首页> 中国专利> 使用按需自动光学检查子系统的改进的TFT液晶显示器面板检查方法

使用按需自动光学检查子系统的改进的TFT液晶显示器面板检查方法

摘要

在用于对TFT-LCD面板(836)进行电子和电光检查的检查系统中,使用配有脉冲照明光源(826)的高分辨率面积成像照相机(822)来扫描区域并捕获被短照明脉冲照亮的区域的图像,并且在连续扫描时自动保持聚焦以分辨缺陷点。

著录项

  • 公开/公告号CN1954204A

    专利类型发明专利

  • 公开/公告日2007-04-25

    原文格式PDF

  • 申请/专利权人 光子动力学公司;

    申请/专利号CN200580015458.3

  • 发明设计人 亚当·韦斯;阿夫沙尔·萨兰勒;

    申请日2005-05-02

  • 分类号G01N21/00(20060101);

  • 代理机构11204 北京英赛嘉华知识产权代理有限责任公司;

  • 代理人余朦;方挺

  • 地址 美国加利福尼亚州

  • 入库时间 2023-12-17 18:33:38

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2011-03-30

    授权

    授权

  • 2007-06-13

    实质审查的生效

    实质审查的生效

  • 2007-04-25

    公开

    公开

说明书

相关申请的交叉参考

不适用

美国联邦政府资助的研究或发展下的发明的权利声明

不适用

发明背景

本发明涉及一种在不同制造阶段使用电子、电光和光学技术的对平面电子线路构图型介质的检查方法。更具体地,本发明涉及使用自动电子、电光、光学方法对平面电子基片,诸如薄膜晶体管(TFT)阵列(液晶平板显示器(LCD)的主要成分)的检查。尤其是对沉积在大幅玻璃板上的高密度薄膜晶体管(TFT)液晶显示器(LCD)面板的检查。

在TFT LCD面板的制造过程中,使用大幅透明的薄玻璃板作为各层材料沉积以形成电子线路的基片,从而用作多个可分离的、一致的显示面板。上述沉积过程通常分阶段进行,在每一阶段,一种特定的材料(如金属、铟锡氧化物(ITO)、硅、非晶硅等)按确定的构图沉积在前一层上(或裸露的玻璃基片上)。每一阶段都包括不同的步骤,如沉积、掩模、刻蚀和脱模。

在每一阶段和阶段中的各个步骤中,都会产生许多制造缺陷,使最终LCD产品性能产生电子和/或视觉隐患。这样的缺陷包括例如短路、断路、杂质粒子、误沉积、特征尺寸问题、过高和过低的刻蚀。图1中示出了最常见的缺陷,包括进入到ITO 112内的金属突起110、进入到金属116内的ITO突起114、所谓的鼠咬状结构118、断路120、晶体管124上的短路122和杂质粒子126。

在TFT LCD面板检查的主要应用领域中,作为检查对象的缺陷很小(小至微米级),需要严格的缺陷检查界限。

仅仅进行缺陷检查是不够的。检查到的缺陷还必须作为工艺缺陷被归类,例如,不会影响最终产品的性能、但可作为阵列制造过程中偏离最优情况的早期指示的不重要的瑕疵;可被修正以提高阵列产量的可修复的缺陷;以及使得TFT阵列无法进一步使用的致命缺陷。

已经有广泛的技术用于检查和分类前面提到的缺陷。这些技术可分为三类,即电子、电光和纯光学的技术。

电子和电光技术要求检查对象具有一些可测量的电的或电磁特性。对于TFT液晶面板检查的主要预期应用领域来说也是如此。该对象可用电方法激发,产生可被测量和记录的电的或电磁行为。然后把上述现象与已知正常的行为比较,从而得知该检查对象中是否存在异常。

