首页> 中国专利> 内燃发动机系统以及内燃发动机启动方法

内燃发动机系统以及内燃发动机启动方法

摘要

本发明的启动控制程序延迟进气门的开-闭正时(VVT),限制节气门的节气门开度(TH),并以较低的转矩(Tlow)开始起转发动机。当提供给缸内燃料喷射阀的燃料的压力(Pf)达到或超过大于缸内压缩压力(Pin)与缸内燃料喷射阀的闭合阀位置保持压力(Pcv)之和的预置的基准值时,该启动控制程序用标准起转转矩(Tset)起转发动机。然后,该启动控制程序开始提前进气门的开-闭正时(VVT),取消对节气门开度(TH)的限制,并开始从缸内燃料喷射阀喷射燃料。这种设置可使燃料压力(Pf)迅速升高到或超过缸内压缩压力(Pin)与闭合阀位置保持压力(Pcv)之和,从而有效地防止缸内燃料喷射阀不充分地打开。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-11-09

    未缴年费专利权终止 IPC(主分类):F02D41/02 授权公告日:20080604 终止日期:20150919 申请日:20050919

    专利权的终止

  • 2008-06-04

    授权

    授权

  • 2006-05-17

    实质审查的生效

    实质审查的生效

  • 2006-03-22

    公开

    公开

说明书

技术领域

本发明涉及一种内燃发动机(内燃机)系统以及一种内燃发动机启动方法。更具体地,本发明涉及一种包括配备有用于在气缸内喷射燃料的缸内燃料喷射阀的内燃发动机的内燃发动机系统,以及一种在该内燃发动机系统中的内燃发动机的启动方法。

背景技术

一种已经提出的内燃发动机系统包括配备有用于在气缸内直接喷射燃料的缸内燃料喷射阀和用于在进气口内喷射燃料的进气口燃料喷射阀的内燃发动机(例如,见日本专利公开公报No.H11-270385)。在内燃发动机启动时,这种现有技术的系统禁止从缸内燃料喷射阀喷射燃料,直到提供给缸内燃料喷射阀的燃料的压力(燃料压力)升高到预置的基准水平。该内燃发动机利用从进气口燃料喷射阀喷射的燃料启动。这样可促进燃料在气缸内的微粒化,从而提高内燃发动机的启动性能并防止排放恶化。这种现有技术的系统响应于燃料压力升高到预置的基准水平而停止从进气口燃料喷射阀喷射燃料,并开始从缸内燃料喷射阀喷射燃料。

发明内容

但是,在现有技术的内燃发动机系统中,作为用于开始从缸内燃料喷射阀喷射燃料的燃料压力的基准水平的设定不适当可能导致排放较差以及从缸内燃料喷射阀开始喷射燃料的延迟。在基准水平设定得较低或者燃烧室内的缸内压力由于从进气口燃料喷射阀喷射的燃料的燃烧而升高到很高的水平的情况下,当燃料压力超过该预置的基准水平从而开始从缸内燃料喷射阀喷射燃料时,燃料压力的水平可能不足以保持缸内燃料喷射阀处于闭合位置。这样会不充分地打开缸内燃料喷射阀,从而导致燃料泄漏以及排放较差。缸内燃料喷射阀的不充分打开还可能造成排放较差之外的其它潜在故障,例如由于高压气体的回流导致的密封性能恶化,以及沉积物导致的缸内燃料喷射阀的阻塞。另一方面,如果基准压力设定的较高,则尽管燃料压力相对于内燃发动机压缩冲程中的缸内压力足够高,仍不能开始从缸内燃料喷射阀喷射燃料。这会不合需要地延迟内燃发动机的完全启动。

本发明的内燃发动机系统以及内燃发动机启动方法的目的在于充分启动配备有用于在气缸内喷射燃料的缸内燃料喷射阀的内燃发动机。本发明的内燃发动机系统以及内燃发动机启动方法的目的还在于防止在配备有用于在气缸内喷射燃料的缸内燃料喷射阀的内燃发动机启动时缸内燃料喷射阀不充分地打开。本发明的内燃发动机系统以及内燃发动机启动方法的目的还在于迅速启动配备有用于在气缸内喷射燃料的缸内燃料喷射阀的内燃发动机。

为了实现上述以及其它有关目的中的至少一部分目的,本发明的内燃发动机系统以及内燃发动机启动方法的构造如下文所述。

本发明针对包括配备有用于在气缸内喷射燃料的缸内燃料喷射阀的内燃发动机的第一内燃发动机系统。该第一内燃发动机系统包括:在内燃发动机启动时给燃料加压并将加压的燃料提供给缸内燃料喷射阀的加压供给单元;测量提供给缸内燃料喷射阀的燃料的压力的燃料压力测量传感器;检测或推定(估测)作为内燃发动机压缩冲程中缸内压力的缸内压缩压力的缸内压缩压力检测推定模块;起转(起动,开动)内燃发动机的起转模块;以及响应于内燃发动机的启动指令控制该起转模块以起转内燃发动机、同时在燃料压力测量传感器测量的燃料压力达到预置的第一压力之后控制缸内燃料喷射阀以开始从缸内燃料喷射阀喷射燃料的启动控制模块,该预置的第一压力是根据缸内压缩压力检测推定模块检测或推定的缸内压缩压力和用于保持缸内燃料喷射阀处于闭合位置的闭合阀位置保持压力确定的。

响应于内燃发动机的启动指令,本发明的第一内燃发动机系统控制起转模块以起转内燃发动机,同时在提供给缸内燃料喷射阀的燃料的压力达到根据检测或推定出的作为内燃发动机压缩冲程中缸内压力的缸内压缩压力和用于保持缸内燃料喷射阀处于闭合位置的闭合阀位置保持压力确定的预置的第一压力之后控制缸内燃料喷射阀以开始从缸内燃料喷射阀喷射燃料。即,在提供给缸内燃料喷射阀的燃料的压力达到可确保缸内燃料喷射阀不会不合需要地打开的预置的第一压力之后,开始从缸内燃料喷射阀喷射燃料。这种设置可有效地抑制缸内燃料喷射阀不充分地打开,从而防止由于缸内燃料喷射阀的不充分打开造成的潜在故障,例如排放较差、密封性能恶化以及沉积物导致的缸内燃料喷射阀的阻塞。在提供给缸内燃料喷射阀的燃料的压力升高到预置的第一压力之后,立即开始从缸内燃料喷射阀喷射燃料。这可确保内燃发动机快速和充分启动。本发明的第一内燃发动机系统可作为驱动源之一安装在汽车上。

在本发明的第一内燃发动机系统中,优选地,在内燃发动机系统接通之后启动控制模块响应于内燃发动机的首次启动指令而接通。在内燃发动机具有短时间内自动启动和停机功能的系统中,即使内燃发动机自动停机,提供给缸内燃料喷射阀的燃料的压力仍可保持在一定的范围内。在自动停机之后内燃发动机下一次自动启动时,燃料压力仍高于预置的第一压力,从而不需要通过启动控制模块进行控制。但是,在系统接通之后内燃发动机首次启动时,燃料压力通常被降低到低于预置的第一压力。因此,需要通过启动控制模块进行控制以便内燃发动机可充分启动。

在本发明的一个优选实施例中,第一内燃发动机系统还可包括将燃料喷射到内燃发动机的进气系统内的进气系统燃料喷射阀。在缸内燃料喷射阀开始喷射燃料之前,启动控制模块可调整进气系统燃料喷射量以使进气系统燃料喷射阀开始喷射燃料。从进气系统燃料喷射阀喷射的燃料的燃烧可确保内燃发动机较快地启动。

在本发明的另一个优选实施例中,第一内燃发动机系统还可包括改变内燃发动机的进气门(进气阀)的开-闭正时的开-闭正时改变机构。启动控制模块可控制该开-闭正时改变机构和起转模块,以将进气门的开-闭正时设定为有助于起转的第一正时,并在设定为开-闭正时的第一正时起转内燃发动机。在测量的燃料压力达到不高于预置的第一压力的预置的第二压力之后,启动控制模块可控制开-闭正时改变机构以开始进行正时改变,其将进气门的开-闭正时逐渐改变为早于该第一正时的正时,该预置的第二压力是根据检测或推定出的缸内压缩压力和缸内燃料喷射阀的闭合阀位置保持压力确定的。进气门的开-闭正时从有助于发动机起转的第一正时改变到较早的正时可使缸内压缩压力升高。在燃料压力升高到或超过预置的第二压力之后改变正时可控制缸内压缩压力的增加率,从而促使燃料压力升高到预置的第一压力。这可确保内燃发动机较快地启动。

