首页> 中国专利> 用从冷阴极电子发射器产生的电子处理和改善目标对象的方法和装置

用从冷阴极电子发射器产生的电子处理和改善目标对象的方法和装置

摘要

本发明提供一种使用电子处理和改善目标对象的装置和方法,通过该装置和方法,即使在具有相对宽的表面区域需要处理的时候,也能够在与大气压力基本相等的压力下使用电子均匀且有效地处理和改善目标对象。该方法使用具有根据隧道效应从平面电子发射部分中发射出电子的能力的冷阴极电子发射器,并且优选包括一对电极以及一个包含布置于所述电极之间的纳米晶硅的强场漂移层。通过在所述电极之间施加电压来使目标对象暴露于从该平面电子发射部分中所发射的电子中。优选的是,所发射出的电子的能量从1eV到50keV、优选1eV到100eV的范围中选择。

著录项

  • 公开/公告号CN1849673A

    专利类型发明专利

  • 公开/公告日2006-10-18

    原文格式PDF

  • 申请/专利权人 松下电工株式会社;

    申请/专利号CN200480026387.2

  • 申请日2004-11-25

  • 分类号G21K5/00;B01J19/08;

  • 代理机构隆天国际知识产权代理有限公司;

  • 代理人王玉双

  • 地址 日本大阪府门真市

  • 入库时间 2023-12-17 17:51:11

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-01-11

    未缴年费专利权终止 IPC(主分类):G21K5/00 授权公告日:20100714 终止日期:20151125 申请日:20041125

    专利权的终止

  • 2010-07-14

    授权

    授权

  • 2006-12-20

    实质审查的生效

    实质审查的生效

  • 2006-10-18

    公开

    公开

说明书

技术领域

本发明涉及使用电子处理和改善目标对象的方法和装置。

背景技术

过去,使用电子辐射来对目标对象(object)进行表面处理和改善(surfacemodify)、消毒或清理。例如,日本专利早期公报[kokai]No.2002-6094公开了一种电子辐射装置,其能够用来形成交联桥结构或者净化废气。该装置设置有:具有热丝的电子枪、用来将电流提供给热丝以产生电子的高压电源、用来加速所产生的电子以获得电子束的加速电极、以及用来偏转电子束的电磁铁。

然而,由于热丝是具有点状或者线状电子发射部分的电子源,所以需要扫描电子束来处理和改善目标对象相对宽的表面区域。这导致处理效率的降低,且导致装置结构变得复杂。此外,由于在高真空度下加热该热丝以产生电子,因此需要例如减压室和真空泵的真空设备。结果出现了一个问题,即尽管该装置的成本增加了,但是该装置的应用区域较窄。

另一方面,日本专利早期公报No.3-29662公开了一种通过5至10MeV高能电子束辐射来对动物饲料进行消毒的方法。此外,日本专利早期公报No.2000-69908公开了一种通过200keV至300keV电子束辐射来对绿茶粉进行消毒的方法。在这些方法中,由于需要昂贵的电子加速器来获得高能电子束,因此装置成本的大幅增加便成为一个问题。此外,每次将这种高能电子束辐射到目标对象较宽的表面区域是有困难的。

发明内容

鉴于上述问题,本发明的一个目的是提供一种即使当目标对象具有相对宽的表面区域需要处理和改善的时候,也能使用电子来有效且均匀地处理和改善目标对象的方法。

也就是说,本发明的方法包括步骤:提供冷阴极电子发射器,该冷阴极电子发射器具有根据隧道效应从平面电子发射部分中发射电子的能力;将电压施加到该发射器以从该平面电子发射部分中发射电子;以及将该目标对象暴露在所发射出的电子中。作为冷阴极电子发射器,尤其优选使用弹道电子表面发射装置(BSD),其包括一对电极和一个强场漂移层,该强场漂移层包含布置于所述电极之间的纳米晶硅。

根据本发明,由于使用冷阴极电子发射器,其是平面型电子发射源,所以除了提高处理效率和均匀度外,还能够在接近大气压力的被降低的压力下进行对目标对象的处理和改善。特别是,当使用BSD作为冷阴极电子发射器时,能够在大气压力下进行处理和改善而无需使用真空设备例如真空泵和减压室。因而,具有扩展应用领域、减小装置尺寸以及降低处理和改善成本的诸多优点。

