首页> 中国专利> 调整存取光盘伺服参数及决定存取光盘所使用参数的方法

调整存取光盘伺服参数及决定存取光盘所使用参数的方法

摘要

本发明提供多种调整方法来决定伺服参数,以改进光驱读取或写入空白光盘时的状况。首先,测试数据以不同的写入参数来写入空白光盘,接着再以不同的读取参数从光盘中读取所写入的测试数据,因此可得到多个品质测量值,其中每一个品质测量值对应于读取参数的值与写入参数的值的特定组合。通过比较所有读取参数与写入参数分别对应的品质测量值,可以决定理想写入参数与理想读取参数。上述调整方法可在可重写光驱读取空白光盘时增进读取参数与写入参数的准确度,从而降低比特错误率,提高刻录质量。

著录项

  • 公开/公告号CN101303862A

    专利类型发明专利

  • 公开/公告日2008-11-12

    原文格式PDF

  • 申请/专利权人 联发科技股份有限公司;

    申请/专利号CN200710186112.0

  • 发明设计人 赵志谋;林育群;

    申请日2007-11-12

  • 分类号G11B7/004;G11B7/09;G11B20/18;

  • 代理机构北京三友知识产权代理有限公司;

  • 代理人任默闻

  • 地址 台湾省新竹科学工业园区

  • 入库时间 2023-12-17 21:02:23

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-01-05

    未缴年费专利权终止 IPC(主分类):G11B7/004 授权公告日:20101229 终止日期:20161112 申请日:20071112

    专利权的终止

  • 2010-12-29

    授权

    授权

  • 2009-01-07

    实质审查的生效

    实质审查的生效

  • 2008-11-12

    公开

    公开

说明书

技术领域

本发明涉及多种决定伺服参数以读写光盘的调整方法,尤指多种可决定理想伺服参数以读写空白光盘的调整方法。

背景技术

可重写光驱(Rewritable Drive)相当广泛的用于将重要的数据加以备份。可重写光驱准确地将数据读写于光盘上,可以确保光盘所储存的数据的正确性。

请参阅图1,其为用于可重写光驱的伺服系统100的方块图,用来示意可重写光驱如何处理读取程序与写入程序。如图1所示,光盘101由转轴马达(spindle)103所加载与转动。

在进行读取程序时,光学读取单元(Optical Pickup Unit)102用来读取储存在光盘101的数据。射频(Radio Frequency)单元104接收并处理自光盘101所读取的射频信号。读取频道(Read Channel)105将射频单元104的输出信号由模拟信号转换为数字信号。解码器106将读取频道105所输出的数字信号译码为明文数据(plain data),且解码器106也可用来产生至少一种数据质量指标,例如内部奇偶校验码错误率(Parity Inner Error Rate)、抖动值(Jitter Value)、β值(Beta Value)以及M14参数。

M14参数代表一种14T凹坑(Pit)与14T平面(Land)之间的折射差,因此M14参数即为射频信号的最大强度值。光盘的理想写入功率可通过比对射频信号的最大强度值(以下简称为M14参数)与写入功率之间的特征曲线来决定。

在写入程序与读取程序中,需要保持较低的内部奇偶校验码错误率、较低的抖动值、较大的M14参数。对于β值来说,需要使β值尽量保持趋近于目标β值。

在写入程序中,先由编码器109编码明文数据。写入策略产生器108用来根据编码器109所编码的数据计算并产生适当的写入脉冲。激光驱动器(Laser Driver)107用来对光盘101发出激光。射频单元104所产生的循轨误差(Tracking Error,TE)与聚焦误差(Focusing Error,FE)被传送至数字信号处理器111,以计算功率驱动器(Power Driver)110所需要的控制力(control force)。功率驱动器110用来通过聚焦控制信号与循轨控制信号控制光学读取单元102的动作,并产生转轴马达控制信号来控制转轴马达103。

然而,当可重写光驱读取空白光盘时,由于空白光盘上并没有记录任何可用来调整读取参数的数据,例如读取聚焦误差偏位(offset)/偏移(bias)或读取循轨误差偏位/偏移,因此可重写光驱可能会使用不适当的读取参数来实施写入伺服信号的调整与理想功率调整,并导致可重写光驱使用不适当的写入参数与不适当的写入功率来重写光盘。不适当的写入参数或写入功率会增加比特错误率,从而降低刻录质量。

