首页> 中国专利> 控制蒸汽甲烷转化器的合成气组成

控制蒸汽甲烷转化器的合成气组成

摘要

一种控制从蒸汽甲烷转化器(SMR)获得的合成气组成的方法,该SMR直接从蒸汽加氢气化反应器(SHR)获得作为产品气的原料。所述方法通过调节进入向SMR供料的蒸汽氢气化反应器中的氢气进料原料的水含量而允许控制H

著录项

  • 公开/公告号CN101489914A

    专利类型发明专利

  • 公开/公告日2009-07-22

    原文格式PDF

  • 申请/专利权人 加利福尼亚大学董事会;

    申请/专利号CN200780027093.5

  • 申请日2007-07-17

  • 分类号C01B3/24;

  • 代理机构北京市柳沈律师事务所;

  • 代理人宋莉

  • 地址 美国加利福尼亚州

  • 入库时间 2023-12-17 22:18:57

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2012-12-26

    授权

    授权

  • 2009-09-16

    实质审查的生效

    实质审查的生效

  • 2009-07-22

    公开

    公开

说明书

相关申请的交叉参考

本申请是2006年7月18日提交的专利申请序列号11/489,298的继续申请,并要求其优先权。

技术领域

本发明的领域是合成气的生产。

背景技术

受到包括环境、健康、安全问题,以及基于石油的燃料供给的不可避免的未来稀缺性的许多关注所驱动,需要辨别化学能的新能源和将其转化为替代运输燃料的方法。全球内燃机燃料驱动车辆的数目持续增长,特别是在中等发展中国家。美国以外的主要使用柴油燃料的全球车辆数量比美国内部增长得更快。这种情况可能改变,因为引入使用混合和/或柴油发动机技术的燃料更有效的车辆以减少燃料消耗和总排放。由于用于生产基于石油的燃料的资源正在枯竭,对石油的依赖将变成主要问题,除非开发出非石油替代燃料,尤其是清洁燃烧的合成柴油燃料。而且,常规发动机中基于石油的燃料的正常燃烧可引起严重的环境问题,除非使用严格的废气排放控制方法。清洁燃烧的合成柴油燃料可以帮助减少柴油发动机的排放。

清洁燃烧的运输燃料的生产需要现有基于石油的燃料的重整(reformulation)或者发现由未使用的材料产生能量或合成燃料的新方法。存在许多来自可再生有机或废弃含碳物质的可用资源。使用含碳废弃物生产合成燃料是经济上可行的方法,因为输入原料已经被认为没有什么价值,作为废物丢弃,并且处理通常引起污染。或者,可以将煤用作原料从而将脏的低级固体燃料升级为有附加价值的方便的清洁液体燃料,例如高质量、环境友好的合成柴油或其它烃燃料。

液体运输燃料相对于气体燃料具有内在的优势,在相同的压力和温度下比气体燃料具有更高的能量密度。液体燃料可以在大气压或低压下储存而实现液体燃料能量密度,气体燃料则必须以高压储存在车辆上的罐中,而这在泄漏或突然破裂的情况下可引起安全问题。使用简单的泵和管线的液体燃料分配比气体燃料分配容易得多。现有运输部门的液体燃料供应基础设施确保容易整合到任何生产清洁燃烧的合成液体运输燃料的现有市场中。

清洁燃烧的液体运输燃料的可用性具有国家优先性。由含碳源清洁并有效地生产合成气(氢气和一氧化碳的混合物,也称为合成气)将有利于运输部门和社会健康,该含碳源可经历费托型方法以生产清洁和有价值的合成汽油和柴油燃料。本文定义的分别包括费托方法或费托反应器的费托型方法或费托型反应器是使用合成气生产液体燃料的任意方法或反应器。类似的,费托型液体燃料是通过这种方法或反应器生产的燃料。费托型方法允许将目前现有技术的发动机废气后处理方法应用于NOx还原、除去柴油发动机废气中存在的有毒颗粒、和减少正常燃烧产物的污染物,这在目前是通过催化剂实现的,但在来自石油的柴油燃料的普通原料中的情形是该催化剂由于存在的任何硫而快速中毒,从而降低催化剂效率。通常,由合成气生产的费托型液体燃料不含硫、不含芳烃,并且在合成柴油燃料的情形中具有超高的十六烷值。