在本发明中,词语“处理和改善(modify)”的意思包括各种类型的反应,例如硬化、聚合、分解、桥接、氧化、电离、激化和基团反应,改变表面张力、表面能量、可湿性、附着力、吸收系数、折射率或晶体结构,引入缺陷,病毒、霉菌和花粉等等的杀菌、消毒、过滤,生理作用例如萌芽、老化或者防熟、有益细菌的繁殖、脱臭、清洁、净化,以及有害物质的去除。

在上述方法中,优选的是,用于处理和改善目标对象的电子的能量从1eV到50keV、优选1eV到100eV的范围中选择。

本发明的另一目的是提供一种使用电子有效且均匀地处理和改善目标对象的装置。即,该装置包括:冷阴极电子发射器,其具有根据隧道效应从平面电子发射部分中发射出电子的能力;电压施加装置,用于对所述发射器施加电压以从所述平面电子发射部分中发射出电子;以及壳体,用于在其中容纳所述发射器。该壳体具有开口,通过该开口提供电子或者被电子所激活的气体。由于上述同样的原因,特别优选的是使用弹道电子表面发射装置(BSD)作为冷阴极电子发射器,其包括:一对第一和第二电极,和一个强场漂移层,该强场漂移层包含在第一和第二电极之间所布置的纳米晶硅。

此外,优选的是,上述装置还包括加速电极,其与所述平面电子发射部分面对面地放置,用以加速电子。在这种情况下,能够控制辐照到目标对象的电子的能量。

在上述装置中,优选的是,第一电极由第一电极带的阵列组成,其被排列成在横向方向上相互间隔;并且第二电极由第二电极带的阵列组成,其被排列成在与所述横向方向交叉的方向上相互间隔,其中当所述电压施加装置在第一电极带中的至少一个和第二电极带中的至少一个之间施加电压时,从与它们之间的交叉区域相对应的平面电子发射部分中选择性地发射出电子。而且,优选的是,该装置具有:第一选择器,用于选择第一电极带中的至少一个;以及第二选择器,用于选择第二电极带中的至少一个,其中所述电压施加装置在由第一选择器所选择的第一电极带中的至少一个和第二选择器所选择的第二电极带中的至少一个之间施加电压,来从与它们之间的交叉区域相对应的平面电子发射部分中选择性地发射出电子。在这种情况下,能够依据目标对象的尺寸改变处理和改善区域,从而节省能量并且降低了处理和改善的成本。

本发明的再一目的是提供一种用于执行上述处理和改善方法的装置。该装置包括:冷阴极电子发射器,其具有根据隧道效应从平面电子发射部分中发射出电子的能力;电压施加装置,用于对所述发射器施加电压以从平面电子发射部分中发射出电子;以及支架,用于支撑目标对象以便该目标对象暴露于所发射的电子中。由于上述同样原因,特别优选的是使用BSD作为冷阴极电子发射器。

参考附图,通过对于本发明具体实施例的描述,本发明的这些和其它目的和优点将更为明显。

附图说明

图1是根据本发明第一实施例的使用电子处理和改善目标对象的装置的截面图;

图2是该装置的冷阴极电子发射器的立体图;

图3是另一冷阴极电子发射器的立体图;

图4是该冷阴极电子发射器的强场漂移层的示意图;

图5是从该冷阴极电子发射器中所发射出的电子的能量分布曲线图;

图6是根据第一实施例改型的装置的截面图;

图7A和图7B是冷阴极电子发射器优选配置的立体图;

图8是根据第一实施例另一改型的装置的截面图;

图9是根据第一实施例又一改型的装置的截面图;

图10是根据本发明第二实施例的使用电子处理和改善目标对象的装置的截面图;

图11是根据第二实施例的第一改型的装置的截面图;

图12是根据第二实施例的第二改型的装置的截面图;

图13是根据第二实施例的第三改型的装置的截面图;

图14是根据第二实施例的第四改型的装置的截面图;

图15是根据本发明第三实施例的使用电子处理和改善气体的装置的截面图;

图16是根据第三实施例改型的处理和改善液体的装置的截面图;

图17是根据第三实施例另一改型的处理和改善固体的装置的截面图;

图18A和图18B分别是根据本发明第四实施例的使用电子处理和改善目标对象的装置的顶视图和截面图;

图19是根据本发明第五实施例的使用电子处理和改善目标对象的方法的示意图;以及

图20是根据第五实施例改型的处理和改善处理的示意图。

具体实施方式

以下根据优选实施例详细说明本发明。

(第一实施例)