在本发明的第一内燃发动机系统的一个优选应用中,启动控制模块可控制节气门以使进入内燃发动机的进气量减小到低于标准进气水平,直到测量的燃料压力达到不高于预置的第一压力的预置的第三压力,该第三压力是根据检测或推定出的缸内压缩压力和缸内燃料喷射阀的闭合阀位置保持压力确定的。在测量的燃料压力达到预置的第三压力之后,启动控制模块可控制节气门以使进入内燃发动机的进气量恢复到标准进气水平。进气量的变化直接影响缸内压缩压力的变化。因此,进气量减小可减慢缸内压缩压力的升高,并促使燃料压力升高到预置的第一压力。这可确保内燃发动机较快地启动。

在本发明的第一内燃发动机系统的另一个优选应用中,启动控制模块可控制起转模块以便用小于标准驱动力水平的预置的驱动力起转内燃发动机,直到测量的燃料压力达到不高于预置的第一压力的预置的第四压力,该第四压力是根据检测或推定出的缸内压缩压力和缸内燃料喷射阀的闭合阀位置保持压力确定的。在测量的燃料压力达到预置的第四压力之后,启动控制模块可控制起转模块以便用标准驱动力水平起转内燃发动机。用于起转的驱动力的变化影响内燃发动机的转速的增加率,从而影响缸内燃料喷射阀的增加率。用于起转的驱动力较小可减慢缸内压缩压力的增加,并促使燃料压力升高到预置的第一压力。这可确保内燃发动机较快地启动。

本发明还针对包括配备有用于在气缸内喷射燃料的缸内燃料喷射阀的内燃发动机的第二内燃发动机系统。该第二内燃发动机系统包括:在内燃发动机启动时给燃料加压并将加压的燃料提供给缸内燃料喷射阀的加压供给单元;测量提供给缸内燃料喷射阀的燃料的压力的燃料压力测量传感器;检测或推定作为内燃发动机压缩冲程中缸内压力的缸内压缩压力的缸内压缩压力检测推定模块;起转内燃发动机的起转模块;改变内燃发动机的进气门的开-闭正时的开-闭正时改变机构;以及响应于内燃发动机的启动指令控制该开-闭正时改变机构和起转模块以将进气门的开-闭正时设定为有助于起转的第一正时并在设定为开-闭正时的第一正时起转内燃发动机的启动控制模块,在燃料压力测量传感器测量的燃料压力达到一适应压力之后,启动控制模块控制开-闭正时改变机构以开始进行正时改变,其将进气门的开-闭正时逐渐改变为早于该第一正时的正时,该适应压力是根据缸内压缩压力检测推定模块检测或推定出的缸内压缩压力和用于保持缸内燃料喷射阀处于闭合位置的闭合阀位置保持压力确定的,启动控制模块控制缸内燃料喷射阀以在预置的正时开始从缸内燃料喷射阀喷射燃料。

响应于内燃发动机的启动指令,本发明的第二内燃发动机系统控制开-闭正时改变机构和起转模块,以将进气门的开-闭正时设定为有助于发动机起转的第一正时,并在设定为开-闭正时的第一正时起转内燃发动机。在提供给缸内燃料喷射阀的燃料的压力达到根据检测或推定出的作为内燃发动机压缩冲程中缸内压力的缸内压缩压力和用于保持缸内燃料喷射阀处于闭合位置的闭合阀位置保持压力确定的适应压力之后,第二内燃发动机系统控制开-闭正时改变机构以开始进行正时改变,其将进气门的开-闭正时逐渐改变为早于该第一正时的正时。第二内燃发动机系统控制缸内燃料喷射阀以在预置的正时开始从缸内燃料喷射阀喷射燃料。进气门的开-闭正时从有助于发动机起转的第一正时改变到较早的正时使缸内压缩压力升高。在燃料压力升高到取决于缸内压缩压力和闭合阀位置保持压力的适应压力之后改变正时,则与燃料压力的增加相比,可减慢缸内压缩压力的增加。这样可促使燃料压力升高到该适应压力,从而确保内燃发动机快速启动。在预置的正时开始从缸内燃料喷射阀喷射燃料。优选地,在燃料压力升高到大于该适应压力的压力之后到达该预置的正时。这种设置可有效地抑制缸内燃料喷射阀不充分地打开,从而防止由于缸内燃料喷射阀的不充分打开造成的潜在故障,例如排放较差、密封性能恶化以及沉积物导致的缸内燃料喷射阀的阻塞。本发明的第二内燃发动机系统可作为驱动源之一安装在汽车上。

本发明还针对包括配备有用于在气缸内喷射燃料的缸内燃料喷射阀的内燃发动机的第三内燃发动机系统。该第三内燃发动机系统包括:在内燃发动机启动时给燃料加压并将加压的燃料提供给缸内燃料喷射阀的加压供给单元;测量提供给缸内燃料喷射阀的燃料的压力的燃料压力测量传感器;检测或推定作为内燃发动机压缩冲程中缸内压力的缸内压缩压力的缸内压缩压力检测推定模块;起转内燃发动机的起转模块;以及响应于内燃发动机的启动指令控制该起转模块以起转内燃发动机的启动控制模块,该启动控制模块控制节气门以使进入内燃发动机的进气量减小到低于标准进气水平,直到燃料压力测量传感器测量的燃料压力达到一适应压力,该适应压力是根据缸内压缩压力检测推定模块检测或推定出的缸内压缩压力和用于保持缸内燃料喷射阀处于闭合位置的闭合阀位置保持压力确定的,在测量的燃料压力达到该适应压力之后,启动控制模块控制节气门以使进入内燃发动机的进气量恢复到标准进气水平,并且该启动控制模块控制缸内燃料喷射阀以在预置的正时开始从缸内燃料喷射阀喷射燃料。

响应于内燃发动机的启动指令,本发明的第三内燃发动机系统控制起转模块以起转内燃发动机。第三内燃发动机系统控制节气门以使进入内燃发动机的进气量减小到低于标准进气水平,直到提供给缸内燃料喷射阀的燃料的压力达到根据检测或推定出的作为内燃发动机压缩冲程中缸内压力的缸内压缩压力和用于保持缸内燃料喷射阀处于闭合位置的闭合阀位置保持压力确定的适应压力。在燃料压力达到该适应压力之后,第三内燃发动机系统控制节气门以使进入内燃发动机的进气量恢复到标准进气水平。第三内燃发动机系统控制缸内燃料喷射阀以在预置的正时开始从缸内燃料喷射阀喷射燃料。进气量的变化直接影响缸内压缩压力的变化。因此,进气量减小可减慢缸内压缩压力的升高。在燃料压力升高到取决于缸内压缩压力和闭合阀位置保持压力的适应压力之前减小进气量,则与燃料压力的增加相比,可减慢缸内压缩压力的增加。这样可促使燃料压力升高到该适应压力,从而确保内燃发动机快速启动。在预置的正时开始从缸内燃料喷射阀喷射燃料。优选地,在燃料压力升高到大于该适应压力的压力之后到达该预置的正时。这种设置可有效地抑制缸内燃料喷射阀不充分地打开,从而防止由于缸内燃料喷射阀的不充分打开造成的潜在故障,例如排放较差、密封性能恶化以及沉积物导致的缸内燃料喷射阀的阻塞。本发明的第三内燃发动机系统可作为驱动源之一安装在汽车上。

本发明还针对包括配备有用于在气缸内喷射燃料的缸内燃料喷射阀的内燃发动机的第四内燃发动机系统。该第四内燃发动机系统包括:在内燃发动机启动时给燃料加压并将加压的燃料提供给缸内燃料喷射阀的加压供给单元;测量提供给缸内燃料喷射阀的燃料的压力的燃料压力测量传感器;检测或推定作为内燃发动机压缩冲程中缸内压力的缸内压缩压力的缸内压缩压力检测推定模块;起转内燃发动机的起转模块;以及响应于内燃发动机的启动指令控制起转模块以便用预置的第一驱动力起转内燃发动机直到燃料压力测量传感器测量的燃料压力达到一适应压力的启动控制模块,该适应压力是根据缸内压缩压力检测推定模块检测或推定出的缸内压缩压力和用于保持缸内燃料喷射阀处于闭合位置的闭合阀位置保持压力确定的,在测量的燃料压力达到该适应压力之后,该启动控制模块控制起转模块以便用大于该预置的第一驱动力的驱动力起转内燃发动机,并且该启动控制模块控制缸内燃料喷射阀以在预置的正时开始从缸内燃料喷射阀喷射燃料。