请注意,写入/读取聚焦误差偏位(Offset)指示写入或读取时聚焦伺服所使用的聚焦位置。写入/读取循轨误差偏位指示循轨伺服在写入或读取时所使用的循轨位置。写入/读取聚焦误差偏移(Bias)指示写入或读取时在聚焦伺服控制力上所增加的偏移量。写入/读取循轨误差偏移指示写入或读取时在循轨伺服控制力上所增加的偏移量。

发明内容

为解决上述无法取得正确读取参数的问题,本发明提供多种调整方法来决定伺服参数,以改进光驱读取或写入空白光盘时的状况。

本发明提供一种调整存取光盘的伺服参数的方法。该方法包含当写入数据于光盘时,将写入参数的值由第一写入参数改变为第二写入参数;以第一读取参数从光盘读取数据;以第二读取参数从光盘读取数据;对应于每一种读取参数与写入参数的组合,产生品质测量值;及根据品质测量值选取理想读取参数与理想写入参数,以存取光盘。

本发明提供一种决定存取光盘所使用的参数的调整方法。该方法包含产生包含多个元素的矩阵,其中矩阵所包含的每一元素为品质测量值;品质测量值在写入与读取光盘时产生;矩阵的每一行使用一个不同数值的写入参数,且矩阵的每一列使用一个不同的读取参数;根据矩阵中每一行的元素,分别在每一行中计算出行候选值;根据矩阵中每一列的元素,分别在每一列中计算出列候选值;比较所计算出的各行候选值,以选出对应的目标写入参数;及比较所计算出的各列候选值,以选出对应的目标读取参数。

上述调整伺服参数以存取光盘的方法及决定存取光盘所使用的参数的调整方法可在可重写光驱读取空白光盘时增进读取参数与写入参数的准确度,从而降低比特错误率,提高刻录质量。

附图说明

图1为用于可重写光驱的伺服系统的方块图,用来示意可重写光驱如何处理读取程序与写入程序。

图2为根据本发明的第一实施方式所提供的二维矩阵的列表示意图,以图示如何在运作光盘上的凹轨时决定理想写入聚焦误差偏位/偏移以及理想读取聚焦误差偏位/偏移。

图3为图2中写入聚焦误差偏位/偏移、读取聚焦误差偏位/偏移、与内部奇偶校验码错误率之间对应关系的三维曲面统计示意图。

图4为当写入光盘时,使用图2所示写入聚焦误差偏位/偏移的不同值的方法的示意图。

图5为当运行光盘上的平轨时,根据本发明的第二实施方式所揭示用于决定写入聚焦误差偏位/偏移的理想值与读取聚焦误差偏位/偏移的理想值的二维矩阵的示意图。

图6为根据图5所示的二维矩阵所绘制写入聚焦误差偏位/偏移、读取聚焦误差偏位/偏移、及内部奇偶校验码错误率之间对应关系的三维曲面统计示意图。

图7为本发明所揭示用于读写光盘时决定伺服参数的调整方法的流程图。

具体实施方式

本发明所提供的调整方法的其中一个主要目的为增进存取空白光盘时读取参数与写入参数的准确度。本发明提供读取参数与写入参数的调整方法,这些读取参数与写入参数包含写入聚焦误差偏位(offset)/偏移(bias)(例如聚焦平衡量(Focus Balance))、读取聚焦误差偏位/偏移、写入循轨误差偏位/偏移(也即随机存取存储型态的光盘所使用的循轨中心)、以及读取循轨误差偏位/偏移,以较佳的进行图1所示的伺服系统的伺服控制与功率(power)调整。

图2为根据本发明的第一实施方式所提供的二维矩阵300的列表示意图,以显示如何在运作光盘上的凹轨(Groove Track)时决定理想写入聚焦误差偏位/偏移以及理想读取聚焦误差偏位/偏移。二维矩阵300的第一维度代表作为候选数值的写入聚焦误差偏位/偏移(或写入聚焦平衡量)303的不同数值,且其中一个数值稍后将被选为理想写入聚焦误差偏位/偏移308。二维矩阵300的第二维度代表作为候选数值的读取聚焦误差偏位/偏移(或读取聚焦平衡量)301的不同数值,且其中一个数值稍后将被选为理想读取聚焦误差偏位/偏移309。二维矩阵300所包含的每一元素302为内部奇偶校验码错误率,每一内部奇偶校验码错误率皆对应于写入聚焦误差偏位/偏移的特定值与读取聚焦误差偏位/偏移的特定值。