如图1和图2所示,根据本实施例的使用电子处理和改善目标对象2的装置包括:冷阴极电子发射器1,其具有平面电子发射部分10;电压施加单元30,用于将电压施加到该发射器以从该平面电子发射部分中发射出电子;壳体20,用于将该发射器容纳于其中,其由绝缘材料制成且具有用来将所发射出的电子提供到该壳体外面的开口21;以及支架40,用于支撑目标对象2以便该目标对象暴露于通过该开口所提供的电子中。在图1中,标号50代表附着于开口21的网状电极,用以加速从发射器1中所产生的电子。可选择的是,由电子可以通过的材料制成的窗口部件可以附着于该开口,以替代加速电极。

如图2所示,冷阴极电子发射器1包括:导电衬底14,例如n型硅;在导电衬底14上表面上形成的非掺杂多晶硅层13;在多晶硅层13上形成的强场漂移层12;在强场漂移层12上设置的第一电极11;以及在导电衬底14下表面形成的欧姆电极15。在这种情况下,导电衬底14和欧姆电极15用作第二电极。此外,第一电极11的上表面提供发射器1的平面电子发射部分10。强场漂移层12可以不通过多晶硅层13而直接形成在导电衬底上。可选择的是,可以使用如图3所示的另一种冷阴极电子发射器1,其特征在于使用例如玻璃或陶瓷材料的绝缘衬底16代替导电衬底14,电极层17作为第二电极形成在该绝缘衬底上,且强场漂移层12形成在电极层17上。在本实施例中所使用的冷阴极电子发射器1是公知的弹道电子表面发射装置(BSD)。

如图4所示,强场漂移层12由朝向第一电极11延伸的柱形多晶硅颗粒100、在硅颗粒100的表面上形成的第一氧化硅薄膜110、在相邻硅颗粒100之间形成的纳米晶硅微粒120、以及在微粒120的表面上形成的第二氧化硅薄膜130所组成,其中每个第二氧化硅薄膜130的厚度都比纳米晶硅的晶粒尺寸小。

例如,能够根据以下工序制造强场漂移层12。首先,对导电衬底上的非掺杂多晶硅层进行纳米晶化工艺,从而获得具有柱形多晶硅颗粒100和纳米晶硅微粒120的纳米晶复合层。在该纳米晶化工艺中,例如,使用通过以1∶1的混合比率将55wt%的氟化氢水溶液与酒精混合而获得的电解溶液。

然后,具有用作欧姆电极的电极层和多晶硅层的导电衬底被放置在电解溶液中。该电极层用作阳极电极,而位于多晶硅层上的铂电极用作阴极电极。通过在在该阳极电极和阴极电极之间提供电流密度为12mA/cm2的恒定电流一段预定的时间、例如10秒,同时照射来自500W钨灯的光,能够获得纳米晶复合层。在该纳米晶复合层中,在除了硅颗粒100和纳米晶硅微粒120以外的区域可以形成非晶硅。可选择的是,根据纳米晶化工艺的条件,通过微孔可以形成非晶硅区域。在这种情况下,纳米晶复合层具有多孔结构。

接下来,对纳米晶复合层进行氧化工艺来获得强场漂移层12。在该氧化工艺中,例如,使用通过将0.04mol/l的硝酸钾加入到有机溶剂如乙二醇中而获得的电解溶液。然后,具有纳米晶复合层的导电衬底被放置在该电解溶液中。用作欧姆电极的电极层是阳极电极,而位于纳米晶复合层上的铂电极用作阴极电极。通过在该阳极电极和阴极电极之间提供电流密度为0.1mA/cm2的恒定电流一段时间以将其间电压升高20V,能够电化学地氧化该纳米晶复合层来获得强场漂移层12。

在强场漂移层12中,非晶硅或部分氧化的非晶硅可以在除了硅颗粒100、纳米晶硅微粒120、第一和第二氧化硅薄膜(110,130)以外的区域上形成。当形成这些氧化硅薄膜(110,130)的时候,可以代替上述氧化工艺进行氮化工艺或者氮氧化工艺。在氮化工艺的情况下,氧化硅薄膜被氮化硅薄膜所代替。在氮氧化工艺的情况下,氧化硅薄膜被氮氧化硅薄膜所代替。

为了从冷阴极电子发射器1中发射出电子,当在第一电极11和欧姆电极15之间施加所需电压以便第一电极的电势比欧姆电极的电势高的时候,电子被从第二电极注入到强场漂移层12中。此时,由于大部分电场被施加到强场漂移层12的第一和第二氧化硅薄膜(110,130),所注入的电子被施加到这些氧化硅薄膜的强电场加速,以至于电子在强场漂移层12的硅颗粒100之间的区域中漂移,如图4的箭头所示,并且通过第一电极11被发射到外部而几乎没有被纳米晶硅微粒120所散射。这种现象被称为弹道电子表面发射现象,其是一种隧道效应。由于从强场漂移层12所产生的热通过硅颗粒100被释放,因此在电子发射时能够避免爆裂(popping)的发生。