生物质(biomass)材料是用于生产可再生燃料的最常处理的含碳废原料。废弃塑料,橡胶,肥料,作物残茬,林地、树木和草的切割部分以及废水(污水)处理的生物固体也是用于转化法的候选原料。生物质原料可转化以产生电、热、有价值的化学品或燃料。加州在数种生物质利用技术的使用和开发方面全国领先。每年在加州丢弃超过4500万吨城市固体废物由废物管理设施进行处理。大约一半这些废物最终被填埋。例如,仅在加州地区的RiversideCounty,估计每天处理约4000吨废弃木料。根据另一估计,每天有超过100000吨的生物质倒入Riverside County收集区的填埋场。这种城市废物包括约30%的废纸或废纸板,40%的有机(绿色和食品)废物,以及30%的木材、纸张、塑料和金属废物的组合。如果废弃材料可以转化为清洁燃烧的燃料,则该废弃材料的含碳组分将具有可用于减少其它能源需求的化学能。含碳材料的这些废物来源不是唯一可用的来源。虽然可对许多现有的含碳废物材料如纸张进行分类、再生并循环用于其它材料,但如果废物直接运输到转化设施,则废物制造者将无需支付倾卸费用。通常废物管理机构目前收取每吨$30~$35的倾卸费用以弥补处理成本。因此,不仅可以通过将废物运输给废物-合成燃料处理工厂而降低处理成本,而且由于处理成本的降低还可获得额外的废物。

木材在木材火炉中的燃烧是使用生物质产生热能的一个简单实例。不幸的是,生物质废物的露天燃烧以获得能量和热不是利用热值的清洁和有效的方法。目前,发现了许多利用含碳废物的新方法。例如,一种方法是生产合成液体运输燃料,且另一种方法是生产用于转化为电的高能气体。

利用来自可再生生物质源的燃料可实际上减少温室气体(如二氧化碳)的净积累,同时提供用于运输的清洁、有效的能量。来自生物质源的合成液体燃料的共同生产的一个主要优点是其可提供可储存的运输燃料同时减少温室气体对全球变暖的影响。未来,这些共同生产方法将为可持续发展的可再生燃料经济提供清洁燃烧的燃料。

存在许多将煤和其它含碳材料转化成清洁燃烧的运输燃料的方法,但是它们倾向于太昂贵以至于在市场上无法与基于石油的燃料竞争,或者它们生产挥发燃料,例如甲醇和乙醇,这些挥发性燃料的蒸气压值过高以至于在没有从立法上免除清洁空气规定的情况下无法在高污染区域如南加州空气盆地(air basin)中使用。后一方法的实例是Hynol甲醇方法,其使用加氢气化和蒸汽转化反应器以采用固体含碳材料和天然气的共同进料来合成甲醇,并且该方法在小规模试验演示中显示出>85%的碳转化效率。

合成气可通过两种主要化学方法即蒸汽转化和部分氧化中的一种生产。当进料由轻质烃如天然气组成以及当氢气为主要产品时,使用蒸汽转化。当具有较重质的进料或者当期望相对高产量的一氧化碳时,使用部分氧化。表1总结了在生产合成气的操作下各种商业化方法[1]。

表1

化学方法         原料                     合成气比率

                                          (H2/CO,摩尔)

蒸汽转化         天然气、蒸汽             4.76

蒸汽转化         甲烷、蒸汽               3

蒸汽转化         石脑油、蒸汽             2

蒸汽转化         天然气、CO2、蒸汽        2

部分氧化         煤、蒸汽、O2             0.68

部分氧化         煤、蒸汽、O2             0.46

部分氧化           煤、蒸汽、O2         2.07

合成气中氢气和一氧化碳的比率称作合成气比率并且强烈地取决于使用的方法和原料的性质。

合成气在多种化学品制造中以及使用费托型合成(FTS)以生产液体燃料的气体到液体的方法中用作原料。或者,合成气可用于所谓的集成气化复合循环,其中合成气与空气直接燃烧以产生发电中使用的蒸汽机运行所需的热。根据期望的用途,需要调整合成气的H2/CO比率。表2总结了不同方法所需的最佳合成气比率[2]。