响应于内燃发动机的启动指令,本发明的第四内燃发动机系统控制起转模块以预置的第一驱动力起转内燃发动机,直到提供给缸内燃料喷射阀的燃料的压力达到根据检测或推定出的作为内燃发动机压缩冲程中缸内压力的缸内压缩压力和用于保持缸内燃料喷射阀处于闭合位置的闭合阀位置保持压力确定的适应压力。在燃料压力达到该适应压力之后,第四内燃发动机系统控制起转模块以便用大于该预置的第一驱动力的驱动力起转内燃发动机。第四内燃发动机系统控制缸内燃料喷射阀以在预置的正时开始从缸内燃料喷射阀喷射燃料。用于起转的驱动力的变化影响内燃发动机的转速的增加率,从而影响缸内燃料喷射阀的增加率。在燃料压力升高到取决于缸内压缩压力和闭合阀位置保持压力的适应压力之前以较小的第一驱动力起转内燃发动机,则与燃料压力的增加相比,可减慢缸内压缩压力的增加。这可促使燃料压力升高到该适应压力,从而确保内燃发动机快速启动。在预置的正时开始从缸内燃料喷射阀喷射燃料。优选地,在燃料压力升高到大于该适应压力的压力之后到达该预置的正时。这种设置可有效地抑制缸内燃料喷射阀不充分地打开,从而防止由于缸内燃料喷射阀的不充分打开造成的潜在故障,例如排放较差、密封性能恶化以及沉积物导致的缸内燃料喷射阀的阻塞。本发明的第四内燃发动机系统可作为驱动源之一安装在汽车上。

本发明还针对内燃发动机系统中的内燃发动机的第一启动方法。该内燃发动机系统包括配备有用于在气缸内喷射燃料的缸内燃料喷射阀的内燃发动机,在内燃发动机启动时给燃料加压并将加压的燃料提供给缸内燃料喷射阀的加压供给单元,以及起转内燃发动机的起转模块。该第一启动方法包括以下步骤:控制该起转模块以起转内燃发动机;以及在提供给缸内燃料喷射阀的燃料的压力达到一适应压力后控制缸内燃料喷射阀以开始从缸内燃料喷射阀喷射燃料,该适应压力是根据作为内燃发动机压缩冲程中缸内压力的缸内压缩压力和用于保持缸内燃料喷射阀处于闭合位置的闭合阀位置保持压力确定的。

本发明的内燃发动机的第一启动方法控制起转模块以起转内燃发动机,同时在提供给缸内燃料喷射阀的燃料的压力达到根据作为内燃发动机压缩冲程中缸内压力的缸内压缩压力和用于保持缸内燃料喷射阀处于闭合位置的闭合阀位置保持压力确定的适应压力之后控制缸内燃料喷射阀以开始从缸内燃料喷射阀喷射燃料。即,在提供给缸内燃料喷射阀的燃料的压力达到可确保缸内燃料喷射阀不会不合需要地打开的适应压力之后,开始从缸内燃料喷射阀喷射燃料。这种设置可有效地抑制缸内燃料喷射阀不充分地打开,从而防止由于缸内燃料喷射阀的不充分打开造成的潜在故障,例如排放较差、密封性能恶化以及沉积物导致的缸内燃料喷射阀的阻塞。在提供给缸内燃料喷射阀的燃料的压力升高到该适应压力之后,立即开始从缸内燃料喷射阀喷射燃料。这可确保内燃发动机快速和充分启动。

本发明还针对内燃发动机系统中的内燃发动机的第二启动方法。该内燃发动机系统包括配备有用于在气缸内喷射燃料的缸内燃料喷射阀的内燃发动机,在内燃发动机启动时给燃料加压并将加压的燃料提供给缸内燃料喷射阀的加压供给单元,起转内燃发动机的起转模块,以及改变内燃发动机的进气门的开-闭正时的开-闭正时改变机构。该第二启动方法包括以下步骤:控制该开-闭正时改变机构和起转模块,以将进气门的开-闭正时设定为有助于起转的第一正时,并在设定为开-闭正时的第一正时起转内燃发动机;在提供给缸内燃料喷射阀的燃料的压力达到一适应压力之后控制开-闭正时改变机构以开始进行正时改变,其将进气门的开-闭正时逐渐改变为早于该第一正时的正时,该适应压力是根据作为内燃发动机压缩冲程中缸内压力的缸内压缩压力和用于保持缸内燃料喷射阀处于闭合位置的闭合阀位置保持压力确定的;以及控制缸内燃料喷射阀以在预置的正时开始从缸内燃料喷射阀喷射燃料。

本发明的内燃发动机的第二启动方法控制开-闭正时改变机构和起转模块,以将进气门的开-闭正时设定为有助于发动机起转的第一正时,并在设定为开-闭正时的第一正时起转内燃发动机。在提供给缸内燃料喷射阀的燃料压力达到根据作为内燃发动机压缩冲程中缸内压力的缸内压缩压力和用于保持缸内燃料喷射阀处于闭合位置的闭合阀位置保持压力确定的适应压力之后,第二启动方法控制开-闭正时改变机构以开始进行正时改变,其将进气门的开-闭正时逐渐改变为早于该第一正时的正时。第二启动方法控制缸内燃料喷射阀以在预置的正时开始从缸内燃料喷射阀喷射燃料。进气门的开-闭正时从有助于发动机起转的第一正时改变到较早的正时可使缸内压缩压力升高。在燃料压力升高到取决于缸内压缩压力和闭合阀位置保持压力的适应压力之后改变该正时,则与燃料压力的增加相比,可减慢缸内压缩压力的增加。这样可促使燃料压力升高到该适应压力,从而确保内燃发动机快速启动。在预置的正时开始从缸内燃料喷射阀喷射燃料。优选地,在燃料压力升高到大于该适应压力的压力之后到达该预置的正时。这种设置可有效地抑制缸内燃料喷射阀不充分地打开,从而防止由于缸内燃料喷射阀的不充分打开造成的潜在故障,例如排放较差、密封性能恶化以及沉积物导致的缸内燃料喷射阀的阻塞。

本发明还针对内燃发动机系统中的内燃发动机的第三启动方法。该内燃发动机系统包括配备有用于在气缸内喷射燃料的缸内燃料喷射阀的内燃发动机,在内燃发动机启动时给燃料加压并将加压的燃料提供给缸内燃料喷射阀的加压供给单元,以及起转内燃发动机的起转模块。该第三启动方法包括以下步骤:控制该起转模块以起转内燃发动机;控制节气门以使进入内燃发动机的进气量减小到低于标准进气水平,直到提供给缸内燃料喷射阀的燃料的压力达到一适应压力,该适应压力是根据作为内燃发动机压缩冲程中缸内压力的缸内压缩压力与用于保持缸内燃料喷射阀处于闭合位置的闭合阀位置保持压力确定的;在燃料压力达到该适应压力之后,控制节气门以使进入内燃发动机的进气量恢复到标准进气水平;以及控制缸内燃料喷射阀以在预置的正时开始从缸内燃料喷射阀喷射燃料。

本发明的内燃发动机的第三启动方法控制起转模块以起转内燃发动机。该第三启动方法控制节气门以使进入内燃发动机的进气量减小到低于标准进气水平,直到提供给缸内燃料喷射阀的燃料的压力达到根据作为内燃发动机压缩冲程中缸内压力的缸内压缩压力和用于保持缸内燃料喷射阀处于闭合位置的闭合阀位置保持压力确定的适应压力。在燃料压力达到该适应压力之后,该第三启动方法控制节气门以使进入内燃发动机的进气量恢复到标准进气水平。该第三启动方法控制缸内燃料喷射阀以在预置的正时开始从缸内燃料喷射阀喷射燃料。进气量的变化直接影响缸内压缩压力的变化。因此,进气量减小可减慢缸内压缩压力的升高。在燃料压力升高到取决于缸内压缩压力和闭合阀位置保持压力的适应压力之前减小进气量,则与燃料压力的增加相比,可减慢缸内压缩压力的增加。这样可促使然料压力升高到该适应压力,从而确保内燃发动机快速启动。在预置的正时开始从缸内燃料喷射阀喷射燃料。优选地,在燃料压力升高到大于该适应压力的压力之后达到该预置的正时。这种设置可有效地抑制缸内燃料喷射阀不充分地打开,从而防止由于缸内燃料喷射阀的不充分打开造成的潜在故障,例如排放较差、密封性能恶化以及沉积物导致的缸内燃料喷射阀的阻塞。