对于这些技术来说,引起电的和/或电磁异常的缺陷的物理尺寸或可见性通常不是检查的限制因素。在检查对象中,缺陷一旦对电路的电的和/或电磁行为具有重要的、可测量的影响,该缺陷就可被检测到。然而,这种类型检查方法的固有限制在于只有影响到电子线路的电的和/或电磁行为的缺陷可被检查到。其他异常,不管尺寸大小,将被检查系统漏掉。此外,这些缺陷中的一些可能会影响远大于其物理缺陷尺寸的区域。因此,在一些通常情况下,电子或电光检查技术将检查并不一定与其物理缺陷(检查对象中异常的来源)相对应的缺陷特征。

假定缺陷在选定的光学结构下可见,纯光学检测技术——如自动光学检查(AOI)都可不依赖缺陷的电学特性来检查和确定缺陷的位置。然而,可在合理时间内检查到的缺陷尺寸通常有明显的界限。更优的检查界限(更小的缺陷)和更短的检测时间都是非常重要的目标。然而对于AOI系统,这两个目标之间总会抵触,必须在它们之间折衷。所能达到的目标受限于可用的成像技术和处理硬件。检测时间随着被检查对象的尺寸成比例增加。因此,对于AOI应用,所得到的高灵敏系统常为低速的,而高速系统又具有较低的图像分辨率从而检查灵敏度较低。

电子和电光检查方法具有特别的吸引力,因为其可在缺陷非常小、或埋藏在其他沉积层之下从而光学不可见的情况下检测电缺陷。在对沉积完所有材料层后——LCD面板完全可用并可被电学激励的TFTLCD面板的最终检测中尤为如此。因此,提供用于对克服电子和电光检查方法中缺陷定位和分类限制的改进方法是个重要问题。

现有技术中已经有许多方法和设备用于检查平面构图型介质、尤其是在玻璃板上沉积的TFT LCD平板中的异常。这些方法的第一类就是对由材料沉积在平面介质上形成的电子线路的电测试。这些技术可在当存疑的图案形成完全的或部分电路(可被激励并且其电的变化可被测量)时使用。

在IBM研究与发展期刊(IBM Journal of Research & Development)1992年1月第36卷第1期中的文章“TFT/LCD阵列的功能测试”中,Jenkins等认为在独立的TFT LCD像素中的电荷保持电容中的缺陷,以及许多其他缺陷的存在,可通过使用传感电路选择地给像素充电和放电来检查。这种方法中,测量是针对有多少初始数目的存储电荷可得到恢复来进行的。

在Jenkins等人的第5,179,345号美国专利中详细描述了上述方法中的传感方面以及与LCD面板像素的连接。在Ichioka等人的第5,546,013号美国专利中描述了TFT LCD面板的缺陷检查装置。

为实现对独立像素的寻址和电测试,前面提到的测试方法要求与TFT LCD面板结构中所有的门电路和数据线之间有电流连接。这种限制导致用于接触的硬件不但价格昂贵而且难于维护。在Jenkins等人的第6,437,596 B1号美国专利中提出了一种在上述方法基础上减少所需的接触数目的改进方法。

对这种平面介质上的电路的另一种类型的电测试,是借助照射到被检查表面上的电子束。许多使用电子束的解决方案都利用了扫描电子显微镜(SEM)的基本原理。在这种方法中,使用低能电子束照射电路特征并记录从上述电路特征中散射出的二次电子的能级,从而可得到被检查表面的电压分布。所得到的电压图可用来检查表面上电缺陷的存在与否和类型。

在Hartman等人的第4,843,312号美国专利中描述了使用能量束(或粒子束)来测试TFT LCD电路结构中的缺陷的一般方法。

在Brunner等人的第5,414,374号美国专利中也描述了一种用于LCD面板的粒子束测试装置。在这种情况里,粒子束对准LCD像素的平面电极以在电极上产生电压。在接下来的循环测量中,利用同一或第二粒子束产生的散射的二次电子来测量该电压,并将其与额定值比较。在测量时期,为提供时变电势(其值也可被测量并与额定值比较),转换元件也被触发。

另外一种相当不同的电子束测试的应用是通过利用电子束顺续射向上述电路特征的局部来对电路特征进行充电或放电。例如,TFT LCD面板像素阵列中单独的像素被低能电子束激发,测量产生的电流就可以确定结构中电缺陷的存在与否。Golladay等人在IBM研究与发展期刊1990年3月/5月第34卷第2/3期中的文章“用于多芯片基片的断/短路测试中的电子束技术”中描述了这种技术。在Golladay等人更近的第5,612,626号美国专利中描述了一种基于电子束技术的电子基片的缺陷检查系统。