表2

期望的产品           化学方法           所需合成气比率

                                        (H2/CO,摩尔)

合成燃料             FTS-Co催化剂        2.05-2.15

合成燃料             FTS-Fe催化剂        1.65

甲醇                                     2

乙二醇                                   1.5

醋酸                                     1

苯-甲苯-二甲苯                           1.5

一般地说,合成气比率可以通过使用压力振动(swing)吸附方法或通过使用氢气膜系统降低。或者,加入下游水煤气转换反应器可以提高合成气比率。

在我们的实验室中开发了一种生产合成气的方法,其中将含碳材料颗粒在水中的浆料和来自内源的氢气在产生富含发生炉煤气的条件下进料到加氢气化反应器中。这与蒸汽一起在产生合成气的条件下进料到蒸汽热解转化器中。该方法具体描述于Norbeck等人的名为“Production Of SyntheticTransportation Fuels From Carbonaceous Material Using Self-SustainedHydro-Gasification”的美国专利申请序列号10/503,435(作为US2005/0256212公开)中。在该方法的另一种变型中,使用蒸汽加氢气化反应器(SHR)将含碳材料在氢气和蒸汽的存在下同时加热以在单独步骤中进行蒸汽热解和加氢气化。该方法具体描述于Norbeck等名为“Steam Pyrolysis As A Process toEnhance The Hydro-Gasification of Carbonaceous Material”的美国专利申请序列号10/911,348(作为US 2005/0032920公开)。美国专利申请序列号10/503,435和10/911,348的公开内容通过参考引入本文。

通过气化生产合成气和由合成气生产液体燃料是完全不同的过程。本发明特别关注的是使用蒸汽甲烷转化器(SMR)生产合成气,该蒸汽甲烷转化器是广泛用于生产液体燃料和其它化学品生产用的合成气的反应器。SMR中发生的反应可以表示如下:

CH4+H2O→CO+3H2(1)

或者

CH4+2H2O→CO2+4H2(2)

一氧化碳和氢气通过使用蒸汽和甲烷作为进料在SMR中生产。在蒸汽发生器中加热工艺用水产生所需的蒸汽。甲烷通常以压缩天然气的形式提供,或者以来自化学工艺或炼油工艺的轻分子量废气流的方式提供。

发明内容

本发明提供改进的、经济的方法以控制从蒸汽甲烷转化器获得的合成气的组成,其中该蒸汽甲烷转化器直接从蒸汽加氢气化反应器获得作为产品气的原料。该方法通过调节进入向SMR供料的SHR的氢气进料和原料的水含量而允许控制H2/CO比率。

使用两种方法中的一种以调节氢气进料。在一个实施方式中,通过将由所述合成气分离的部分氢气转移到所述浆料水而获得氢气。在另一优选的实施方式中,氢气通过将部分所述合成气本身转移到所述浆料水而获得,无需从所述合成气中分离氢气。通过受控制的循环,使用部分合成气,获得十分快速发生的期望的稳态H2/H2O比率。

如上所述,SHR中的蒸汽和富含甲烷的产品气通过浆料的加氢气化产生,该浆料是含碳材料和水的混合物。作为富含甲烷的产品气和蒸汽的混合物,这样的产品气起到SMR理想进料物流的作用,其中所述蒸汽由于水在原料中的过热而存在。从SHR产品物流中除去杂质,例如灰分和炭的细颗粒、硫化氢和其它无机组分。

该方法各阶段的产品物流的质量百分比使用建模程序计算,例如ASPENPLUSTM平衡过程,该ASPEN PLUSTM平衡过程可以将氢气和一氧化碳的合成气比率与含碳材料碳含量的转化率联系起来。根据本发明,通过改变固体与水的比率参数以及氢气与碳的比率参数,可进行灵敏度分析从而能够确定对SHR的浆料原料的最佳组成以获得从SMR输出的期望的合成气比率。因此,氢气和浆料水的比率通过分析下列因素对合成气比率的影响而确定:(a)含碳材料的固体含量与所述浆料水的比率,和(b)氢气与含碳材料的碳含量的比率。这能够调节进入向SMR供料的SHR中的氢气进料和原料的水含量,以提供在从SMR输出的合成气中期望的氢气和一氧化碳的比率。