本发明还针对内燃发动机系统中的内燃发动机的第四启动方法。该内燃发动机系统包括配备有用于在气缸内喷射燃料的缸内燃料喷射阀的内燃发动机,在内燃发动机启动时给燃料加压并将加压的燃料提供给缸内燃料喷射阀的加压供给单元,以及起转内燃发动机的起转模块。该第四启动方法包括以下步骤:控制起转模块以用预置的第一驱动力起转内燃发动机,直到提供给缸内燃料喷射阀的燃料的压力达到一适应压力,该适应压力是根据作为内燃发动机压缩冲程中缸内压力的缸内压缩压力与用于保持缸内燃料喷射阀处于闭合位置的闭合阀位置保持压力确定的;在燃料压力达到该适应压力之后,控制起转模块以用大于该预置的第一驱动力的驱动力起转内燃发动机;以及控制缸内燃料喷射阀以在预置的正时开始从缸内燃料喷射阀喷射燃料。

本发明的内燃发动机的第四启动方法控制起转模块以用预置的第一驱动力起转内燃发动机,直到提供给缸内燃料喷射阀的燃料的压力达到根据作为内燃发动机压缩冲程中缸内压力的缸内压缩压力与用于保持缸内燃料喷射阀处于闭合位置的闭合阀位置保持压力确定的适应压力。在燃料压力达到该适应压力之后,该第四启动方法控制起转模块以用大于该预置的第一驱动力的驱动力起转内燃发动机。该第四启动方法控制缸内燃料喷射阀以在预置的正时开始从缸内燃料喷射阀喷射燃料。用于起转的驱动力的变化影响内燃发动机的转速的增加率,从而影响缸内燃料喷射阀的增加率。在燃料压力升高到取决于缸内压缩压力和闭合阀位置保持压力的适应压力之前以较小的第一驱动力起转内燃发动机,则与燃料压力的增加相比,可减慢缸内压缩压力的增加。这可促使燃料压力升高到该适应压力,从而确保内燃发动机快速启动。在预置的正时开始从缸内燃料喷射阀喷射燃料。优选地,在燃料压力升高到大于该适应压力的压力之后到达该预置的正时。这种设置可有效地抑制缸内燃料喷射阀不充分地打开,从而防止由于缸内燃料喷射阀的不充分打开造成的潜在故障,例如排放较差、密封性能恶化以及沉积物导致的缸内燃料喷射阀的阻塞。

附图说明

图1示意性地示出本发明的一个实施例中的其上安装有内燃发动机系统的混合动力车辆的结构;

图2示意性地示出安装在该实施例的混合动力车辆上的发动机的结构;

图3是示出由该实施例的混合动力车辆中的发动机ECU执行的启动控制程序的流程图;

图4示出在内燃发动机系统接通之后发动机首次启动时的缸内压缩压力Pin、燃料压力Pf、节气门开度TH和进气门的开-闭正时VVT的时间变化;

图5是示出作为一个可能的变型的变型的启动控制程序的流程图;

图6是示出作为另一个可能的变型的另一个变型的启动控制程序的流程图;

图7是示出作为又一个可能的变型的又一个变型的启动控制程序的流程图;

图8是示出作为再一个可能的变型的再一个变型的启动控制程序的流程图;

图9示意性地示出一个变型的示例中的另一种混合动力车辆的结构;

图10示意性地示出又一个变型的示例中的又一种混合动力车辆的结构。

具体实施方式

下面将说明一种作为优选实施例的实施本发明的模式。图1示意性地示出本发明的一个实施例中的其上安装有内燃发动机系统的混合动力车辆20的结构。如图所示,该实施例的混合动力车辆20包括发动机22和动力分配综合机构30。在该动力分配综合机构30中,用于接合多个小齿轮33的托架34经由减振器28连接到曲轴26或发动机22的输出轴上,而与齿圈32相接合的齿圈轴32a经由齿轮机构37和差速器38连接到驱动轮39a和39b上。混合动力车辆20还包括连接到动力分配综合机构30的太阳轮31上并能够产生电力的电机(马达)MG1,经由齿圈轴32a和减速齿轮35连接到动力分配综合机构30的齿圈32上的电机MG2,以及控制整个混合动力车辆20的混合动力电子控制单元70。

如图2所示,发动机22是具有将碳氢燃料例如汽油或轻油直接喷射到气缸内的缸内燃料喷射阀125(图1中的125a-125d)和将碳氢燃料喷射到进气口内的进气口燃料喷射阀126(图1中的126a-126d)的内燃发动机。以选自进气口喷射驱动模式、缸内喷射驱动模式和共同喷射驱动模式中的一种驱动模式来驱动和控制具有两种不同类型的燃料喷射阀125和126的发动机22。在进气口喷射驱动模式中,发动机22接收由空气滤清器122滤清的并经由节气门124进入的空气的供给以及从进气口燃料喷射阀126喷射的燃料(汽油)的供给,并将空气和燃料混合成空气燃料混合物。该空气燃料混合物经由进气门128被吸入燃烧室内,以利用火花塞130生成的电火花爆炸性地燃烧。被爆炸性燃烧的能量下压的活塞132的往复运动转化成曲轴26的旋转运动。在缸内喷射驱动模式中,进入的空气在进气冲程或压缩冲程中与从缸内燃料喷射阀125喷射的燃料混合。该空气燃料混合物在燃烧室内利用火花塞130产生的电火花爆炸性地燃烧以实现曲轴26的旋转运动。在共同喷射驱动模式中,进入的空气在进气冲程或压缩冲程中与从进气口燃料喷射阀126喷射的燃料以及从缸内燃料喷射阀125喷射的燃料混合。该空气燃料混合物在燃烧室内利用火花塞130产生的电火花爆炸性地燃烧以实现曲轴26的旋转运动。驱动模式根据发动机22的实际驱动状态以及发动机22需要的目标驱动状态而在这三种驱动模式中选择性地切换。发动机22的排气经由可转化排气的有毒成分即一氧化碳(CO)、碳氢化合物(HC)以及氮氧化物(NOx)的催化转化器(三元催化剂)134释放到大气中。

如图1所示,进气口燃料喷射阀126a-126d接收由燃料泵62从燃料箱60提供的燃料,而缸内燃料喷射阀125a-125d接收由燃料泵62从燃料箱60提供的、由高压燃料泵64加压并由输送管66输送的燃料。蓄电池50经由DC-DC变流器90向用作燃料泵62和高压燃料泵64的致动器的电机62a和64a提供电力。高压燃料泵64的输出侧具有一止回阀(未示出)以防止燃料回流并保持输送管66中的燃料压力处于一定的水平。输送管66具有使燃料经由卸压阀67流回燃料箱60的卸压管68,其用于防止燃料压力升高到过高的水平。在发动机22停机状态下,提供给缸内燃料喷射阀125a-125d的燃料的压力降低到预置的压力水平,以防止燃料从缸内燃料喷射阀125a-125d泄漏。

发动机22处于发动机电子控制单元(下文称为发动机ECU)24的控制下。发动机ECU24经由输入端口(未示出)输入来自测量和检测发动机22的当前状态的多个传感器的信号。经由输入端口输入发动机ECU24的信号包括:来自曲柄位置传感器140的曲轴26的曲柄位置或转动位置;来自水温传感器142的发动机22的冷却水温度;打开和关闭进气门128和排气门(排气阀)以向燃烧室进气或从燃烧室排气的凸轮轴的凸轮位置或转动位置;来自节气门位置传感器146的节气门124的节气门位置;来自真空传感器148的作为发动机22的负荷的进气量;以及来自连接到向缸内燃料喷射阀125a-125d提供燃料的输送管66上的燃料压力传感器69的燃料压力Pf。发动机ECU 24经由输出端口(未示出)输出多种驱动信号和控制信号以驱动和控制发动机22。经由输出端口从发动机ECU 24输出的信号包括:缸内燃料喷射阀125a-125d以及进气口燃料喷射阀126a-126d的驱动信号;调节节气门124的位置的节气门电机136的驱动信号;与点火器设置成一体的点火线圈138的控制信号;改变进气门128的打开-关闭正时VVT的可变气门正时机构150的控制信号;以及燃料泵62和高压燃料泵64的电机62a和64a的驱动信号。发动机ECU 24与混合动力电子控制单元70通信,以响应于从混合动力电子控制单元70接收的控制信号来驱动和控制发动机22,同时根据需要向混合动力电子控制单元70输出与发动机22的驱动状态有关的数据。

