无论后端处理系统或者NMD的特定架构如何,这里所述用于在网络管理内通信的技术都是适用的。

后端处理系统26包括负责协调和控制网络管理系统的控制器模块28。例如,控制器28可以负责将指令发送到各种NMD并且定期地轮询NMD以收集测量的数据。后端处理系统的数据存储能力由存储模块30代表,该模块用于存储测量数据以及通过处理测量数据而生成的信息,比如聚合(aggregated)报告数据、分析结果和历史信息。处理系统26还包括在图1中由处理器模块32代表的管理和处理能力,该模块进行各种处理任务,比如对原始测量数据执行操作以产生报告以及执行分析操作。后端处理系统26还包括由显示/接口模块34代表的显示、接口和报告能力,该模块例如经由交互式图形用户接口以表格或者图形形式显示性能信息并且优选地包括用以生成各种性能报告的能力。显示设备34可以是多种已知设备中的任何设备,诸如LCD显示器,其中通过基于来自用户(鼠标、键区、触屏等)或者来自处理器的输入对独立像素发射的光的颜色进行控制来变换该设备的光学状态。例如,显示设备34可以是允许用户有选择地控制显示器的格式和内容的图形用户接口(GUI)。

后端处理系统26可以直接地从NMD接收测量数据或者可以间接地接收测量数据(例如NMD可以将测量数据供应给在本地地点的存储设备,该测量数据随后被供应给后端处理系统)。另外,后端处理系统可以位于单个地点或者可以具有贯穿整个网络分布于多个位置的部件。例如,存储模块30可以构成在多个本地地点的存储能力以及在一个或者多个后端处理地点的存储能力。类似地,在图1中由处理器32名义上代表的各种后端处理任务可以由实现具体任务并且可以分布于整个网络内的多个不同处理器执行。类似地,显示/接口能力可以允许经由在多个地点的接口或者经由授权客户或者服务提供商人员可访问的基于Web的接口来访问性能信息。

一般而言,通过WAN 16的通信涉及到数据(例如分组)在客户端12与服务器14之间的双向交换。客户端12可以通过开启通向服务器14的传送信道来启动通信。通常,客户端根据网络和传送协议来发送请求,而服务器通过将某一形式的信息或者数据发送回客户端来响应该请求。某些协议是基于连接的,这要求客户端和服务器在交换信息之前建立通信会话。这一般通过交换握手消息以在客户端与服务器之间建立“连接”来实现。一旦建立连接,就可以通过根据下层网络协议经由分组等交换消息来继续客户端与服务器之间的通信。一旦客户端和服务器同意会话结束或者出现超时,终止会话的下层连接。

联网协议用来完成在客户端与服务器之间的通信。已经设计和部署具有可变特征和能力的数个联网协议。在网络层,网际协议(IP)无处不在并且负责将分组从一端主机(客户端或者服务器)路由到另一端主机。在传送层,传输控制协议(TCP)和用户数据报协议(UDP)是如今普遍使用的两个协议例子。TCP在由IP提供的不可靠分组递送服务之上提供可靠的面向连接的服务。也可以使用各种其它联网协议。

流是分组在源地址(例如客户端)与目的地地址(例如服务器)之间的交换。通过检查分组的源和目的地地址以及源和目的地端口号(根据协议)来将主机之间的分组组织成流。在TCP的情况下,流或者会话是独立TCP套接字连接。用如下三向(three-way)握手方案启动TCP套接字,在该方案中客户端将SYN消息发送到服务器、服务器用SYN ACK消息来响应并且客户端用ACK消息来确认。TCP流继续,直至出现FIN消息交换或者主机之一例如由于超时而发送重置消息。因此,根据TCP套接字连接维持多久,TCP会话或者流可以是短暂的或者持续相当一段时间。

如这里所用,“事务”是独立客户端请求,继该请求之后是服务器对该请求的响应。在独立流中可以有从一个到数以百计甚至更多的任何数目的N个事务。图2图解地示出了将在客户端与服务器之间的TCP流内出现的独立TCP事务的定时和序列。在图2的图解中,时间沿竖直方向向下增加,而表示为通过网络在客户端与服务器之间行进线路的倾斜表明跨网络的时间流逝。注意图2中所示装置的相对定位和定时未按比例绘制。例如,出于说明目的,图2示出了在网络管理设备和在服务器的分组定时之间过大的时间差。实际上,这一时间差相对于分组穿越WAN所需要的时间而言很小或者可忽略不计,因为网络管理设备在这一例子中与服务器共同定位于相同地点。