第二类缺陷检查方法就是电光技术。在这类方法中,电路的电和/或电磁行为被转换成光学可见的(一般通过由适当的调制器形成的可见光或电子束反射)。然后通过光学方法把调制器的输出成像以形成表示被检查电路的电行为的图像。特别是,电场的图像和被检查电路的电压分布因此可以以电压图的形式得到。然后这些图像可被用来检测和识别表面上的电缺陷。

在Henley的第4,983,911,5,097,201和5,124,635号美国专利中描述了电光光调制器的原理以及相关的成像方法——经测试从表面获取的电压及因而产生的电场被用来调制适当液晶变化的结构的光学特性。因此光学图像可利用图像捕获设备来形成并记录。在Henley随后的第5,615,039号美国专利中公开了对上述电光调制器及其制造方法的改进。

在Henley的第5,570,011号美国专利中描述了在用于测试电子器件(可被激发至已知的电状态)的测试装置中使用这种电光传感元件的完整的方法。这种方法已被成功使用在对TFT LCD面板装配和填充液晶前的生产最终阶段的电功能的电光测试中。

缺陷检查方法的另一主要类别,自动光学检查(AOI)是基于按所需的放大率和分辨率来光学成像、并且使用硬件/软件图像处理技术,来检查超出被检查对象的期望的通常变化范围之外的缺陷。检查到的异常不受限于缺陷的电特性显著与否,而受限于由给定的光学配置、系统的成像放大率和分辨率所决定的光学可分辨对象。分辨率还由这种系统的复杂性和运转速度所决定。

实施这种自动检查的基本原理基于按选定的放大率和分辨率来使被检查对象成像,然后使用图像捕获器件如CCD或CMOS传感器来使图像信息数字化。捕获到的图像可用来建立被检查对象表面上的正常变化的参考图像,并在与参考图像比较的基础上来实施缺陷检测。比较过程可在空间域中进行,其中诸如图像相减的空间图案比较技术被用来检查测试图像与参考图像的偏差。或者,比较过程也可在具有适当选定的典型特征的特征域中进行。在后面的情况里,测试对象和参考对象都由一组从图像中分离出来的特征所代表。比较过程也在上述选定的特征空间中进行。

有许多用于光学检查的方法。例如,在Levy等人的第4,247,203和4,347,001号美国专利中描述了一种使用空间图案比较技术来检查在重复的电路芯片的光掩模中的缺陷的自动光学光掩模检查装置。

在Specht等人的第4,805,123号美国专利中公开了一种通过在子像素分辨率级别进行的空间图案比较来检查具有这种重复图案的表面的改进方法。通过仔细的对参考图像和测试图像的子像素校准,可实现接近成像分辨率的检查灵敏度。由于在以特定分辨率进行采样后的图像中存在的折叠噪声(也称像素化噪声),这样的检查灵敏度通常不可能达到。这种方法已使用在硅片检查和TFT LCD检查中。

还有其他的解决方案被提出用于光掩模和集成电路芯片图案的检查。例如,在Danielson等人的第4,926,489号美国专利中、Jordan等人的第5,864,394号美国专利中以及Emery的第6,282,309号美国专利中都描述过这些解决方案。

自动光学检查技术在TFT LCD面板检查中的应用由已很好应用在集成电路芯片检查中的技术按比例放大而构成。然而,还公开了针对该应用领域中具体问题的其他技术,如提高材料的衬度。例如,在Finarov的第5,333,052号美国专利中描述了一种相衬度成像技术,它对提高衬度尤其有用,因此可检查TFT LCD面板中的透明材料(如ITO)。

AOI系统对电性质和非电性质的缺陷都能检查和成像,因此可通过检查那些不会立即导致故障的缺陷来用于工艺控制的目的。然而,AOI系统的性能和检查时间是由设备工作的分辨率所决定的。