电机MG1和MG2都是已知的作为发电机和作为电动机被驱动的同步电动发电机。电机MG1和MG2经由逆变器41和42向与电线54相连的蓄电池50传输电力或从蓄电池50接收电力。电机MG1和MG2的操作均由电机电子控制单元(下文称为电机ECU)40控制。电机ECU 40接收控制电机MG1和MG2的操作所需的多种信号,例如来自检测电机MG1和MG2中转子的转动位置的转动位置检测传感器43和44的信号,以及供给电机MG1和MG2并由电流传感器(未示出)测量的相电流。电机ECU40向逆变器41和42输出开关控制信号。电机ECU 40与混合动力电子控制单元70通信,以响应于从混合动力电子控制单元70传递的控制信号来控制电机MG1和MG2的操作,同时根据需要向混合动力电子控制单元70输出与电机MG1和MG2的工作状态有关的数据。

蓄电池50由蓄电池电子控制单元(下文称为蓄电池ECU)52控制。蓄电池ECU 52接收控制蓄电池50所需的多种信号,例如:由设置在蓄电池50的端子之间的电压传感器(未示出)测量的端子间电压;由连接在与蓄电池50的输出端子相连的电线54上的电流传感器(未示出)测量的充电-放电电流;以及由连接在蓄电池50上的温度传感器(未示出)测量的蓄电池温度。蓄电池ECU 52根据需要通过通信向混合动力电子控制单元70输出与蓄电池50的状态有关的数据。蓄电池ECU 52基于由电流传感器测量的累积充电-放电电流计算蓄电池50的充电状态(SOC),以便控制蓄电池50。

混合动力电子控制单元70构造成包含CPU 72、存储处理程序的ROM74、临时存储数据的RAM 76、未示出的输入-输出端口以及未示出的通信端口的微处理器。混合动力电子控制单元70经由输入端口接收各种输入:来自点火开关80的点火信号;来自检测换档杆81的当前位置的换档位置传感器82的换档位置SP;来自测量加速器踏板83的踩踏量的加速器踏板位置传感器84的加速器开度Acc;来自测量制动踏板85的踩踏量的制动踏板位置传感器86的制动踏板位置BP;以及来自车速传感器88的车速V。如前文所述,混合动力电子控制单元70经由通信端口与发动机ECU24、电机ECU 40以及蓄电池ECU 52通信,以便向发动机ECU 24、电机ECU 40以及蓄电池ECU 52传递和从其接收各种控制信号和数据。

这样构造的本实施例中的混合动力车辆20根据车速V以及对应于驾驶员对加速器踏板83的踩踏量的加速器开度Acc的观测值计算将输出给用作驱动轴的齿圈轴32a的转矩需求。发动机22以及电机MG1和MG2受到操作控制,以输出对应于计算出的齿圈轴32a的转矩需求的需要的功率水平。对发动机22以及电机MG1和MG2的操作控制选择性地实现转矩变换驱动模式、充电-放电驱动模式和电机驱动模式之一。转矩变换驱动模式控制发动机22的运行,以输出与所需的功率水平相等的功率量,同时驱动和控制电机MG1和MG2以利用动力分配综合机构30以及电机MG1和MG2对发动机22的所有功率输出进行转矩变换并输出给齿圈轴32a。充电-放电驱动模式控制发动机22的运行,以输出与所需的功率水平和通过对蓄电池50充电消耗的或通过对蓄电池50放电而提供的电力量的总和相等的功率量,同时驱动和控制电机MG1和MG2以利用动力分配综合机构30以及电机MG1和MG2对与所需功率水平相等的发动机22的全部或部分功率输出进行转矩变换并输出给齿圈轴32a,同时对蓄电池50进行充电或放电。电机驱动模式停止发动机22的运行并驱动和控制电机MG2以将等于所需功率水平的功率量输出给齿圈轴32a。

下面将说明具有上述构造的本实施例的混合动力车辆20的操作,尤其是在系统接通之后在发动机22首次启动时的一系列启动控制操作。图3是示出在系统接通之后响应于发动机22的首次启动指令由本实施例的发动机ECU 24执行的启动控制程序的流程图。在本实施例的构造中,当在响应于电源开关的打开(ON)操作的系统的接通正时蓄电池50的充电状态SOC小于预置水平时,当发动机22的冷却水温度低于预定的温度水平时,或当在驱动混合动力车辆20期间将输出给齿圈轴32a或驱动轴的功率需求达到或超过预置的功率水平时,给出发动机22的启动指令。

在该启动控制程序中,发动机ECU 24首先驱动燃料泵62和高压燃料泵64,以便从燃料箱60向进气口燃料喷射阀126和缸内燃料喷射阀125提供燃料,并升高输送管66的燃料的压力Pf(下文称为燃料压力Pf)(步骤S100)。发动机ECU 24还驱动可变气门正时机构150以将进气门128的开-闭正时VVT延迟为预置的启动开始正时VVTst(步骤S105),并驱动节气门电机136以将节气门124的开度TH(下文称为节气门开度TH)限制为比怠速驱动状态的标准节气门开度窄的开度THst(步骤S110)。然后发动机ECU 24向混合动力电子控制单元70发送电机驱动请求,以使电机MG1以比标准起转转矩Tset低的转矩Tlow开始起转发动机22(步骤S120)。进气门128的开-闭正时VVT延迟为启动开始正时VVTst以及对节气门开度TH的限制降低了由发动机22的起转导致的压缩冲程中的缸内压力Pin(下文称为缸内压缩压力Pin)的升高,从而减小了起转所消耗的能量。以比标准起转转矩Tset低的转矩Tlow起转发动机22可防止缸内压缩压力Pin随着发动机22的转速Ne的增加而突然升高。下文将详细说明这种控制的效果。响应于接收到使电机MG1以较低的转矩Tlow起转发动机22的这一电机驱动请求,混合动力电子控制单元70将该较低的转矩Tlow设定为电机MG1的转矩指令Tm1*,并向电机ECU 40输出驱动指令。电机ECU 40接收到等于较低的转矩Tlow的转矩指令Tm1*,并控制逆变器41的开关元件,以确保电机MG1的转矩输出等于转矩指令Tm1*

随后,发动机ECU 24输入根据由曲柄位置传感器140检测的曲柄位置计算出的发动机22的转速Ne,被可变气门正时机构150改变的开-闭正时VVT,来自节气门位置传感器146的节气门开度TH,来自燃料压力传感器69的燃料压力Pf,以及代表开始从进气口燃料喷射阀126喷射燃料的进气口喷射开始标记F(步骤S130)。根据输入的发动机22的转速Ne、输入的开-闭正时VVT以及进气口喷射开始标记F推定缸内压缩压力Pin(步骤S140)。推定缸内压缩压力Pin的具体过程是从发动机22的转速Ne和开-闭正时VVT计算进气量。在进气口喷射开始标记F等于0(表示没有从进气口燃料喷射阀126进行燃料喷射)的情况下,用计算出的进气量与预置的压缩比的乘积来推定缸内压缩压力Pin。另一方面,在进气口喷射开始标记F等于1(表示从进气口燃料喷射阀126进行燃料喷射)的情况下,用该乘积与实验测量的燃料压力的和来推定缸内压缩压力Pin。对缸内压缩压力Pin的推定并不局限于此过程,也可采用其它技术推定缸内压缩压力Pin。另一种可能的变型是在发动机22上连接一缸内压力传感器以直接测量缸内压缩压力Pin。进气口喷射开始标记F由此启动控制程序中的后面的步骤S210至S230设定,且在此程序开始时初始化为0。