从冷阴极电子发射器1中所发射出的电子被称为冷电子。相反,通过加热从点状或线状电子发射器例如热丝中所产生的电子被称为热电子。此外,在本发明中所使用的冷阴极电子发射器1是公知的场致发射型电子源,其优选用于显示装置,例如公开于日本专利早期公报No.2000-100316中。

从冷阴极电子发射器1中通过壳体20的开口21所提供的电子被辐照到由支架40所支撑的目标对象2的所要被处理和改善的表面上。所辐照的电子能量能够根据处理和改善的目的来确定。例如,为了避免目标对象的放射性活化,优选使用小于10MeV的能量,且更优选为小于1MeV。在使用小于300keV的能量的情况下,能够简化对于X射线的放射性防护设备。

为了获得期望的满足本发明目的的处理和改善效果,优选使用具有从1到50keV、尤其是1到100eV范围中所选择出的能量的电子。当辐照具有近似4eV能量的电子时,原子和分子能够被激发。此外,当辐照具有4到12eV能量(该能量等于或稍大于原子间4到8eV的结合能)的电子时,能够有效地对目标对象进行表面处理和改善。当辐照具有20到100eV能量的电子时,原子和分子能够被电离。而且,当将其能量小于电离能量的电子辐照到作为目标对象的包含湿气或蒸汽的气体时,电子附着于该目标对象,以至于容易产生负离子。

顺便提及一个优点,从冷阴极电子发射器中所发射出的电子的能级比在电极之间所施加的电压量级高且成比例。例如,通过使用10到20V的施加电压能够获得具有1eV到几十电子伏能量的电子,这比从热丝中所产生的热电子的电子能级(例如0.1eV)高得多。

作为一个例子,从冷阴极电子发射器1中所发射出的电子的能量分布如图5所示。在该图中,“A”、“B”和“C”代表在电极之间分别施加12V、14V和16V的电压时所获得的能量分布的分布曲线。这些分布曲线显示了随着所施加的电压增加,波峰变得陡峭且波峰的位置移位到高能侧。

在控制从冷阴极电子发射器1中所发射出的电子的能量的情况下,优选将加速电极50布置在壳体20的开口21附近的第一电极11上方,并且在加速电极和第一电极之间施加所需电压以便加速电极的电势比第一电极的电势高。例如,如图3所示,当在冷阴极电子发射器1的第一电极11和第二电极17之间施加电压Vps、以及在加速电极(阳极电极)50和第一电极11之间施加加速电压Vc以使加速电极的电势比第一电极的电势高的时候,能够依靠加速电压Vc的大小控制所发射出的电子的能量。

在图3中,当在第一电极11和第二电极17之间流过的电流代表二极管电流Ips、并且在加速电极50和第一电极11之间流过的电流代表发射电流Ie的时候,能够将电子发射率定义为发射电流Ie和二极管电流Ips的比率(=Ie/Ips)。当该比率较大时,电子发射率增加。根据本发明,即使在第一电极11和第二电极17之间施加10到20V的相对低的电压作为电压Vps,也能够发射电子。此外,由于电子发射率对真空度的依赖性很小,以及在电子发射时没有发生爆裂,因此能够以提高的电子发射率来稳定地发射电子。这意味着能够在与大气压力接近的压力下来发射电子。对于电压Vps,可以使用恒定DC(直流)电压或者脉冲电压。在使用脉冲电压的情况下,当不施加电压Vps的时候可以施加反偏电压。类似地,对于加速电压Vc,可以使用恒定DC电压或者脉冲电压。

加速电极50可以由金属材料制成,例如铝、钨和不锈钢。此外,加速电极50可以构造成框架形来适配壳体20的开口21。在这种情况下,电子通过框架形加速电极的内部空间被辐照到目标对象上。可选择的是,可以将栅电极布置在壳体开口的附近。

总之,本实施例的处理和改善装置和方法呈现出以下效果。

(1)由于使用具有平面电子发射部分的冷阴极电子发射器,因此与使用具有点状和线状电子发射部分(例如热丝)的电子发射源的情况相比,能够每次均匀地将电子辐照到目标对象宽的表面区域上。由此,可以提高处理和改善的效率和均匀性。