TCP事务开始于客户端通过WAN将一个或者多个请求分组发送到服务器。在这一例子中,网络管理设备位于服务器地点并且监视在由服务器发送和接收的分组。服务器用确认来响应客户端请求、然后通过在WAN上将一个或者多个响应分组发送到客户端来发送响应。最后,客户端通过将结束单个事务的确认发送回服务器来确认它已经接收响应。可以用多种方式配置确认方案。一种常用方式是客户端通过将确认分组发送回服务器来对每隔一个响应分组进行确认。多个这样的事务可以在流中相继地出现。

图3图示了将在非TCP流中出现的单个非TCP事务(与图2类似,图3中的定时未按比例绘制)。图3中的非TCP事务与图2中的TCP事务之间的明显差异在于非TCP事务没有包括为了确认客户端的初始请求而由服务器发送的确认消息或者为了确认服务器的响应消息而由客户端发送的确认消息。在这一情况下,服务器通过发送所请求的数据来响应请求,而事务在客户端接收最后的响应分组时结束。客户端然后可以通过发送另一请求消息来启动另一事务。

如先前所言,可以在一个或者多个NMD处根据通过监视分组而收集的信息来测量广泛各种性能度量中的任何性能度量。在事务级,感兴趣的性能度量之一可以是终端用户响应时间(EURT)或者构成EURT的时间分段之一。图2图示了如何可以根据由位于服务器地点的网络管理设备进行的观测在TCP事务的上下文中确定EURT及其构成分段。可以将EURT确定为四个可测量时间段之和:客户端数据传递时间(客户端DTT);应用(服务器)响应时间;服务器数据传递时间(服务器DTT);以及网络往返时间。

客户端DTT可以作为从客户端接收整个请求而需要的时间段由在服务器处的NMD测量。在该请求由单个分组构成的情况下,客户端DTT实质上为零,因为分组本身的持续时间相对于适合于测量网络响应时间的毫秒时标而言很小。在图2中所示例子中,该请求由两个分组构成,而客户端DTT的持续时间是从接收第一请求分组到接收第二请求分组的时间段。应用(或者服务器)响应时间是在服务器接收请求消息的最后分组与发送响应消息的第一分组之间的延迟。服务器DTT是服务器发送针对客户端的请求的整个响应消息而需要的时间段。响应消息可以与一个或者两个分组一样短或者可以是需要数以百计、数以千计或者更多毫秒来发送的许多分组。WAN优化的影响可能对更长的响应消息最明显,其中存在更大经济化机会。

TCP事务中的EURT的最终组成是将构建到TCP事务方案中的确认机制纳入考虑之中的网络往返时间。概念上,网络往返时间在图2中表示为在最终响应分组的发送时间(由与服务器一起定位的NMD测量)与在NMD处对于对应确认分组的接收时间之间的往返延迟,其中对应确认分组是客户端为了确认接收到最终响应分组而发送的。在实践中,可以有可能在这一最终分组交换之前计算或者估计网络往返时间。例如,可以根据用来启动TCP流的初始SYN、SYN ACK和ACK消息的某一组合来确定网络往返时间。另一选项是根据在响应消息中较早发送的响应分组及其对应确认分组来确定网络往返时间。例如,如果客户端对从服务器接收的每隔一个响应分组进行确认,则响应消息类中的任何中间分组可以用来确定网络往返时间(即最终响应分组及其对应确认分组可以仅仅是若干可能的成对分组中的一对,该成对分组可以用于根据响应消息的长度确定网络往返时间)。

通过将客户端DTT、应用响应时间、服务器DTT和网络往返时间求和,可以计算终端用户响应时间(EURT)。在图2中所示例子中,基于位于与服务器相同的地点的网络管理设备所见分组的定时来测量EURT。然而,一般也可以将这一测量假设为在客户端地点经历的EURT的很接近的近似。另外,EURT可以由位于网络中的其它点(比如客户端的地点)的网络管理设备测量。