更具体地说,提供了将含碳材料转化成合成气的方法,该方法包括:在足以产生富含甲烷和一氧化碳的气体产品(其可称作发生炉煤气)的物流的温度和压力下,在预定比率的氢气和蒸汽形式的水的存在下,在SHR中同时加热含碳材料。在工艺温度和压力下从所述发生炉煤气物流中基本上除去杂质,并且使所得发生炉煤气在产生包含氢气和一氧化碳的合成气的条件下在SMR中进行蒸汽甲烷转化,其中所述合成气具有通过SHR中氢气和水的比率确定的氢气/一氧化碳比率。虽然氢气可以通过将从所述合成气分离的部分氢气转移到所述浆料水而获得,优选通过将部分合成气本身转移到所述浆料水而获得氢气,无需从所述合成气中分离氢气。

附图说明

为更完整地理解本发明,现在参考结合附图的以下描述,在附图中:

图1是根据第一实施方式的本发明方法的流程图,其中氢气从部分SMR输出分离并再循环;

图2是第一实施方式的方法的物料平衡的流程图;

图3是根据第二实施方式的本发明方法的流程图,其中部分SMR输出本身循环而无需分离其中的氢气;

图4是在循环部分SMR之前根据第二实施方式的方法的物料平衡的流程图;

图5是在循环部分SMR之后根据第二实施方式的方法的物料平衡的流程图;

图6显示直到在实现稳定值之后根据第二实施方式的各次运行的H2/CO和蒸汽/CH2摩尔比。

图7是使用ASPEN PLUSTM建模程序显示当改变固体与水的比率参数和氢气与碳的比率参数时各种转化和合成气比率的灵敏度分析。

具体实施方式

本发明能够通过调节进入向SMR供料的SHR中的氢气进料和原料的水含量而控制从SMR输出的H2/CO比率。SHR的蒸汽和富含甲烷的产品气通过浆料的加氢气化产生,该浆料是含碳材料和水的混合物。作为富含甲烷的气体和蒸汽的混合物,这样的产品气起到SMR理想进料物流的作用,其中蒸汽由于水在原料中的过热而存在。

该方法各阶段的产品物流的质量百分比使用建模程序例如ASPENPLUSTM平衡过程来计算。通过改变固体与水的比率参数和氢气与碳的比率参数,可以进行灵敏度分析,使得能够确定对SHR的浆料原料的最佳组成,以获得从SMR输出的期望的合成气比率。因此,可以调节进入向SMR供料的SHR中的氢气进料和原料的水含量,从而确定从SMR输出的合成气比率。

从SHR产品物流中除去杂质,例如灰和炭的细颗粒、硫化氢和其它无机组分。这些杂质必须除去以防止SMR中使用的催化剂的中毒。通常,颗粒过滤器、溶剂洗涤剂(solvent wash)(胺、SelexolTM、RectisolTM)和通过克劳斯过程的加氢脱硫的组合用于该目的。在克劳斯过程中,用空气在高温(1000-1400℃)反应炉中部分氧化H2S。形成硫,但一些H2S依然未反应,并需要一些SO2使剩余的H2S与SO2在较低的温度(约200-350℃)和催化剂作用下反应产生更多的硫。为维持高温下的SMR进料物流,提供在过程压力下和高于蒸汽冷凝点的温度的气体净化单元。该单元位于SHR和SMR之间。

更具体地说,提供将含碳材料转化为具有期望的H2/CO比率的合成气的方法,该方法包括:在足以产生富含甲烷和一氧化碳的气体产物(其可称作发生炉煤气)物流的温度和压力下,在预定比率的氢气和蒸汽形式的水的存在下,同时在SHR中加热含碳材料,该氢气和水的比率通过建模程序如ASPEN PLUSTM平衡过程来确定。根据本发明,通过改变固体与水的比率参数和氢气与碳的比率参数,进行灵敏度分析,使得能够确定对SHR的浆料原料的最佳组成,以获得从SMR输出的期望的合成气比率。在所述工艺温度和压力下从所述发生炉煤气物流中基本上除去杂质,并且所得发生炉煤气在产生包含氢气和一氧化碳的合成气的条件下在SMR中进行蒸汽甲烷转化,其中所述合成气具有通过SHR中氢气和水的比率确定的氢气/一氧化碳比率。