因为许多在电子线路中引起严重电故障的缺陷与被检查对象的整个表面相比非常小,所以为了检查这些严重缺陷就要求设备具有高的光学工作分辨率。这样转而导致仪器非常贵或非常慢或两者兼而有之。就算使用最贵的硬件,可达到的检查速度仍受限于能实现的硬件技术。这些限制对于TFT LCD面板检查中的优选的应用领域尤其重要,其中TFT LCD面板沉积所用的平面材料板的尺寸与相关的电路特征尺寸相比正变得越来越大。

因此,这就要求使用前面提到的、可以不依赖缺陷的物理尺寸而能检查电的显著缺陷的电子和电光检查技术。然而,电子和电光系统面临着困难:对一定类型的缺陷,缺陷的电特征可能覆盖远大于其自身物理因素的区域。例如,TFT LCD面板电路中一根数据线与共用线之间的短路将使整个数据线接地,并因此导致覆盖整个数据线占用区域的缺陷特征。上述检查不能给出缺陷的位置信息,这也是这种系统的主要缺点。为了出于工艺控制的目的(为使操作员通过光学显微镜手动复查缺陷的性质,或为使自动分类子系统对缺陷成像和处理)而监测缺陷的再现,缺陷的位置信息是很有用的。如果工艺中包括修复设备,位置信息被进一步用来寻找和修复缺陷。

在Clark等人的名为“集成可见成像和电子传感检查系统”的第10/223,288号早期美国专利中,公开了增强配有集成可见成像(AOI)通道的非AOI检查设备的一般概念,其通过旨在结合检查和分类结果的两个独立通道来同时对被检查对象的整个表面实施扫描。

图2概述了用于检查和修复缺陷的典型的现有技术工艺流程。该工艺不仅适用于非AOI检查系统而且对AOI系统也同样适用。在操作中,从前面的工艺步骤(步骤210)中传送来的被检查对象被引导到缺陷检测系统212中以扫描对象中的生产异常。在缺陷检测系统检查完对象后,可得到输出——从被检查对象中识别出的缺陷的清单。

根据缺陷检查系统的能力,缺陷可被精确的定位成缺陷点或宽泛的定位成可能覆盖大面积的缺陷区域。例如,某些电测试方法不能确定线路短路的精确位置,因为其导致的电异常影响到整条线而并不是只在发生物理缺陷的范围。

如果缺陷检查步骤(在系统212中)没有识别出缺陷(步骤214),对象被传送到下一个工艺步骤(步骤224)。如果识别出一个或更多的缺陷,就做出决定——是否每个缺陷都能被适当的修复系统218修复(步骤216)。根据检查和修复系统212、218的能力,上述决定既可在检查系统212中也可在修复系统218中做出。例如,一些检查系统具有实施自动复查和基于用户规则按缺陷的可修复与否来对缺陷分类的能力。

可修复的缺陷被修复系统处理,如果成功(步骤228),被检查的面板既可以被传送到下面的工艺步骤(步骤224),也可以经另一工艺(步骤220)并被转移至另一工艺流程(步骤226)。不可修复样品的实际处理通常依赖于制造厂。根据工厂的计划,可选的工艺和随后的工艺流程可能导致废弃整块基板,或仅废弃基片上的缺陷面板或剥离整块基板并在工艺的开始重复利用。当被检查对象通过工艺过程传送时,识别出的缺陷的信息被储存并通过数据库228传送进入到检查和修复系统中。

所需要的是特别针对多数非AOI系统(如那些基于电子和电光技术的系统)的局限性的面板检查系统,以在缺陷被使用者或自动分类装置复查之前精确确定缺陷的确定类型。

仅有一种这样的技术已被引入到工业中。韩国Charm公司为便于修复缺陷最近发展了一种自动定位面板中缺陷的平台。该装置是对修复设备中工艺操作的改进。该装置使用分离的TDI线扫描照相机作为独立的辅助光学系统——独立于修复平台的主要复查和修复光学系统操作。该装置具有低质量的物平面像素分辨率,因而需要子像素插值法来确保分辨率和检测灵敏度达到要求的精度。成像在本质上是一维的,有两个显著的结果。图像不能被瞬时捕获,并且为检查沿两个方向的缺陷必须进行两个互相垂直的不同扫描。因此,线扫描照相机本身必须在两个扫描方向之间物理旋转。