与图2中所示TCP事务不同,图3中所示非TCP事务没有涉及到客户端和服务器在事务内的确认。因而,EURT被计算为仅客户端DTT、应用响应时间和服务器DTT之和并且没有包络网络往返时间。EURT仅仅是网络管理系统可以监视和显示的若干性能度量中的一个性能度量。可以监视多种性能度量中的任何性能度量,这些性能度量包括但不限于延时、响应时间、抖动、数据递送效率或者数据递送率和吞吐量的各种测量。例如在TCP环境中,可以测量多个与TCP有关的性能度量,比如流重置、事务重置、零窗口状态(定时)、出现的分组或者消息重传次数、无序分组的出现次数以及关于字节和分组的数据率。

这里描述的系统和设备提供如下能力,该能力用以正确地测量和显示在流和/或事务穿越网络时对它有影响的WAN优化属性。用以对用于具体流和事务的WAN优化策略和优化类型进行计算和显示的能力提供如下特有能力,该特有能力用以对在WAN优化的WAN/LAN环境中与数据有关的应用性能问题进行监视和故障检查。具体而言,在显示设备上呈现的事务查看器提供如下能力,该能力用以将影响业务的WAN优化策略可视化,由此在这一环境中为用户提供增强的故障检查能力和操作验证。

本发明提供如下能力,该能力用以从网络中的高级下直至独立事务层地可视化和量化WAN优化属性对一个或者多个性能度量的影响。例如,可以在逐个地点的基础上针对整个企业、或者在逐个应用的基础上针对所选地点、或者针对所选应用、针对特定客户端或者服务器、针对独立流以及针对流内的独立事务,来将WAN优化与一个或者多个性能度量一起查看。

本发明的技术提供对WAN优化在具体上下文中的工作方式的有用洞察。例如,有可能具有如下地点,从该地点优化所有业务(例如因为WAN优化单元已经部署于此)。然而,其它地点可能缺乏WAN优化单元、因而没有优化。因而从地点到地点的观点来看,希望能够描绘与其它非优化地点相比已经优化的地点的性能。

WAN优化感兴趣的另一点在于优化对它被应用到的特定应用的有效性。在这一上下文中查看在应用优化之前和之后(例如在可视化之前和之后)的性能可能是有帮助的。为了实现这一效果,可以在应用WAN优化之前测量或者跟踪感兴趣的性能度量,然后在将WLAN优化应用于感兴趣的会话之后再次测量这些性能度量,从而提供对WAN优化的益处以及该应用在环境中如何执行的比较分析。

如先前说明的那样,WAN优化通常涉及到组合使用的多个优化类型。例如,Cisco System的WAAS优化系统包括TCP流优化(TFO)、压缩(LZ)、数据冗余消除(DRE)和应用特定优化器(例如HTTP优化)。本发明使用户能够基于优化类型来描绘性能,从而在基于优化策略的WAN优化环境中,可以根据运用的特定优化或者优化组合来显示性能,并且可以将与不同优化类型关联的性能进行比较。例如,仅用TFO来优化的一个或者多个事务、流、客户端、服务器、地点或者应用的性能可以与利用所有TFO、LZ、DRE和HTTP来优化的一个或者多个事务、流、客户端、服务器、地点或者应用的性能相比较。因此,可以根据所运用的优化类型来区别或者描绘WAN优化效果。

另外,下至事务细节级存在根据所应用的优化类型来将性能度量的测量与WAN优化关联这一能力。也就是说,在独立事务层,本发明提供如下能力,该能力用以描绘独立事务是否受WAN优化所影响并且指示所运用的特定优化类型。因此,在客户端与服务器之间独立事务的上下文中,所应用的优化类型与根据该优化类型得到的性能关联地显示。