将燃料压力Pf与作为推定出的缸内压缩压力Pin和稍高于用于保持缸内燃料喷射阀125处于闭合位置的压力Pcv(下文称为闭合阀位置保持压力Pcv)的预置压力P1之和而获得的第一基准值(Pin+P1)进行比较(步骤S150)。当燃料压力Pf升高到或超过第一基准值(Pin+P1)时,发动机ECU 24向混合动力电子控制单元70发送电机驱动请求,以使电机MG1用高于该较低转矩Tlow的标准起转转矩Tset起转发动机22(步骤S160)。响应于接收到这一电机驱动请求,混合动力电子控制单元70将标准起转转矩Tset设定为电机MG1的转矩指令Tm1*,并向电机ECU 40输出驱动指令。电机ECU 40接收等于标准起转转矩Tset的转矩指令Tm1*,并驱动和控制电机MG1以输出标准起转转矩Tset并以该标准起转转矩Tset起转发动机22。与以较低的转矩Tlow起转的发动机22相比,以标准起转转矩Tset起转的发动机22以更大的增加率增加转速Ne。在燃料压力Pf达到或超过第一基准值(Pin+P1)之前,以低于标准起转转矩Tset的转矩Tlow起转发动机22。这种控制可限制发动机22的转速Ne的增加,以防止缸内压缩压力Pin突然升高,同时延迟开始从进气口燃料喷射阀126的燃料喷射。延迟开始从进气口燃料喷射阀126的燃料喷射可减慢缸内压缩压力Pin的升高,并可使燃料压力Pf迅速升高到或超过缸内压缩压力Pin与闭合阀位置保持压力Pcv之和。

随后,将燃料压力Pf与作为推定出的缸内压缩压力Pin和稍高于闭合阀位置保持压力Pcv的预置压力P2之和而获得的第二基准值(Pin+P2)进行比较(步骤S170)。当燃料压力Pf升高到或超过该第二基准值(Pin+P2)时,发动机ECU 24向可变气门正时机构150输出驱动请求以开始提前被延迟的开-闭正时VVT(步骤S180)。开-闭正时VVT根据发动机22的驱动状态逐渐提前。开-闭正时VVT的提前可增加进气量,从而升高缸内压缩压力Pin。在燃料压力Pf达到或超过第二基准值(Pin+P2)时开始提前开-闭正时VVT。这种控制可使燃料压力Pf迅速升高到或超过缸内压缩压力Pin与闭合阀位置保持压力Pcv之和。

然后,将燃料压力Pf与作为推定出的缸内压缩压力Pin和稍高于闭合阀位置保持压力Pcv的预置压力P3之和而获得的第三基准值(Pin+P3)进行比较(步骤S190)。当燃料压力Pf升高到或超过该第三基准值(Pin+P3)时,发动机ECU 24取消对节气门开度TH的限制,并驱动节气门电机136以设定节气门开度TH等于怠速驱动状态下的怠速节气门开度THidl(步骤S200)。取消对节气门开度TH的限制可增加进气量,从而升高缸内压缩压力Pin。在燃料压力Pf达到或超过第三基准值(Pin+P3)时取消对节气门开度TH的限制。这种控制可使燃料压力Pf迅速升高到或超过缸内压缩压力Pin与闭合阀位置保持压力Pcv之和。

将发动机22的转速Ne与预置基准转速Nref1进行比较(步骤S210)。当发动机22的转速Ne达到或超过预置基准转速Nref1时,发动机ECU 24开始从进气口燃料喷射阀126喷射燃料(步骤S220),并设定进气口燃料喷射开始标记等于1(步骤S230)。基准转速Nref1代表从进气口燃料喷射阀126喷射燃料的开始正时,并可设定为任意值。

当判定进气口燃料喷射开始标记F等于1(步骤S240)且燃料压力Pf达到或超过作为推定出的缸内压缩压力Pin和稍高于闭合阀位置保持压力Pcv的预置压力P4之和而获得的第四基准值(Pin+P4)(步骤S250)时,发动机ECU 24开始从缸内燃料喷射阀125喷射燃料(步骤S260)。在燃料压力Pf达到或超过第四基准值(Pin+P4)时开始从缸内燃料喷射阀125喷射燃料。这种控制可有效地抑制缸内燃料喷射阀125由于燃料压力Pf低于缸内压缩压力Pin与闭合阀位置保持压力Pcv之和而不充分地打开。这样可令人满意地防止由于缸内燃料喷射阀125不充分的打开而造成的潜在故障,例如排放较差,在燃烧室内缸内燃料喷射阀125附近的密封性恶化,以及沉积物造成缸内燃料喷射阀125阻塞。

如上所述,以低于标准起转转矩Tset的转矩Tlow起转发动机22可防止缸内压缩压力Pin随着发动机22的转速Ne的增加而突然升高。延迟开始从进气口燃料喷射阀126喷射燃料可减慢缸内压缩压力Pin的升高。在燃料压力Pf升高到或超过第二基准值(Pin+P2)时开始提前开-闭正时VVT也可减慢缸内压缩压力Pin的升高。在燃料压力Pf升高到或超过第三基准值(Pin+P3)时取消对节气门开度TH的限制也可减慢缸内压缩压力Pin的升高。这种控制可使燃料压力Pf迅速升高到或超过第四基准值(Pin+P4),并有效地抑制缸内燃料喷射阀125由于燃料压力Pf低于缸内压缩压力Pin与闭合阀位置保持压力Pcv之和而不充分地打开。第一至第四基准值(Pin+P1)、(Pin+P2)、(Pin+P3)和(Pin+P4)中的预置压力P1、P2、P3和P4都稍高于闭合阀位置保持压力Pcv。这些预置压力P1、P2、P3和P4可以是相同的值或者不同的值。在后一种情况下,压力P1至P3优选地设定为小于压力P4,以便用标准起转转矩Tset起转发动机22,开始提前开-闭正时VVT,并取消对节气门开度TH的限制。

在上述的一系列处理之后,该启动控制程序在确认从缸内燃料喷射阀125喷射燃料的发动机22内的高阶爆燃(high-order detonation)(S270)后结束。在燃料压力Pf达到或超过第四基准值(Pin+P4)之前,不会确认从缸内燃料喷射阀125喷射燃料的发动机22内的高阶爆燃。因而启动控制程序返回步骤S130,并重复进行步骤S130至S270的处理。

图4示出在系统接通之后发动机22首次启动时,缸内压缩压力Pin,燃料压力Pf,发动机22的转速Ne,起转转矩,以及对节气门开度TH的限制、从进气口燃料喷射阀126的燃料喷射、开-闭正时VVT的提前和从缸内燃料喷射阀125的燃料喷射的开-关(ON-OFF)设定的时间变化。在图4的图表中,实线曲线代表在执行图3的流程图所示的实施例的启动控制程序以起转发动机22时的变化。单点划线曲线代表在执行一个比较示例的现有技术控制以通过以标准起转转矩Tset起转发动机22并通过独立于燃料压力Pf的变化开始提前开-闭正时VVT和取消对节气门开度TH的限制来启动发动机22时的变化。本实施例的控制程序在时间T1响应于启动指令而开始以比标准起转转矩Tset低的转矩Tlow起转发动机22。与比较示例的现有技术的程序相比,这样可降低发动机22的转速Ne的增加率。在燃料压力Pf达到或超过缸内压缩压力Pin与闭合阀位置保持压力Pcv之和的时间T2,控制程序以标准起转转矩Tset起转发动机22,开始提前开-闭正时VVT,并取消对节气门开度TH的限制。这种发动机起转、正时提前以及取消限制会在燃料压力Pf升高到或超过缸内压缩压力Pin与闭合阀位置保持压力Pcv之和的同时使缸内压缩压力Pin突然升高。从而这种控制可有效地防止缸内燃料喷射阀125不充分地打开。在发动机22的转速Ne达到或超过预置基准转速Nref1的时间T3,控制程序开始从进气口燃料喷射阀126喷射燃料。在时间T4,控制程序开始从缸内燃料喷射阀125喷射燃料以完成发动机22的启动。另一方面,在比较示例中,缸内压缩压力Pin的增加率大于燃料压力Pf。在时间T4之前,燃料压力Pf不会达到或超过缸内压缩压力Pin与闭合阀位置保持压力Pcv之和。

在上述实施例的混合动力车辆20中,在系统接通后发动机22首次启动时,当用于向缸内燃料喷射阀125提供燃料的输送管66中的燃料压力Pf达到或超过作为推定出的缸内压缩压力Pin与稍高于闭合阀位置保持压力Pcv的预置压力P4之和的第四基准值(Pin+P4)时,开始从缸内燃料喷射阀125喷射燃料。这种控制可有效地防止由于缸内燃料喷射阀125因燃料压力Pf低于缸内压缩压力Pin与闭合阀位置保持压力Pcv之和而不充分地打开所导致的潜在故障。这可确保发动机22充分启动。此实施例的控制程序以比标准起转转矩Tset低的转矩Tlow开始起转发动机22,在燃料压力Pf升高到或超过高于缸内压缩压力Pin的第二基准值(Pin+P2)时开始提前开-闭正时VVT,并在燃料压力Pf升高到或超过高于缸内压缩压力Pin的第三基准值(Pin+P3)时取消对节气门开度TH的限制。这种控制可减慢缸内压缩压力Pin的升高,并使燃料压力Pf迅速升高到或超过第四基准值(Pin+P4)。这样可令人满意地抑制缸内燃料喷射阀125不充分地打开,并防止由于缸内燃料喷射阀125不充分打开而导致的潜在故障,从而可确保发动机22充分和快速启动。