产生二维矩阵300的过程详述如下。请一并参阅图1。首先,图1所示的伺服系统对光盘上的功率调整区域(Power calibration area,PCA)进行写入程序,其中当写入测试数据于功率调整区域时,写入聚焦误差偏位/偏移303的值将会不断的产生变化。举例来说,如图2所示,写入聚焦误差偏位/偏移303的值将会由十六进制的0xe4逐渐增加为0x1c。请注意,为了简化图示,代表十六进制的值0x并未示于各图中。接着,会以读取聚焦误差偏位/偏移301的不同数值反复读取写入功率调整区域的测试数据。举例来说,如图2所示,读取聚焦误差偏位/偏移301的值由十六进制的0xe4逐渐增加至0x1c。请注意,本发明所提供的各调整方法的应用并未限制在写入测试数据于功率调整区域上。在这些测试数据之前以不同数值的写入聚焦误差偏位/偏移303写入,因此二维矩阵300的第一列的所有内部奇偶校验码错误率可通过读取对应于固定的读取聚焦误差偏位/偏移301的值为0xe4的测试数据得到。同理,二维矩阵300的第二列的所有内部奇偶校验码错误率可通过读取对应于固定读取聚焦误差偏位/偏移301的值为0xec的测试数据得到,其它列也可依此类推。在二维矩阵300中,每一内部奇偶校验码错误率302皆对应于写入聚焦误差偏位/偏移303的一个特定值以及读取聚焦误差偏位/偏移301的一个特定值。请参阅图3,其为图2中写入聚焦误差偏位/偏移303、读取聚焦误差偏位/偏移301、与内部奇偶校验码错误率302之间对应关系的三维曲面统计示意图。

在本发明的其它实施方式中,二维矩阵所包含的元素除了可以使用内部奇偶校验码错误率以外,也可以使用抖动值、β值、或M14参数来找出理想的读取参数与写入参数。

本发明所提供的一种决定读取聚焦误差偏位/偏移与写入聚焦误差偏位/偏移的理想值的过程详述如下,并以图2中二维矩阵300所建立的数据为基础来描述。当需要决定一个理想的写入聚焦误差偏位/偏移时,会将二维矩阵300中的每一行(也即对写入聚焦误差偏位/偏移303的每一个值)分别计算第一平均内部奇偶校验码错误率304,且计算的方式为将对应于写入聚焦误差偏位/偏移303的每一个值的每一行中所包含的内部奇偶校验码错误率302加总起来以后求平均。如此一来,就会如图2所示,产生多个一一对应于写入聚焦误差偏位/偏移303的值的第一平均内部奇偶校验码错误率304的值。除此以外,用来计算出第一平均内部奇偶校验码错误率304的多个值的方法也可包含计算同一行中所有内部奇偶校验码错误率302的算术平均值(ArithmeticAverage)、几何平均值(Geometric Mean)、或中位数(Median)。当一一对应于写入聚焦误差偏位/偏移303的值的多个第一平均内部奇偶校验码错误率304的值被计算出来以后,将会从这些第一平均内部奇偶校验码错误率304的值中选出一个最小值来当作第一目标内部奇偶校验码错误率305,也即图2中所示的值31。由图2所示的二维矩阵300可知,第一目标内部奇偶校验码错误率305的值为31,其对应的写入聚焦误差偏位/偏移303即为理想写入聚焦误差偏位/偏移308。理想写入聚焦误差偏位/偏移308的十六进制值为0xfc,也即十进制值-4,因此-4可被决定为理想的写入聚焦误差偏位/偏移值或其近似值。理想写入聚焦误差偏位/偏移308接着会被功率驱动器110所使用,以控制光学处理单元102写入光盘101时所使用的写入聚焦。