(2)冷阴极电子发射器例如BSD具有在大气压力下发射电子的能力。因此,能够进行处理和改善而无需使用真空设备例如减压室和真空泵。

(3)由于发射电子所需要的上升时间(rise time)比用于发射热电子的电子发射源例如热丝的短,因此冷阴极电子发射器能够由脉冲电压来驱动。因而,具有节省功耗的优点。

(4)由于本发明不需要用于扫描电子束的装置,因此降低了装置的成本。

对于本实施例的改型,如图6所示,优选布置一对冷阴极电子发射器1、每一个均是上述的冷阴极电子发射器,以便通过在壳体20上形成的一对开口21沿两个相对的方向发射电子。在这种情况下,该对冷阴极电子发射器的第二电极17分别与绝缘衬底16的相对表面连接,如图7A所示。可选择的是,优选该对冷阴极电子发射器的欧姆电极15是由布置在两个强场漂移层12之间的共用电极组成的,如图7B所示。在这种情况下,通过在冷阴极电子发射器的共用电极15和第一电极11之间施加电压而在相反的两个方向上发射出电子。因而,能够通过减少电极的数量来简化电压施加单元。

此外,通过形成具有在相反的两个方向上同时发射电子的能力的至少一个冷阴极电子发射器的二维或三维阵列,如图7A或图7B所示,以及形成具有在一个方向上发射电子的能力的至少一个冷阴极电子发射器的二维或三维阵列,如图2或图3所示,能够设计出用于从不同的方向同时将电子辐照在目标对象上的高效处理和改善装置。例如,如图8所示的处理和改善装置具有一对处理空间,在每一个处理空间中能够同时从相反的两个方向辐照电子。在图8中,标号72代表气体供给单元,用来提供气体进入壳体内作为待处理和改善的目标对象。因此,在处理空间中被电子所激活的气体通过壳体20的开口21被排出到外部。

根据本实施例的改型的处理和改善装置如图9所示。该装置的特征在于包括用来支撑目标对象2的支架40以及发射器移动单元60,用来围绕目标对象移动内部具有冷阴极电子发射器1的壳体20。例如,对于发射器移动单元,优选沿期望的轨线形成轨道61,并且用于壳体20的托架63沿该轨道移动。在这种情况下,能够将电子选择性地辐照到目标对象上所期望的表面区域,而不用移动目标对象,并且也能够改变电子辐照到目标对象的辐照角度。

发射器移动单元60还可以包括距离调节器,用于相对于托架63向上或向下移动壳体20,以调节冷阴极电子发射器1和目标对象2之间的距离。此外,如果必要,支架40可以围绕支架轴旋转。当需要在所期望的气体环境中进行处理和改善的时候,优选将上述处理和改善装置容纳在一个室中,该室具有用来将气体充入到该室中的气体供给单元。在本发明中,由于能够在大气压力下进行处理和改善,因此与形成减压室的情况相比,能够简化该室的结构。发射器移动单元60和气体供给单元能够通过使用该室外部所设置的操作面板而被控制。

(第二实施例)

在本实施例中,说明了用于通过电子的辐照处理和改善作为目标对象的气体的装置和方法。

如图10所示,本实施例的处理和改善装置的特征在于包括:壳体20,其具有用来将目标气体提供到壳体中的气体入口22,及用来将被处理和改善的气体提供到外部的开口21;以及加速电极(阳极电极)50,其以与冷阴极电子发射器1的电子发射部分10面对面的方式布置在壳体中。该冷阴极电子发射器与第一实施例中所使用的冷阴极电子发射器相同。因而,省略对其的重复描述。为了避免湿度对冷阴极电子发射器的电子发射效率产生影响,优选将低含水量的干燥气体作为通过气体入口22提供到壳体20中的气体。例如,优选相对湿度(RH%)小于30%,更优选为小于10%。在该壳体中,从冷阴极电子发射器1中所发射出的电子朝着加速电极50被加速,且被辐照到在冷阴极电子发射器和加速电极之间的空间内所存在的气体,从而电离该气体。由此,通过开口21将被电离的气体提供到外部。

例如,通过气体入口22将包含具有正电子亲和性或大电子亲和性的元素(例如氧)的干燥气体提供到壳体20中,能够容易地产生负离子。在这种情况下,优选在加速电极50和第一电极11之间施加几伏到几十伏的加速电压Vc。所产生的负离子通过开口21提供到外部,与外部空气中的分子结合以产生多种离子。另一方面,当在加速电极50和第一电极11之间施加几十伏到几百万伏的电压(其大于干燥气体的电离能(例如,几十电子伏))的时候,能够产生正离子。