图4是用来实现本发明一个实施例的方法的高级流程图,该方法涉及到基于逐个事务显示性能数据和WAN优化信息。在图4中所示操作400中,一个或者多个NMD实质上监视主机设备(例如客户端和服务器)之间各点的数据业务并且收集关于数据业务的信息(例如某些分组的定时等)。一个或者多个网络管理设备也收集如由图1中的NMD 22与WAN优化器18之间以及NMD 24与WAN优化器20之间的链路所提示的与数据业务有关的WAN优化信息(操作410)。在图1中由处理器32一般性地代表的位于网络管理设备中和/或后端系统中的一个或者多个处理器针对主机设备之间的独立事务(即在事务级并且在逐个事务的基础上)计算至少一个性能度量(例如EURT及其组成)(操作420),并且确定应用于独立事务的是什么WAN优化类型(在有WAN优化的情况下)(操作430)。在操作440中控制显示设备,以在独立事务的基础上结合向独立事务应用的WAN优化类型或者没有独立事务应用WAN优化这一指示来显示一个或者多个性能度量。

处理器具有用以将性能数据聚集到更高级的进一步的能力,并且一个或者多个性能度量可以在这些更高级结合关联的WAN优化来显示。例如,处理器可以根据与各流中的独立事务关联的性能度量信息在独立流级(例如在逐个流的基础上)计算一个或者多个性能度量。通过经由用户接口选择适当选项,显示设备可以被配置成在独立流的基础上结合向独立流应用的WAN优化的类型或者没有向独立流应用WAN优化这一指示来显示独立流。类似地,可以基于构成应用的事务或者流的一个或者多个性能度量在应用级(例如在逐个应用的基础上)计算一个或者多个性能度量,并且通过选择适当显示选项,可以结合应用于独立应用的WAN优化的类型(在有WAN优化的情况下)在应用基础上显示一个或者多个性能度量。在主机(例如服务器)或者地点级应用相同原理,其中与应用于主机或者地点的关联WAN优化类型相结合地在独立主机或者地点的基础上显示一个或者多个性能度量。以这一方式,就计算性能度量以及将性能度量与应用于企业或者网络的部分的WAN优化相关联并且显示这些性能度量而言,WAN优化与所得性能之间的关联可以从事务级相继地“上升”到企业级。

将认识到可以通过执行在位于网络管理系统内(例如NMD和/或一个或者多个分离的计算设备或者处理器内)的一个或者多个处理器上的计算机可读介质的指令(即软件)来实现上述操作和方法。

图5-图7是示例性屏幕截图,这些屏幕截图图示了如何可以在企业内的各级相对于性能信息或者结合性能信息来显示优化信息(例如是否应用WAN优化以及一个或者多个WAN优化类型)。这些例子涉及在Cisco System的WAAS产品中可用的某些WAN优化技术(即TCP流优化(TFO)、压缩(LZ)、数据冗余消除(DRE)和应用特定优化(HTTP))。然而,将认识到本发明不限于任何特定WAN优化产品或者任何特定WN优化技术或者其组合。

图5中所示屏幕截图是在简易测试环境中观察三个不同应用的跨企业的高级视图。如在可视性能管理器的最上一行上的较深色框所示,已经选择“应用性能”以供查看。在应用性能内,如从最上一行起的第二行中的较深色框所示,已经选择“分析”。可视性能管理器提供用以允许用户选择某些应用、地点、服务器和时间范围的域(例如可填写和/或具有下拉列表)。

查看窗口包括三个分离的条形图,这些条形图分别描绘按照终端用户响应时间(EURT)的最慢应用、按照EURT的最慢地点和按照EURT的最慢服务器。这里感兴趣的是应用条形图,该条形图允许用户看到不同WAN优化级的比较影响或者益处。对标记为“通行”的最上方应用没有执行WAN优化。仅TFO优化应用于标记为“TFO策略”的下一应用。所有TFO、DRE、LZ和HTTP应用优化都应用于最下方的标记为“HTTP策略”的应用。

在每个应用标记的右边将EURT表示为水平条,其中在条内用不同颜色、标志或者其它戳记来描绘EURT的应用响应时间、数据传递时间和网络往返时间这些组成。在这一实例中,用于非优化应用的EURT约为四秒。仅用TFO来优化的应用具有明显更快的EURT(少于1.5秒),其中事实上所有改进归因于更短的数据传递时间。用TFO、DRE、LZ和HTTP来优化的应用具有比仅用TFO来优化的应用明显更快的EURT(约为0.5秒),具有非常短的数据传送时间和稍短的网络往返时间。除了提供不同优化类型对数据传递时间性能具有最大影响这一示意图形视图之外,条形图也示出了应用响应时间在很大程度上未受WAN优化所影响,这并非出于意料之外。在图5中所示例子中,所示性能度量是EURT及其构成。将理解也可以用图形方式示出对其它性能度量(比如先前提到的那些性能度量)的WAN优化效果。