在具体的方法中,为了将城市废物、生物质、木材、煤、或天然或合成聚合物转化成合成气,在约700℃-约900℃的温度和约132psi-560psi的压力下,在氢气和蒸汽的存在下,同时加热含碳材料,从而产生富含甲烷和一氧化碳的发生炉煤气的物流。在所述工艺温度和压力下从所述发生炉煤气物流中基本上除去杂质,随后使所得发生炉煤气在产生期望的合成气比率的氢气和一氧化碳的条件下进行蒸汽甲烷转化。例如,具有基于钴催化剂的费托型反应器所需的H2:CO摩尔比率为2.1:1。如下所述,通过对H2/H2O比率进行适当的调整,可以实现约3比1的H2/CO摩尔比率以提供过量的氢气,该氢气可以进料到SHR中以形成自持过程,即无需任何外部氢气进料。通过蒸汽甲烷转化产生的合成气可以在产生液体燃料的条件下进料到费托型反应器中。可以将从费托型反应放出的热转移到加氢气化反应和/或蒸汽甲烷转化反应。

在一个实施方式中,通过将从所述合成气分离的部分氢气转移到所述浆料水而获得氢气。在另一优选的实施方式中,通过将部分所述合成气本身转移到所述浆料水而获得氢气,无需从所述合成气中分离氢气。通过受控制的循环,使用部分合成气,获得了十分快速的发生的期望的稳态H2/H2O比率。

实施例1

图1是本发明的一个实施方式的SHR到SMR方法的流程图,其中从SMR输出的期望的H2/CO比率通过以下方式获得:从SMR输出分离氢气,将其转移到HGR,以及调节进入向SMR供料的SHR中的氢气进料和原料的水含量。将内部产生的氢气进料10和含碳原料14以及水16一起进料到SHR12中,并且它们在SHR12中在400psi下加热到750℃。将所得发生炉煤气在约350℃、约400psi下引入气体净化过滤器18,例如烛式过滤器组件。除去硫和灰分之后,将流出物从那里引入到SMR 20,合成气在SMR 20中产生并进料到费托型反应器22,从费托型反应器22获得纯水24、以及柴油燃料和/或蜡26。将SMR20输出通过氢气分离器27,将其中一部分氢气分离并在28处从SMR20转移回料HGR 12。来自费托型反应器22的热30用以补充SMR的热。

在高于水的沸腾温度操作所述单元使得水作为蒸汽存在于来自SHR的气体产品物流中,从而使该方法能够保持流出物物流中大部分的显热。以下实例将说明本发明。

物料平衡过程流程图显示于图2中。图中提供了该方法各阶段的产品物流的质量百分比。使用ASPEN PLUSTM平衡过程建模计算这些值。ASPENPLUSTM是能够通过指定化学组分和操作条件来创建过程模型的商业计算机建模程序。该程序利用了所有的指定参数并模拟该模型,执行所有求解该系统结果所需的计算,从而预测其行为。当完成计算时,ASPEN PLUSTM逐个物流、逐个单元列出结果,并且可以在确定纵坐标和横坐标情况下以图的形式给出结果。

如图2所示,氢气和41%煤浆料的SHR原料得到了在SMR中产生氢气与一氧化碳的摩尔比为3.4:1的合成气。SHR所需的进料氢气可以通过外部方式供应或通过SMR中产生的氢气的一部分的内部回料供应。在具体实例中,使用41%煤、52%水和7%氢气的浆料,这是根据Norbeck等人的序列号为10/911,348的美国专利申请中的步骤获得的。这导致从SHR输出到净化过滤器的气态混合物含有32重量%的CH4、2重量%的H2、2重量%的CO、3重量%的CO2、51重量%的H2O、4重量%的灰分、5重量%的炭、和1重量%的其它杂质。

SHR-净化单元的输出是富含甲烷、含有36重量%的CH4、2重量%的H2、2重量%的CO、3重量%的CO2、和57重量%的H2O的具有1:4的蒸汽与甲烷摩尔比率的发生炉煤气。将SHR的输出进料到SMR,该SMR在800℃和28个大气压下操作以产生具有3.4的H2与CO摩尔比率且含有4重量%的CH4、14重量%的H2、58重量%的CO、3重量%的CO2、和21重量%的H2O的合成气。