优选将辅助电极(未示出)放置在壳体20的外部、开口21的前面,以控制从那里所排出的离子数量。在从开口21排出负离子的情况下,优选将辅助电极的电势确定为比冷阴极电子发射器1的第一电极11的电势高。此外,如图11所示,可以在壳体20内布置一对辅助电极(55,56),以使其中一个辅助电极55与冷阴极电子发射器1相邻放置且位于开口21一侧,而另一个辅助电极56与加速电极50相邻放置且位于开口侧。在这种情况下,优选将辅助电极(55,56)的电势确定为比冷阴极电子发射器1的第一电极11的电势高,以将负离子从开口21排出。

辅助电极的结构没有特别限定。例如,辅助电极包括网状电极、栅电极、通过同心地排列具有不同直径的环状电极部件而获得的电极、以及通过互相平行地排列多个线状电极部件而获得的电极。此外,该处理和改善装置可以包括喷射单元,用来将包含液体颗粒例如药物组分或蒸汽的第二气体喷射到通过壳体20的开口21所排出的离子上。在这种情况下,第二气体可被从壳体所提供的离子电离。

根据该实施例的改型的处理和改善装置如图12所示。该装置的特征在于使用具有多个气体入口22和一个开口21的壳体20,其中所述多个气体入口22用于将低湿度气体例如干燥空气、氧气或者惰性气体提供到壳体内,且在壳体的相对侧壁上形成;所述开口21用于排出从冷阴极电子发射器1所发射的电子和被电子所处理和改善的气体,且在壳体20的顶壁上形成并位于冷阴极电子发射器1的电子发射部分10上方。

为了控制从开口21所排出的电子的能量,如图13所示,可将环形的加速电极(阳极电极)50布置在壳体20的开口上方。如果必要的话,可将辅助电极55例如网状电极环绕开口21附着到壳体20顶壁的内表面。在这种情况下,优选将辅助电极55的电势确定为比冷阴极电子发射器1的第一电极11的电势高,并且将加速电极50的电势确定为比辅助电极55的电势高。从冷阴极电子发射器1所发射出的电子被加速电极50和辅助电极55所加速,然后通过加速电极的中心开口被辐照到由支架40所支撑的目标对象2上。

可选择的是,辅助电极55例如网状电极可以布置在冷阴极电子发射器1的电子发射部分10和附着于壳体20顶壁的内表面的加速电极50之间,如图14所示。在这种情况下,从气体入口22提供到壳体20内的气体被从冷阴极电子发射器1中所发射出的电子所处理和改善,然后所处理和改善的气体从在壳体20相对侧壁的上部所形成的一对开口21被排出到外部。

(第三实施例)

在本实施例中,说明一种用于将电子辐照到气体或包含液体颗粒(例如蒸汽或水分)的气体上的装置和方法。

也就是说,如图15所示,该处理和改善装置的特征在于使用壳体20,其包括:多个气体入口22,用于将气体提供到壳体内,且在壳体侧壁的下部形成;以及开口21,用于排出从冷阴极电子发射器1所发射的电子,且形成于壳体顶壁上,其位置面对放置在壳体下壁上的冷阴极电子发射器的电子发射部分10。此外,该装置具有布置于开口上方的加速电极50以及在壳体20顶壁上所提供的气流通道70。在这种情况下,气体作为目标对象被从气体供给单元72提供到气流通道70,如图15的水平箭头所示,然后由从冷阴极电子发射器1通过开口21朝向加速电极50所加速的电子处理和改善。此外,构造成环形的辅助电极55围绕开口21附着于壳体顶壁的内表面。优选将辅助电极55的电势确定为比冷阴极电子发射器1的第一电极11的电势高,并且将加速电极50的电势确定为比辅助电极55的电势高。

在本实施例中,优选将由具有比氧小的电子亲和力的原子或分子构成的气体作为通过气体入口22提供到壳体20内的气体。例如,这种气体包括氦、氩、氙和氮。在这种情况下,从冷阴极电子发射器1中所发射的电子能够被有效地提供给气流通道70中流动的气体。换句话说,当空气被充入壳体20中时,由于空气中的原子和分子对从冷阴极电子发射器中所发射电子的干扰,因而可能降低具有足够能量以实现处理和改善处理目的的电子的数量,或者可能增加电子能量分布的变化。由于这个原因,当空气被充入壳体中的时候,优选的是,将气流通道70与冷阴极电子发射器1的电子发射部分10隔开5mm到1cm的距离来执行处理和改善处理。