图6是事务日志视图的屏幕截图,该视图实质上是事务的顺序列表。在日志中包括的事务可以受基于用户可选择的过滤器的多种标准中的任何标准限制。例如,在未过滤情况下,可以列举企业中的每个事务。然而,列表可以限于某些应用、某些服务器或者客户端、某些时间窗、某些端口、某些地点、某些性能水平及其组合。例如,日志中的事务列表可以仅限于某些地点、应用或者服务器的事务,它们的性能低于针对某个性能度量的某特级别之下。另一选项可以是将列举的事务仅限于未优化业务、仅限于优化业务或者仅限于用某些WAN优化类型来优化的业务的事务。一般而言,用户具有从更高级“下穿”到事务级这一选项。例如,如果用户看到企业的性能在正常以下,则用户可以使用可视性能管理器来观察某些地点、服务器和/或应用的性能,然后可以进一步下至独立流级并且最终下至流内的独立事务级以便找到性能问题的根本原因。

再次参照图6,在日志中列举的各事务包括关于该事务的某些信息,而用户可以选择针对该事务显示哪些信息域。在这一例子中,各事务条目包括事务编号(例如31、32、33)、日期和时间、应用标识符、客户端IP地址、服务器IP地址、EURT及其四个组成(应用响应时间(ART)、客户端DTT、服务器DTT和网络往返时间)、WAN优化策略和在事务中进行的请求。WAN优化策略域允许用户看到是否向事务应用了WAN优化(“--”指示没有应用优化)和如何优化事务(即应用什么WAN优化类型)。例如,对事务32仅应用TFO优化,而对事务34应用所有TFO、DRE、LZ和HTTP。以这一方式,所运用的特定WAN优化策略类型或者组合针对列表中的各事务来与感兴趣的一个或者多个性能列表并置。例如,在图6中所示例子列表中,未优化事务具有相对长的EURT,而优化事务具有一般而言短得多的EURT。

图7图示了用于使用可视性能管理器来定制事务日志视图的一种可能技术。如在可视性能管理器内的最上一行上的深色框所示,选择“应用性能”。在下一级,如在第二行中的深色框所示,选择“事务”。向用户呈现多个过滤选项。在显示窗口的顶部附近在折叠模式中(由在词语“过滤器”左边的右指箭头表示)示出了过滤器,其中仅列举所选择的显示选项。在显示窗的中间示出的展开模式中(由在词语“过滤器”左边的下指箭头表示),向用户呈现可以填充或者可从下拉列表选择的各种过滤器域。例如,用户可以选择时间范围、一个或者多个应用、一个或者多个地点、一个或者多个服务器、一个或者多个客户端IP、某些请求类型、某些响应类型、一个或者多个事务类型、某些度量和WAN优化类型(所有、优化、未优化、按照优化类型等)。注意到为求便利在图7中示出了过滤器的折叠和展开模式,但是通过点击方向箭头通常一次示出这两个视图中的仅一个视图。然后基于由用户选择的过滤来显示所得到的事务日志,其中在图7中的窗口底部示出了该事务日志的另一例子。这里同样,与用于每个事务的WAN优化策略一起示出的性能度量是终端用户响应时间(EURT)。将认识到EURT仅是可以在逐个事务或者逐个流的基础上与对应WAN优化策略一起示出的若干不同性能度量中的一个性能度量。另外,图4-6中所示屏幕截图仅是在本发明的系统内可能的更多种可视化的少数例子,在这些可视化中可以从企业级下至独立事务级结合性能度量来示出WAN优化策略。

已经描述了用于针对独立事务确定和显示WAN优化属性的方法和装置的实施例,应该理解,按照这里阐述的教导,本领域技术人员将得到其它修改、变化和改变的启示。因此将理解到认为所有这样的变化、修改和改变落入如由所附权利要求书限定的本发明范围内。虽然这里运用了具体术语,但是这些术语仅用于一般性和描述性的意义而不是限制目的。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号