在此实施例的混合动力车辆20中,控制程序以比标准起转转矩Tset低的转矩Tlow开始起转发动机22,在燃料压力Pf升高到或超过高于缸内压缩压力Pin的第二基准值(Pin+P2)时开始提前开-闭正时VVT,并在燃料压力Pf升高到或超过高于缸内压缩压力Pin的第三基准值(Pin+P3)时取消对节气门开度TH的限制。其先决条件是当燃料压力Pf达到或超过作为缸内压缩压力Pin与稍高于闭合阀位置保持压力Pcv的预置压力P4之和的第四基准值(Pin+P4)时,开始从缸内燃料喷射阀125喷射燃料。只要满足这个先决条件,该控制程序可变型为以标准起转转矩Tset开始起转发动机22,独立于燃料压力Pf开始提前开-闭正时VVT,以及独立于燃料压力Pf取消对节气门开度TH的限制。图5的流程图示出这种变型的一个示例。图5中的变型的启动控制程序以标准起转转矩Tset开始起转发动机22(步骤S120b),在从启动控制程序的开始经过预置时间t2之后开始提前开-闭正时VVT(步骤S170b和S180),并在从启动控制程序的开始经过预置时间t3之后取消对节气门开度TH的限制(步骤S190b和S200)。当发动机22的转速Ne达到或超过预置基准转速Nref1时,该变型的启动控制程序开始从进气口燃料喷射阀126喷射燃料(步骤S210和S220)。当在从进气口燃料喷射阀126喷射燃料的状态下燃料压力Pf达到或超过第四基准值(Pin+P4)时,该变型的启动控制程序开始从缸内燃料喷射阀125喷射燃料(步骤S240至S260)。当燃料压力Pf达到或超过作为缸内压缩压力Pin与稍高于闭合阀位置保持压力Pcv的预置压力P4之和的第四基准值(Pin+P4)时,该变型的控制程序开始从缸内燃料喷射阀125喷射燃料。这种控制可有效地抑制缸内燃料喷射阀125不充分地打开。图5的变型的启动控制程序在从启动控制程序的开始经过预置时间t2之后开始提前开-闭正时VVT,并在从启动控制程序的开始经过预置时间t3之后取消对节气门开度TH的限制。如上所述,在这种变型的控制中的先决条件是当燃料压力Pf达到或超过作为缸内压缩压力Pin与稍高于闭合阀位置保持压力Pcv的预置压力P4之和的第四基准值(Pin+P4)时,开始从缸内燃料喷射阀125喷射燃料。只要满足此先决条件,则开始提前开-闭正时VVT和取消对节气门开度TH的限制并不局限于此变型的程序的正时。该开始提前正时和取消限制正时可基于从启动控制程序的开始经过的时间之外的标准来确定,并设定为例如发动机22的转速Ne达到预置第一水平和预置第二水平的正时。

在此实施例的混合动力车辆20中,该控制程序在燃料压力Pf升高到或超过高于缸内压缩压力Pin的第二基准值(Pin+P2)时开始提前开-闭正时VVT,在燃料压力Pf升高到或超过高于缸内压缩压力Pin的第三基准值(Pin+P3)时取消对节气门开度TH的限制,并在燃料压力Pf升高到或超过高于缸内压缩压力Pin的第四基准值(Pin+P4)时开始从缸内燃料喷射阀125喷射燃料。其先决条件是以低于标准起转转矩Tset的转矩Tlow开始起转发动机22,并且在燃料压力Pf达到或超过作为缸内压缩压力Pin与稍高于闭合阀位置保持压力Pcv的预置压力P1之和的第一基准值(Pin+P1)时以标准起转转矩Tset起转发动机22。只要满足此先决条件,则可变型控制程序以便独立于燃料压力Pf开始提前开-闭正时VVT,独立于燃料压力Pf取消对节气门开度TH的限制,以及独立于燃料压力Pf开始从缸内燃料喷射阀125喷射燃料。图6的流程图示出这种变型的一个示例。类似于此实施例的启动控制程序,图6的变型的启动控制程序以低于标准起转转矩Tset的转矩Tlow开始起转发动机22(步骤S120),并在燃料压力Pf达到或超过作为缸内压缩压力Pin与稍高于闭合阀位置保持压力Pcv的预置压力P1之和的第一基准值(Pin+P1)时以标准起转转矩Tset起转发动机22(步骤S150和S160)。该变型的启动控制程序在从启动控制程序的开始经过预置时间t2之后开始提前开-闭正时VVT(步骤S170c和S180),并在从启动控制程序的开始经过预置时间t3之后取消对节气门开度TH的限制(步骤S190c和S200)。当发动机22的转速Ne达到或超过预置第一基准转速Nref1时,该变型的启动控制程序开始从进气口燃料喷射阀126喷射燃料(步骤S210和S220)。当发动机22的转速Ne达到或超过高于预置第一基准转速Nref1的预置第二基准转速Nref2时,该变型的启动控制程序开始从缸内燃料喷射阀125喷射燃料(步骤S240c和S260)。该变型的控制程序以低于标准起转转矩Tset的转矩Tlow开始起转发动机22。以较低转矩Tlow起转发动机可减慢发动机22的转速Ne的增加率,从而防止缸内压缩压力Pin随转速Ne的增加而突然升高。以较低转矩Tlow起转发动机还可延迟开始从进气口燃料喷射阀126喷射燃料,以减慢缸内压缩压力Pin的升高,并可使燃料压力Pf迅速升高到或超过缸内压缩压力Pin与闭合阀位置保持压力Pcv之和。这种控制可有效地抑制缸内燃料喷射阀125不充分地打开。图6的变型的启动控制程序在从启动控制程序的开始经过预置时间t2之后,开始提前开-闭正时VVT,并在从启动控制程序的开始经过预置时间t3之后取消对节气门开度TH的限制。如上所述,此变型的控制的先决条件是以低于标准起转转矩Tset的转矩Tlow开始起转发动机22,并在燃料压力Pf达到或超过作为缸内压缩压力Pin与稍高于闭合阀位置保持压力Pcv的预置压力P1之和的第一基准值(Pin+P1)时以标准起转转矩Tset起转发动机22。只要满足此先决条件,则开始提前开-闭正时VVT以及取消对节气门开度TH的限制并不局限于此变型的程序的正时。该开始提前正时和取消限制正时可基于从启动控制程序的开始经过的时间之外的标准来确定,并被设定为例如当发动机22的转速Ne达到预置第一水平和预置第二水平时的正时。图6的变型的启动控制程序在发动机22的转速Ne达到或超过预置第二基准转速Nref2时开始从缸内燃料喷射阀125喷射燃料。另一个可能的变型是在从进气口燃料喷射阀126喷射燃料的状态下,在燃料压力Pf达到或超过作为缸内压缩压力Pin与稍高于闭合阀位置保持压力Pcv的预置压力P4之和的第四基准值(Pin+P4)时,开始从缸内燃料喷射阀125喷射燃料。