另一方面,当电子亲和力比氧气小的气体被充入到壳体20内时,可将气流通道70与电子发射部分10隔开几厘米到几十厘米的较大距离。由此,导致处理和改善效率提高,而且设计该装置具有较高的自由度。此外,能够防止冷阴极电子发射器1的污染,并且延长维护周期。提供到气流通道70内的气体可以包含作为液体颗粒的药物成分。

对于本实施例的改型,在将电子辐照到作为目标对象的液体上的情况下,优选将冷阴极电子发射器1布置在壳体20顶壁的内表面,且通过在壳体下壁所形成的开口21将从冷阴极电子发射器向下发射的电子辐照到液体上,如图16所示。在图16中,标号80代表布置在壳体20下方的液流通道。由液体供给单元82将液体提供到液流通道80。此外,如图17所示,通过用传送装置90例如传送带来代替液流通道80,能够通过电子的辐照连续地处理和改善传送装置90上的多个固体目标对象。

(第四实施例)

在本实施例中,说明了一种具有依据目标对象大小改变电子辐照区域能力的处理和改善装置。也就是说,如图18A和图18B所示,冷阴极电子发射器1的第一电极11由在横向方向上相隔排列的第一电极带X1至X8的阵列组成。另一方面,冷阴极电子发射器的第二电极17由在与所述横向方向交叉的方向上相隔排列的第二电极带Y1至Y8的阵列组成。因此,在第一电极带X1至X8的阵列与第二电极带Y1至Y8的阵列之间布置强场漂移层12。

在这种情况下,当通过电压施加单元在第一电极带X1至X8中的至少一个与第二电极带Y1至Y8中的至少一个之间施加电压时,从其间的交叉区域选择性地发射出电子。例如,如图18A所示,当在第一电极带X1、X2与第二电极带Y2、Y3之间施加电压时,从交叉区域R1中发射出电子。此外,当在第一电极带X4、X6与第二电极带Y4、Y6之间施加电压时,从多个交叉区域R2中发射出电子。因此,本实施例的处理和改善装置适合于对具有不需要电子辐照的区域的目标对象有效地进行处理和改善处理。此外,具有节省功耗的优点。

为了容易地改变电子辐照区域,优选的是,该处理和改善装置还包括:第一选择器,用于选择第一电极带X1至X8中的至少一个;第二选择器,用于选择第二电极带Y1至Y8中的至少一个;以及控制器,用于响应第一和第二选择器的输出来控制电压施加单元。在这种情况下,控制器控制电压施加单元,以便在由第一选择器所选择出的第一电极带X1至X8中的至少一个与由第二选择器所选择出的第二电极带Y1至Y8中的至少一个之间施加电压,以从其间的交叉区域中选择性地产生电子。

(第五实施例)

本实施例说明了在目标对象2与冷阴极电子发射器1的电子发射部分10直接接触的条件下所执行的处理和改善。

如图19所示,目标对象2直接放置在冷阴极电子发射器的电子发射表面上,然后由冷阴极电子发射器将电子辐照到目标对象上。在这种情况下,与目标对象与冷阴极电子发射器相隔所需距离的情况相比,能够将从冷阴极电子发射器所发射出的电子与在其间的空间中所存在的原子或分子之间的干扰最小化。由此,能够降低被辐照到目标对象的电子的能量分布变化,以均匀地进行处理和改善。

此外,优选将整个目标对象2放置在电子渗入(penetrating)区域Rp,其限定在冷阴极电子发射器1的电子发射表面的法线方向的距离上。确定该距离为使得从冷阴极电子发射器1所发射出的电子能够通过放置在电子渗入区域Rp中的目标对象2。例如,当目标对象是液体或固体时,优选该距离小于1mm。此外,当目标对象为气体时,优选该距离小于10cm。如下所述,该方法有益于通过电子的辐照激活目标对象的内部和表面。

如图20所示,由催化剂材料制成的目标对象2布置在冷阴极电子发射器1上,以便目标对象的底面与其电子发射表面直接接触。另一方面,目标对象的顶面暴露在气流通道70中。由冷阴极电子发射器1将电子发射到目标对象2上以激活催化剂材料。当气体供给单元72将被污染的气体例如废气提供入气流通道70时,由激活的催化剂材料将其净化。该方法也可用于从甲醇或者甲烷产生氢。可以使用生物材料或者聚合膜代替催化剂材料作为目标对象2。