发明内容

根据本发明,在用于对TFT-LCD面板进行电子和电光检查的检查系统中,通过提供以下部分来使自动检查得到增强,即,对被检查对象有限部分的按需高分辨成像AOI扫描(作为常规复查通道的一部分),通过在扫描过程中利用一系列短脉冲照明来由空间成像器件捕获特定区域的精确的高分辨率二维图像,从而有助于电子和电光检查系统的缺陷定位和分类。多于一点的点缺陷可通过能捕获多重图像的工艺来识别。根据本发明的装置可被用作独立的设备或合并到检查平台或修复平台中,用来在缺陷被使用者或自动分类装置复查前,精确定位某种类型的缺陷。由于其具有高的成像分辨率,因此无需使用子像素插值法。

在一个具体实施例里,具有超过60帧每秒捕获能力的高速面积扫描照相机,在捕获具有曝光持续时间低于约20微秒并优选地低于8微秒的闪光灯图像时,能以大于30mm/s的扫描速度工作。使用三角测量并与成像扫描照相机共享相同光路的硬件自动聚焦传感器提供用于成像功能的快速连续聚焦对准跟踪。

按需的功能性接着非AOI检查功能和/或修复功能实施,并在预先确定的有限区域中实施以对其中的缺陷定位和成像。本发明的具体实施例会以非AOI检查设备的功能增加的形式以及与上述非AOI检查设备联合的修复设备的功能增加的形式描述。

通过参考下面的细节描述和附图,本发明将更好地被理解。

附图说明

图1是用于说明缺陷类型的被测试对象的图;

图2是围绕缺陷检查系统和缺陷修复系统的流程图;

图3是上述工艺在缺陷检查设备方面的细节图;

图4示出了缺陷修复设备方面的细节图;

图5是根据本发明的一个实施例的光学成像装置的侧剖视图;

图6是根据本发明的另一个实施例的、使用硬件自动聚焦的光学成像装置的侧剖视图;

图7(a)-7(c)是对根据本发明的选通面积扫描成像过程的说明;

图8是本发明的具体实施例的总的结构图。

具体实施方式

在检查系统或在由检查和修复设备组成的系统组中,使用明确的工艺来确定检查操作和其后可选的修复操作将以多精确的程度来实施。上述工艺描述了检查和修复操作中涉及的子系统的角色,以及将对被检查对象实施的操作的顺序。

本发明提出把按需AOI(AOI-on-demand)子系统添加到设备中以得到改进。

本发明的主要贡献是改进的工艺流程和增加的由添加的子系统来快速识别缺陷的能力。

图3中,描述了按需AOI工艺的一个具体实施例,其中新的功能被集成到工艺的检查方面和检查设备中。要经过缺陷检查的对象被输入(步骤310)到检查设备(由开始于步骤312的工艺表示)。检查设备扫描对象的表面以寻找缺陷(步骤312)。如果没找到缺陷(步骤314),对象被传送到下面的工艺步骤(步骤315),跳过修复设备或设备组。如果发现缺陷(步骤314),在设备配有缺陷复查硬件的情况下,就要经过复查步骤(从步骤316开始)。

非AOI检查设备通常指出的是跨越单一空间点的,即,一个区域的具有电特征的缺陷。现有技术以相同方式来处理这两种类型的缺陷,即它们都被用于分类的光学显微镜复查、或根据非AOI判定标准来处理(如被系统识别的电缺陷的类型),以决定它们是否可被修复。本发明中把这些步骤合并成步骤316以及路径338、步骤318、步骤332和步骤330。