同理,对应于二维矩阵300中的每一列,也即读取聚焦误差偏位/偏移301的每一个值,也可产生出第二平均内部奇偶校验码错误率306的值。因此如图2所示,将会计算出多个一一对应于每一读取聚焦误差偏位/偏移301的值的第二平均内部奇偶校验码错误率306。与计算第一平均内部奇偶校验码错误率304时相同,计算第二平均内部奇偶校验码错误率306的方式也可包含计算同一列所有内部奇偶校验码错误率302的值的算术平均值、几何平均值、或中位数。在得到第二平均内部奇偶校验码错误率306的值后,也可从中取出最小值来当作第二目标内部奇偶校验码错误率307,也即如图2中所示的值15。由图2所示的二维矩阵300可知,第二目标内部奇偶校验码错误率307的值为15,其所对应的读取聚焦误差偏位/偏移301的值为理想读取聚焦误差偏位/偏移309。理想读取聚焦误差偏位/偏移309的值为十六进制数0xf4,也即十进制数-12,此时-12可用来当作理想读取聚焦误差偏位/偏移值或其近似值。理想读取聚焦误差偏位/偏移309用来提供给功率驱动器110来控制光学处理单元102读取光盘101时所使用的读取聚焦。

虽然上述本发明所揭示的实施方式用来描述决定理想的读取或写入聚焦误差偏位/偏移(或是聚焦平衡值)时的过程,但是同样的过程也可通过改变二维矩阵300的第一维度与第二维度来得到对应于不同读取与写入的循轨误差偏位/偏移值的矩阵内含品质测量值(quality measure),来决定读取或写入循轨误差偏位/偏移的理想值。

请注意,当在光盘上测试上述写入程序时,顺序的使用写入聚焦误差偏位/偏移303的不同值来写入光盘为较佳的做法。请参阅图4,其为当写入光盘时,使用图2所示写入聚焦误差偏位/偏移303的不同值的方法的曲线示意图。如图4所示,启动信号WLDON指示激光驱动器107是否开启,且当启动信号WLDON处于高电位时,激光驱动器107写入数据于光盘。在启动信号WLDON处于高电位的期间,将会如图4所示,以写入聚焦误差偏位/偏移303的不同值的递减顺序来写入光盘。

请注意,在图2中进行读取程序,并产生多个第二平均内码奇偶校检错误率307时,也可以仅将部分读取聚焦误差偏位/偏移301的值列入考虑。举例来说,可以通过递归式的使用某些以二分搜寻法为基础的选取方式来自全部聚焦误差偏位/偏移301的值中选取特定的读取聚焦误差偏位/偏移301的值,以计算第二平均内码奇偶校检错误率307。以图2所示的读取聚焦误差偏位/偏移301来说,在本发明的一较佳实施方式中,首先,读取聚焦误差偏位/偏移301所包含的十六进制值为0xfc或0x04(也即十进制值为-4或4)的中位数、十六进制值为0xe4(也即十进制值为28)的起始值,以及十六进制值为0x1c(也即十进制值为-28)的结尾值被计算分别对应的第二平均内部奇偶校验码错误率306以得到一个暂定的最小平均内部奇偶校验码错误率。接着,上述方式被递归地使用于读取聚焦误差偏位/偏移301的其它值,直至找到一个在整体范围之中最小的第二平均内部奇偶校验码错误率306。通过这样的方式,不需要将读取聚焦误差偏位/偏移301的所有值都计算过,也可以省下不少的计算量。

上述的二分法搜寻技巧也可以用于决定理想写入聚焦误差偏位/偏移308的值。以图2来说,当在读取过程中产生出多个第一平均内部奇偶校验码错误率304时,也可仅考虑写入聚焦误差偏位/偏移303的部分值。在本发明的较佳实施方式中,写入聚焦误差偏位/偏移303所包含的十六进制值为0x00(也即十进制值为0)的中位值、十六进制值为0xe4(也即十进制值为28)的起始值、以及十六进制值为0x1c(也即十进制值为28)的结尾值可首先用来计算分别对应的第一平均内部奇偶校验码错误率304的值,以得到一个暂定的平均内部奇偶校验码错误率304的最小值。接着,上述的方法递归地被使用,直至找到一个整体范围的平均内部奇偶校验码错误率304的最小值。如此一来,可以不需要动用到写入聚焦误差偏位/偏移303的所有值,也可以省下庞大的计算量。