在上述实施例中,可以使用金属-绝缘体-金属(MIM)电子发射器或者金属-绝缘体-半导体(MIS)电子发射器代替弹道电子表面发射装置(BSD)作为冷阴极电子发射器。

此外,在构造高性能处理和改善装置的情况下,可以将在上述每个实施例中所述的装置看作为最小单元,其有能力进一步提高处理效率。例如,通过形成多个处理和改善装置的二维或三维阵列能够获得一种高性能装置,其中的每一个处理和改善装置基本上与上述任一实施例中的装置相同,以使目标对象被暴露于从不同方向所提供的大量电子中。

此外,根据上述任一实施例的处理和改善装置可以包括:传感器,用来检测在处理空间中目标对象是否存在;以及切换装置,用来根据该传感器的输出在第一和第二电极之间并且如果必要的话在加速电极和第一电极之间施加电压。而且,可以根据另一个传感器的输出来操作所述切换装置,该另一个传感器用于检测信息,例如目标对象的数量或数目、目标对象的姿态或位置、或者目标对象的种类。另外,该处理和改善装置可以包括用于控制参数例如辐照量、辐照时间以及辐照角度和电子能级的装置,从而改善了处理和改善效果并且节省了功耗。

<实例>

以下介绍示范出通过使用本发明的上述处理和改善装置所获得的处理和改善效果的一些实例。

(实例1)

在该实例中,使用如图10所示的处理和改善装置。通过将15V电压施加到冷阴极电子发射器1上,并且将100V电压施加到加速电极50上,当在大气压力下通过气体入口22将氧气充入到壳体20中,通过开口21将负氧离子排出到外部而没有出现臭氧。通过使用所产生的负氧离子,加强了人体的新陈代谢效应和有益细菌例如酵母菌和乳酸菌的繁殖。该效果也可以用于在生物和医学领域中繁殖带有有用基因的大肠杆菌。

(实例2)

在该实例中,使用如图11所示的处理和改善装置。通过将15V电压施加到冷阴极电子发射器1上,并且将100V电压施加到加速电极50上,以及在辅助电极55、56之间施加300V电压,当在大气压力下通过气体入口22将氧气充入到壳体20中,通过开口21将负氧离子排出到外部而没有出现臭氧。在这种情况下,所产生负离子的量大于实例1中所产生的量。通过使用所产生的负氧离子,加强了人体的新陈代谢效应和有益细菌繁殖的进一步提高。

(实例3)

在该实例中,使用如图15所示的处理和改善装置。通过将15V电压施加到冷阴极电子发射器1上,并且将500V电压施加到加速电极50上,以及将300V电压施加到辅助电极55上,当通过气体入口22将干燥空气充入到壳体20中,并且在大气压力下将由气体供给单元72所提供的包含蒸汽的气体通入气流通道70中流动,通过气流通道70在气体供给单元72的相对一侧提供的气体出口将负氧离子和负离子簇排出而没有出现臭氧,所述负氧离子和负离子簇都具有作为原子核的直径为10到20nm的水分子聚合体。通过使用所产生的负氧离子和负离子簇,加强了抗真菌作用、抗细菌作用和花粉的灭活。此外,除臭并清洁了室内空气。

(实例4)

在该实例中,使用如图13所示的处理和改善装置。通过将15V电压施加到冷阴极电子发射器1上,并且将1000V电压施加到加速电极50上,以及将300V电压施加到辅助电极55上,当在大气压力下通过气体入口22将干燥空气充入到壳体20中,通过开口21将电子辐照到作为目标对象2的其上带有大肠杆菌的琼脂培养基上。与没有辐照电子的情况相比,通过电子的辐照大肠杆菌菌落的数量显著降低。因此,加强了高杀菌效果。

工业应用

从上述实施例可知,根据本发明,即使当目标对象为液态或者气态而不是固态、或者为有机体时,也能够依靠被辐照到目标对象的电子能级来均匀且有效地进行各种处理和改善。此外,通过使用包括一对电极以及包含布置在所述电极之间的纳米晶硅的强场漂移层的冷阴极电子发射器,即弹道电子表面发射装置(BSD),可以在大气压力下进行处理和改善。

因而,可以期望将本发明的处理和改善装置和方法用于各种应用领域,例如烟雾中和器、空调、增湿器、减湿器、烘衣机、烘碗机、盥洗室烘干机、风扇加热器、清洁器、冰箱、壁橱、碗柜、鞋柜、浴室、洗衣机、冷冻箱、制冰机、以及消毒机。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号