通过将高分辨率光学显微镜分派到缺陷位置(步骤322)、并采集用于上述选定视场的复查图像(步骤324),使缺陷在检查设备处得到复查。然后图像既可通过人类操作员(步骤326)的观察又可经过自动分类系统(步骤328)来决定缺陷的类型和严重程度。缺陷再次被评估为可修复的(是)或致命的(否)(步骤330),并且面板既可被分派至修复设备(步骤336)也可转至另一工艺流程(步骤334)。

现有技术规定如果某一区域被识别出缺陷,那么将启动一个困难的人工复查工艺。例如线路短路意味着操作员需要用显微镜扫描跨越整个面板长度或宽度的线来观察物理缺陷、并确定缺陷的严重程度,在大多数情况下,这对高放大率的显微镜来说几乎是不可能完成的任务,因为要覆盖整个区域并找出缺陷需要令人望而却步的大量的时间。最佳的情况下,操作员可以在显微镜的放大率之间切换并试图在更小的放大率下找到缺陷。这也需要相当长的操作时间。

另一方面,自动分类装置通常被设计用来工作在图像的范畴内,并且不能处理这样的情况——不知道缺陷的精确位置。

根据本发明,当缺陷的电特征是“区域”或地区而不是局域点时,按需AOI工艺320子系统被激活。具有适当放大率和分辨率的光学成像系统被分派来扫描由非AOI检查指出的区域,以覆盖全部区域(步骤321),上述收集到的图像流被捕获并存储在系统存储器中(步骤323)用于进一步的使用或分析。通过专用的图像处理硬件/软件对图像流进行处理,以检测和精确定位与非AOI方法检测出的原始电缺陷对应的物理缺陷(步骤325)。一旦缺陷被归结为空间局域点,就被移交至复查工艺(步骤318)。

图4中示出了本发明的另一实施例,其中新的按需AOI功能被集成到工艺的修复部分即修复设备中。来自较早工艺步骤(可能直接来自检查步骤336,图3)的需修复的对象进入修复系统(步骤410)。缺陷信息典型地通过公共的数据库传送到系统中,数据库事先已被检查系统(图3中的步骤326或328)更新。

(现有技术中,修复设备的运作方式为无论缺陷覆盖点还是区域都要被送去复查(步骤412,经路径414到步骤418)。属于工艺修复部分的上述复查通常是人工的。操作员选择要被修复的缺陷。高放大率、高分辨率光学显微镜被分派至缺陷处(步骤418),并且缺陷图像被提交给操作员(步骤420)。操作员决定如何修复缺陷并采取必要的措施来这样做(步骤424,426),转送被修复的对象到下面的工艺步骤(步骤432)。如果缺陷不可被修复(步骤428),对象被转至另一工艺流程(步骤430)来处理不可被修复的有缺陷的面板。)

(当缺陷仅能被识别为区域时,根据现有技术,操作员需要人工扫描全部区域以确定真实的物理缺陷并试图修复它。这需要相当长的d操作时间并对修复生产量有直接的负面影响。)

本发明,在进一步的实施例中,通过添加特定的按需AOI能力来改进工艺。这通过用工艺(步骤416)来替代直接连接(路径414)而实现。当包含的缺陷具有覆盖区域而不是局域点的特征时,按需AOI功能被激活。具有适当放大率和分辨率的光学成像系统被分派来扫描由缺陷信息指出的区域,以覆盖整个区域并在系统存储器储存收集到的图像流(步骤421,423)。图像流被图像处理硬件/软件处理,以检查与原始电缺陷区域对应的物理缺陷,并对其进行精确定位(步骤425)。一旦每个缺陷被分辨成空间局域点,就被移交至其余的复查和修复工艺(自步骤418始)。

本发明的主要贡献是改进工艺,通过改进工艺来使得检查和/或修复设备工作,以改善具有这些设备的工艺的生产能力。用于按需AOI的优选的硬件实施例是如何把功能结合到设备中去的实例。