请注意,在上述方法中可以使用二分搜寻法的主要原因为第一平均内部奇偶校验码错误率304的数值序列仅包含了一个严格递减(strictly decreasing)的子序列以及一个严格递增(strictly increasing)的子序列,其中对应的写入聚焦误差偏位/偏移值303的数值序列为严格递增序列,且上述严格递减的子序列在平均内部奇偶校验码错误率304的数值序列中直接接于上述严格递增的子序列之后。这些现象可由观察图2的二维矩阵300而发现。同理,由于第二平均内部奇偶校验码错误率306的数值序列仅包含一个严格递减的子序列以及一个严格递增的子序列,其中对应的读取聚焦误差偏位/偏移301的数值序列为严格递增序列,且该严格递增的子序列在第二平均内部奇偶校验码错误率306的数值序列中直接接于该严格递减的子序列之后,因此也可应用二分搜寻法的方式来计算部分读取聚焦误差偏位/偏移301的数值所对应的第一平均内部奇偶校验码错误率304。通过与上述同样或类似的原理,计算质心(centerof mass)或体心(body-centered)的技巧、或是曲线拟合方法(Curve FittingMethod)都可用于由多个内部奇偶校验码错误率的数值中找出平均内部奇偶校验码错误率的理想值。

请参阅图5,其为当运行光盘上的平轨(Land Track)时,根据本发明的第二实施方式所揭示用于决定写入聚焦误差偏位/偏移的理想值与读取聚焦误差偏位/偏移的理想值的二维矩阵400的示意图。在二维矩阵400中,所使用的各参数的定义皆与图2所示的二维矩阵300相同,因此用于二维矩阵300的各种运算也可用于二维矩阵400,且不再加以赘述。请参阅图6,其为根据图5所示的二维矩阵400所绘制写入聚焦误差偏位/偏移403、读取聚焦误差偏位/偏移401、及内部奇偶校验码错误率402之间对应关系的三维曲面统计示意图。

本发明在图2与图5所揭示的调整方法中,在二维矩阵中所使用的元素除了可为内部奇偶校验码错误率以外,还可使用包含抖动值、β值、以及M14参数等参数。请注意,当根据本发明的调整方法而在二维矩阵中使用的元素为抖动值时,所得到的目标抖动值应为多个候选平均抖动值中的最小值。然而,当根据本发明的调整方法而在二维矩阵中所使用的元素为M14参数时,所得到的目标M14参数应为多个候选平均M14参数中的最大值。当根据本发明的调整方法而在二维矩阵中所使用的元素为β值时,所得到的目标β值应为多个候选β值中最接近光盘制造厂商所设定的β值的β值。

请参阅图7,其为本发明所揭示用于读写光盘时决定伺服参数的调整方法的流程图。本发明所揭示的调整方法包含如下步骤:

步骤702:在写入数据于光盘时,以迭代(Iteratively)方式使用不同数值的写入参数。

步骤704:当使用读取参数的初始值来以迭代方式读取写入于光盘的数据时,对写入参数的每个数值产生一个品质测量值。

步骤706:对读取参数的不同数值执行步骤704以得到多个品质测量值。

步骤708:将多个品质测量值整合为二维矩阵,其中每一品质测量值对应于读取参数的一个特定值与写入参数的一个特定值。

步骤710:比较对应于不同写入参数的品质测量值,以产生写入参数的理想值,并比较对应于不同读取参数的品质测量值,以产生读取参数的理想值。

根据图2与图3所示的实施方式,上述写入参数可为写入聚焦误差偏位/偏移303,上述读取参数可为读取聚焦误差偏位/偏移301,且上述品质测量值为内部奇偶校验码错误率302。

总结而言,本发明提供一种决定伺服参数的调整方法,以解决先前所述当使用不适当的伺服参数时所引发的问题,特别是当存取空白光盘时,由于没有已写入的数据可读取以致欠缺决定伺服参数的具体参考数据时所引发的问题。通过交替测试写入聚焦误差偏位/偏移与读取聚焦误差偏位/偏移的不同数值,或是交替测试写入循轨误差偏位/偏移与读取循轨误差偏位/偏移的不同数值,可重写光驱的解码器可以产生多个品质测量值。这些品质测量值将会用来当作决定聚焦误差偏位/偏移与循轨误差偏位/偏移的理想值的具体且有效的参考数据。

虽然本发明已以实施方式揭示如上,但是对于本领域的技术人员,依据本发明实施方式的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号