实施例2

显示于图3-6的该实施例说明优选的第二实施方式,其中使SMR输出的一部分本身进行循环。图3是SHR到SMR方法的流程图,其中从SMR输出的期望的H2/CO比率是通过以下方式获得的:无需从SMR输出分离氢气,将部分SMR输出本身转移到HGR,并调节进入向SMR供料的SHR中的氢气进料和原料的水含量。该方法与实施例1中所述的相同,除了反映出直接使用部分SMR作为SHR进料的那些变化。因此,如图4所示,尽管如下所述使用一些氢气以启动该过程,但内部产生的氢气进料是图3中10a所示的SMR输出的组分。如实施例1中那样,将SMR部分10a与含碳原料14以及水16一起进料到SHR12中,并且它们在SHR12中在400psi下加热到750℃。将所得发生炉煤气引入气体净化过滤器18,并且除去硫和灰分之后,将流出物从那里引到SMR 20,合成气在SMR 20中产生并进料到费托型反应器22,从费托反应器22中获得纯水24、以及柴油燃料和/或蜡26。

与实施例1相反,SMR20输出不通过氢气分离器,而在28a处标出的部分直接从SMR20转移回料到HGR12,如实施例1中那样,使用来自费托型反应器22的热30以补充SMR的热。

初始运行的物料平衡流程图显示于图4中,如实施例1中那样,在图中提供使用ASPEN PLUSTM平衡过程建模获得的该方法各阶段的产品物流的质量百分比。

如图4所示,含有4%氢气、32%煤、和64%水的初始SHR浆料原料得到了在SMR中产生氢气与一氧化碳的摩尔比为3.8:1的合成气。这导致从SHR输出到净化过滤器的气态混合物含有16重量%的CH4、3重量%的H2、5重量%的CO、23重量%的CO2、48重量%的H2O、2重量%的灰分、2重量%的炭、和0重量%的其它杂质。

SHR-净化单元的输出是含有17重量%的CH4、3重量%的H2、5重量%的CO、24重量%的CO2、和51重量%的H2O的具有2:7的蒸汽与甲烷摩尔比率的气体。将SHR的输出进料到SMR,该SMR在850℃和27.2个大气压下运行以产生具有H2与CO摩尔比率为3.8且含有5重量%的CH4、8重量%的H2、28重量%的CO、21重量%的CO2、和39重量%的H2O的合成气。

图5显示12次循环运行后的物料平衡流程图,其中,其达到了最终的稳定H2/CO排出比率。该稳态原料含有3%氢气、21%煤、42%水、19%CO、13%CO2、和2%CH4,导致在SMR中产生氢气与一氧化碳的摩尔比为1.9:1的合成气。这导致从SHR输出到净化过滤器的气态混合物含有16重量%的CH4、2重量%的H2、8重量%的CO、43重量%的CO2、29重量%的H2O、1重量%的灰分、2重量%的炭、和0重量%的其它杂质。

SHR-净化单元的输出是含有16重量%的CH4、2重量%的H2、9重量%的CO、44重量%的CO2、和30重量%的H2O的具有1.6的蒸汽与甲烷摩尔比率的气体。将SHR的输出进料到SMR以产生具有1.9的H2与CO摩尔比率且含有5重量%的CH4、5重量%的H2、39重量%的CO、26重量%的CO2、和24重量%的H2O的合成气。

图6显示直到各次运行实现稳定值之后H2/CO和蒸汽/CH2的摩尔比。该图显示了该优选实施方式的方法通过受控制地使部分SMR产品物料循环而产生具有期望的H2/CO比率的合成气的能力。