在本发明的具体硬件实施例中,具有适当放大率的专用成像通道和具有与其匹配分辨率的面积扫描成像捕获器件以及选通闪光灯装置一起用作按需AOI子系统。图5中示意性地示出了上述成像通道光学装置的细节。面积扫描照相机500的所有组件都沿着中央光轴510和照明轴528设置。显微镜物镜526和镜筒透镜518被放置在光学结构中用于观察,并且把面积扫描成像捕获器件(如CCD或CMOS器件)514配置在复合(物镜526和镜筒透镜518)成像系统的像平面。传感器514被附入照相装置512中。在图像捕获过程中,成像的对象(未示出)被快速选通闪光灯522经照明光学系统520照亮。在30毫米每秒的扫描速度下,持续照明时间典型地为大约低于20微秒并优选地低于8微秒。照明光经分束器542被耦合到主光轴中,整个结构通过安装板516安装到检查或修复设备(未示出)上。根据本发明的光学装置被安装到安装板516上以便在操作时可相对于目标移动,亦即当光学系统保持固定时目标可被移动,或者目标保持固定时光学系统可被移动。

面积扫描照相机500结合选通闪光照明有很大的优点。面积扫描照相机500能沿任意扫描方向实施图像采集,因为面积扫描传感器514不是类似于线扫描成像器件的方向敏感图像捕获器件。然而,一般地,面积扫描成像传感器对移动的存在敏感,并且理想情况下应该仅用在照相机静止不动时。通过使用短脉冲选通闪光照明可使得这个缺点得到减轻。上述照明方案产生的高密度光的短脉冲冻结移动,并使得当成像通道装置移动时仍能捕获一系列清晰的图像。上述工艺提供了抵抗设备中震动的图像清晰度的固有稳定性。闪光灯的短工作循环也使照明装置的电能消耗降至最低,并且延长了灯泡的预期寿命。这样的闪光灯比任何其他连续照明装置在尺寸上都更小且更轻。

图5中示出的光学装置仅为本发明的一个具体的硬件的实施例。其他实施例也是可能的并被讨论如下。

图6中示出了本发明的一个实施例,其中基于硬件的追踪自动聚焦被集成到成像通道中。在本实施例中,自动聚焦机构612使用如三角测量来确定位置,并且成像通道能通过沿z轴相对于支撑整个装置的平台516的受控移动610来机械地保持最佳聚焦。移动可由这样的备选方案来实现,如驱动整个平台的步进马达或音圈,或者由显微镜物镜526的音圈启动来实现。硬件焦点对准传感器612被安装在镜筒上并被用来检查z轴位置和聚焦状态。焦点对准传感器612通过分光器616和诸如透镜614的相关光学装置被集成到成像通道中,透镜614将图像引导至普通照相机中所使用类型的聚焦检查和控制组件(未示出)。控制元件可被安装在成像通道上或配置在分离的托架上,其输出驱动伺服电机来控制整个机构或至少一个透镜元件的机械定位。

图7(a),7(b)和7(c)中示出了根据本发明的具有选通闪光灯照明装置的面积扫描成像通道的运转方式。成像通道覆盖特定的高分辨率的视场(FOV)710,例如由包围闪光脉冲的触发信号714处的图像中心点的区域所代表的。当成像通道沿特定运动路径716或722移动时,由周期性位置触发信号714触发的选通闪光灯照明装置冻结沿着通道的运动的图像,并捕获被扫描区域的清晰的图像。每个被闪光灯照明装置捕获的FOV都有重叠的小面积712,典型为大约1%。

图7(b)示出了将特定缺陷区域分辨成缺陷点的过程。沿着运动轨迹延伸过许多视场(FOV)的区域或地区718被成像通道设备(图5或6)扫描,并且成像通道设备(图5或6)捕获连续的高分辨图像以覆盖全部区域。每幅捕获到的图像被进行图像处理和缺陷检查处理。在一幅或更多的捕获图像中,缺陷点720可通过闪光灯和自动聚焦而被检查到。上述检查从区域中分辨出一个或更多的缺陷点,因此完成了按需AOI扫描工艺。

由按需AOI特征扫描的缺陷区域不必为如图7(a)和7(b)中所示出的线形区域。其他任意形状的区域也可适用。图7(c)中示出了被蛇形轨迹722覆盖的矩形区域。这种情况中,可行的算法决定了成像通道的合理的扫描轨迹以覆盖面积。