在本实施例的混合动力车辆20中,控制程序以低于标准起转转矩Tset的转矩Tlow开始起转发动机22,在燃料压力Pf升高到或超过高于缸内压缩压力Pin的第三基准值(Pin+P3)时取消对节气门开度TH的限制,并在燃料压力Pf升高到或超过高于缸内压缩压力Pin的第四基准值(Pin+P4)时开始从缸内燃料喷射阀125喷射燃料。其先决条件是在燃料压力Pf升高到或超过高于缸内压缩压力Pin的第二基准值(Pin+P2)时开始提前开-闭正时VVT。只要满足此先决条件,则控制程序可变型为以标准起转转矩Tset开始起转发动机22,独立于燃料压力Pf取消对节气门开度TH的限制,以及独立于燃料压力Pf开始从缸内燃料喷射阀125喷射燃料。图7的流程图示出这种变型的一个示例。图7的变型的启动控制程序以标准起转转矩Tset开始起转发动机22(步骤S120d),并在燃料压力Pf达到或超过作为缸内压缩压力Pin与稍高于闭合阀位置保持压力Pcv的预置压力P2之和的第二基准值(Pin+P2)时开始提前开-闭正时VVT(步骤S170和S180)。该变型的启动控制程序在从启动控制程序的开始经过预置时间t3之后取消对节气门开度TH的限制(步骤S190d和S200),并在发动机22的转速Ne达到或超过预置第一基准转速Nref1时开始从进气口燃料喷射阀126喷射燃料(步骤S210和S220)。当发动机22的转速Ne达到或超过高于预置第一基准转速Nref1的预置第二基准转速Nref2时,该变型的启动控制程序开始从缸内燃料喷射阀125喷射燃料(步骤S240d和S260)。此变型的控制程序可减慢由开-闭正时VVT的提前导致的进气量的增加以控制缸内压缩压力Pin的增加,并可使燃料压力Pf迅速升高到或超过缸内压缩压力Pin与闭合阀位置保持压力Pcv之和。这种控制可有效地抑制缸内燃料喷射阀125不充分地打开。图7的变型的启动控制程序以标准起转转矩Tset开始起转发动机22。但是,也可以低于标准起转转矩Tset的转矩Tlow开始起转发动机22,随后以标准起转转矩Tset进行。图7的变型的启动控制程序在从启动控制程序的开始经过预置时间t3之后取消对节气门开度TH的限制。如上所述,该变型的控制的先决条件是在燃料压力Pf升高到或超过高于缸内压缩压力Pin的第二基准值(Pin+P2)时开始提前开-闭正时VVT。只要满足此先决条件,则取消对节气门开度TH的限制并不局限于此变型的程序的正时。该取消限制正时可基于从启动控制程序的开始经过的时间之外的标准来确定,并设定为例如当发动机22的转速Ne达到预置水平的正时。当发动机22的转速Ne达到或超过预置第二基准转速Nref2时,图7的变型的启动控制程序开始从缸内燃料喷射阀125喷射燃料。另一种可能的变型是在从进气口燃料喷射阀126喷射燃料的状态下,当燃料压力Pf达到或超过作为缸内压缩压力Pin与稍高于闭合阀位置保持压力Pcv的预置压力P4之和的第四基准值(Pin+P4)时,开始从缸内燃料喷射阀125喷射燃料。

在此实施例的混合动力车辆20中,控制程序以低于标准起转转矩Tset的转矩Tlow开始起转发动机22,在燃料压力Pf升高到或超过高于缸内压缩压力Pin的第二基准值(Pin+P2)时开始提前开-闭正时VVT,并在燃料压力Pf升高到或超过高于缸内压缩压力Pin的第四基准值(Pin+P4)时开始从缸内燃料喷射阀125喷射燃料。其先决条件是在燃料压力Pf升高到或超过高于缸内压缩压力Pin的第三基准值(Pin+P3)时取消对节气门开度TH的限制。只要满足此先决条件,则控制程序可变型为以标准起转转矩Tset开始起转发动机22,独立于燃料压力Pf开始提前开-闭正时VVT,以及独立于燃料压力Pf开始从缸内燃料喷射阀125喷射燃料。图8的流程图示出这种变型的一个示例。图8的变型的启动控制程序以标准起转转矩Tset开始起转发动机22(步骤S120e),并在从启动控制程序的开始经过预置时间t2之后开始提前开-闭正时VVT(步骤S170e和S180)。当燃料压力Pf达到或超过作为缸内压缩压力Pin与稍高于闭合阀位置保持压力Pcv的预置压力P3之和的第三基准值(Pin+P3)时,该变型的启动控制程序取消对节气门开度TH的限制(步骤S190和S200)。当发动机22的转速Ne达到或超过预置第一基准转速Nref1时,该变型的启动控制程序开始从进气口燃料喷射阀126喷射燃料(步骤S210和S220)。当发动机22的转速Ne达到或超过高于预置第一基准转速Nref1的预置第二基准转速Nref2时,该变型的启动控制程序开始从缸内燃料喷射阀125喷射燃料(步骤S240e和S260)。对节气门开度TH的限制可减慢进气量的增加以控制缸内压缩压力Pin的升高,并可使燃料压力Pf迅速升高到或超过缸内压缩压力Pin与闭合阀位置保持压力Pcv之和。这种控制可有效地抑制缸内燃料喷射阀125不充分地打开。图8的变型的启动控制程序以标准起转转矩Tset开始起转发动机22。但是,也可以低于标准起转转矩Tset的转矩Tlow开始起转发动机22,随后以标准起转转矩Tset进行。图8的变型的启动控制程序在从启动控制程序的开始经过预置时间t2之后开始提前开-闭正时VVT。如上所述,此变型的控制的先决条件是在燃料压力Pf升高到或超过高于缸内压缩压力Pin的第三基准值(Pin+P3)时取消对节气门开度TH的限制。只要满足此先决条件,则开始提前开-闭正时VVT并不局限于此变型程序的正时。该开始提前正时可基于从启动控制程序的开始经过的时间之外的标准来确定,并设定为例如当发动机22的转速Ne达到预置水平的正时。当发动机22的转速Ne达到或超过预置第二基准转速Nref2时,图8的变型的启动控制程序开始从缸内燃料喷射阀125喷射燃料。另一种可能的变型是在从进气口燃料喷射阀126喷射燃料的状态下,当燃料压力Pf达到或超过作为缸内压缩压力Pin与稍高于闭合阀位置保持压力Pcv的预置压力P4之和的第四基准值(Pin+P4)时,开始从缸内燃料喷射阀125喷射燃料。

此实施例或者各种变型示例中的任何一个的混合动力车辆20具有配备有缸内燃料喷射阀125和进气口燃料喷射阀126的发动机22。可选择地,该混合动力车辆可具有没有配备进气口燃料喷射阀126的发动机,即仅配备有缸内燃料喷射阀125的发动机。在此变型结构中,可从图3的启动控制程序中省去步骤S210至S240的处理。

此实施例或者各种变型示例中的任何一个的混合动力车辆20在该系统接通后发动机22首次启动时执行启动控制程序。该启动控制程序也可应用于在输送管66中的燃料压力Pf较低的状态下启动发动机22。

此实施例或者各种变型示例中的任何一个的混合动力车辆20使用电控的高压燃料泵64对流经输送管66供应的燃料加压。可选择地,可通过由发动机22的曲轴26的旋转所致动的机械控制的高压燃料泵对流经输送管66供应的燃料加压。

在此实施例或者各种变型示例中的任何一个的混合动力车辆20中,发动机22的功率经由动力分配综合机构30输出给连接到驱动轮39a和39b的齿圈轴32a或驱动轴。但是,本发明的技术并不局限于这种构型,而是可适用于图9所示的具有变型构造的混合动力车辆120,其中电机MG2的功率从与齿圈轴32a连接的轴(连接到驱动轮39a和39b的轴)传递给不同的轴(连接到车轮39c和39d的轴)。本发明的技术还可应用于图10所示的另一种变型示例的混合动力车辆220。具有这种变型构造的混合动力车辆220包括具有一对转子的电机230,该转子包括连接到发动机22的曲轴26的内部转子232和连接到驱动轴以将动力输出给驱动轮39a和39b的外部转子234。具有一对转子的电机230将发动机22的输出功率的一部分传递给驱动轴,同时将输出功率的剩余部分转化成电力。混合动力车辆可具有任何不同构造,只要安装在混合动力车辆上的发动机22配备有缸内燃料喷射阀125即可。

上述实施例和变型示例涉及具有配备有缸内燃料喷射阀125的发动机22的混合动力车辆20。具有缸内燃料喷射阀125的发动机22并不局限于应用于混合动力车辆,而是也可安装在常规发动机车辆上。具有缸内燃料喷射阀125的发动机22也可安装在多种运动物体上,包括除机动车辆、火车、小船和轮船以及飞行器之外的各种车辆,并且还可结合在运动物体之外的各种静止设备和装置中。

应当认为上述实施例及其变型在所有方面都是示例性的而非限制性的。在不脱离本发明的主要特征的范围或精神的情况下可具有许多其它的变型、更改和改变。

本文旨在包含权利要求的等同物的含义和范围内的所有变型。本发明的范围和精神由所附权利要求而不是由前文的说明给出。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号