在这些实施例中,过滤器在300℃和28个大气压下操作。任何能够在工艺温度下操作的过滤器都可以在气体净化阶段使用。一种这样的可商购过滤器是现有技术中熟知的烛式过滤器。例如,参见美国专利号5,474,586,其公开内容通过参考引入本文。本发明中可使用的现有气体净化单元是称为烛式过滤器的过滤器,其中在过滤器容器中带有一系列烛形过滤器。该烛式过滤器由不锈钢金属玻璃料制成以除去气体物流中的细颗粒物质(灰分、无机盐和未反应的炭)。浆料在底部入口进料到容器中并且滤液从顶部出口排出。颗粒物质以滤饼的形式从另一出口取出。大部分以硫化氢的形式存在于SHR产品气中的硫杂质通过使产品气通过气体净化单元中金属氧化物吸附剂的填充床而除去,颗粒物质从滤饼出口除去。

活性吸附剂包括,但不限于:基于Zn的氧化物如肯塔基州Louisville的Süd-Chemie出售的氧化锌。多孔金属过滤器元件可从佐治亚州Marietta的Bekaert以合适的形式和尺寸获得,例如多孔介质,其由孔径大小为1的不锈钢烧结纤维基材制成。这些吸附剂和过滤元件能最小化压降的影响和气-固传质限制。在28atm的压力下,在SHR产品气的脱硫作用中使用300℃至500℃的温度和最高达2000/小时的空速。气体的硫化氢含量通过吸附剂的硫化而减少到低至足以避免SMR催化剂失活的水平。气体净化单元中用过的吸附剂可以用新鲜吸附剂替代或用稀释的空气在并联的多个吸附剂床中原位再生。

如上所述,从SMR获得的合成气比率可以通过改变SHR原料中固体与水的比率和氢气与碳的比率而调节。使用ASPEN PLUSTM平衡建模工具通过改变这些参数进行灵敏度分析。结果在图7中,显示了当改变固体与水的比率和氢气与碳的比率时的各种转化率和合成气比率。实线—表示碳转化成CH4的百分比(摩尔CH4/摩尔C输入)。长虚线---表示碳转化成CO的百分比(摩尔CO/摩尔C输入)。点线…表示碳转化成CO2的百分比(摩尔CO2/摩尔C)。双点划线表示可持续的H2,且短虚线___表示H2/CO的合成气比率(摩尔H2/摩尔CO)。

最后的参数是本发明重点关注的。图3清楚地显示了最终的合成气比率能够通过调节原料的水与固体的比率(在图3中以H2O/C输入质量比率表示)和氢气与碳的比率而调节。因此,当进料中氢气与碳的摩尔比率设定为1时,发现获得可持续氢气原料和用于费托合成的期望的合成气比率(2.1:1)的浆料最佳组成是3.1。

更一般地说,本发明的方法可产生H2:CO摩尔比为1:1至6:1的合成气组成。所得流出物是富含氢气、一氧化碳与蒸汽的合成气。SMR中所产生氢气循环回HGR。结果,无需外部氢气源维持稳态操作。因此,该HGR和SMR方法可认为是化学自持的。然后剩余的合成气可用于燃料和过程热的生产。

在本发明的实施方式中,将合成气在不产生硫且产生超高十六烷值的类似于柴油的燃料和有价值的石蜡产品的过程中进料到费托反应器。不存在硫使得能够实现污染物和颗粒排放少的柴油燃料。可产生有用的副产物例如净化水,其可再循环以产生进料到该过程中的浆料。费托反应也产生含有氢气、CO、CO2和一些轻质烃气体的尾气。氢气可以从尾气中除去并再循环至HGR或费托反应器。任何少量的其它气体例如CO和CO可以燃烧除去。

尽管已经具体描述了本发明和其优点,但应理解,在不背离所附权利要求限定的本发明的精神和范围的情况下,可以对所述实施方式进行各种改变、替换和变更。而且,本发明的范围不旨在限于说明书中描述的方法和装置的具体实施方式。本领域的普通技术人员从本发明的公开中将容易领会,执行与本文所述的相应实施方式基本相同的功能或实现基本相同的结果的现有的或之后开发的方法和装置均可根据本发明使用。因此,所附权利要求旨在包括落在其范围内的这些方法和这些装置的使用。

参考文献

1.Vander Laan,G.P,论文,格罗宁根大学,荷兰,1999.

2.Sheldon,R.A.,Chemicals from Synthesis Gas,1983和FT Technology:Studies in surf Science and Catalysis,Steynberg,A.、Dry,M.E.编,152卷,2004。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号