图8中示出了本发明的一个具体实施例的功能部件。开始时,检查区域的信息810被输入系统中,指明该区域不能被分辨成独立的缺陷点。扫描轨迹发生器812设计出适当的轨迹以覆盖具有重叠的高分辨成像帧的区域——由缺陷区域信息810所指定的区域。如此产生的轨迹驱动x-y平台控制器814并使x-y平台818(或支撑被检查的目标元件的平台)运动,以相对于被检查的目标元件或物质来移动成像通道。位置寄存器816与相关的触发逻辑电路817一起追踪上述指示的移动,并产生同步触发信号820(图7(a)中714)。该信号被提供给成像传感器822、相关的帧抓取器838以及闪光灯照明装置826,以执行同步图像获取。在上述由闪光灯照明的捕获过程,硬件自动聚焦传感器824将聚焦对准质量信号(通过可选的信号调节器828)提供给动态追踪滤波器830。滤波器830依次产生z轴控制器832的系列的设定点,z轴控制器832驱动z轴移动平台834靠近追踪自动控制环路。通过调节到被检查元件表面836的物距,上述装置在整个图像捕获过程维持最佳聚焦。被捕获的帧暂时存在专用的帧缓冲器840中,并被适当的图像处理和检查子系统842处理。这导致初始区域被分辨成标记为独立的缺陷点的记录844、845、846,并完成整个过程。

使用在电子线路的晶片检查或TFT LCD面板检查应用领域中的精密的检查和修复设备一般预装有用于缺陷复查目的的光学显微镜和成像硬件。本发明中的照相机一般具有高放大率和分辨率;然而,也可装有不同放大率的物镜的旋转台以改变飞轮上的放大率。

为对被检查或修复对象的截面精确定位和成像,设备需要对象被精确对准。这一般通过使用对象上的定位和成像对准标记来实现。设备可能具有用于实施这种功能的分离的光学系统。此外,因为对准和复查功能不能与推荐的按需AOI功能同时运转,因此在上述工艺的推荐的按需AOI工作时,成像通道空闲。

另一实施例使用复查照相机作为成像通道来采集按需AOI检查和定位所需的图像流。如果复查系统只有一个放大率,按需AOI的速度由上述放大率决定,并且可能会太慢而对具有非常高的放大率的复查照相机不实用。然而,因为这是全自动过程,所以在某些场合中可以忍受。复查照相机也可配有具不同放大率物镜的旋转台。在这种情况下,按需AOI子系统选择适当放大率的物镜来实施扫描。

另一种按需AOI系统的硬件实施例使用对准照相机作为成像通道,来采集自动光学缺陷检查和定位所需的图像流。对准照相机一般为单色相机,其具有在所选情况下适用于按需AOI扫描的放大率,因此它非常适于上述任务。

在本文中并未明确列出对于本领域技术人员来说是显而易见的具有类似变化的其他实施例。

本发明利用有效的图像处理算法来处理从按需AOI扫描中采集到的图像流。为处理图像和检查缺陷的具体规则的具体细节不是本发明的主要兴趣。然而,成像通道的放大率和分辨率根据被检查的最小缺陷的尺寸来选择。因为子系统仅扫描由非AOI方法确定的一个有限区域,所以可使用比能够执行对被检查对象的全部表面扫描的AOI系统更高的放大率和分辨率。因此,假如缺陷检查方法是基于通常的空间比较/图案相减技术,那么非子像素对准方法是必须的。其他光学滤波技术也被作为缺陷检查方法使用在按需AOI子系统中。

使用校准程序和算法将按需AOI子系统集成到合适的平台中。上述算法的具体细节不是本发明的主题。然而算法具有将相对于所采集图像的缺陷坐标与系统的宽的整体坐标联系起来的所有措施,从而使得被检查对象可与非AOI检查的缺陷联系起来、可被绘图、可被使用显微镜复查并可被显示。

已经参照参考具体实施例对本发明进行了说明。其他实施例对于本领域技术人员将是显而易见的。因此本发明不受以上具体实施例的限制,其范围由所附权利要求指出。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号