首页> 中国专利> 支持用于高速数字接口的低干扰信令方案的多模I/O电路

支持用于高速数字接口的低干扰信令方案的多模I/O电路

摘要

多模I/O电路或者单元(10)被提供用来在IC之间发送和接收数据,每个IC包括至少一个I/O电路。每条数据链路包括发射机电路(12)和接收机电路(14)。发射机电路发送数据给另一IC中的接收机电路,并且接收机电路从另一IC中的发射机电路接收数据。

著录项

  • 公开/公告号CN1647381A

    专利类型发明专利

  • 公开/公告日2005-07-27

    原文格式PDF

  • 申请/专利权人 诺基亚有限公司;

    申请/专利号CN02826651.X

  • 申请日2002-10-17

  • 分类号H03K19/094;H03K19/173;H03K19/177;

  • 代理机构72001 中国专利代理(香港)有限公司;

  • 代理人刘红;王勇

  • 地址 芬兰埃斯波

  • 入库时间 2023-12-17 16:21:02

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-09-30

    未缴年费专利权终止 IPC(主分类):H03K19/094 专利号:ZL02826651X 申请日:20021017 授权公告日:20070117

    专利权的终止

  • 2019-05-31

    专利权的转移 IPC(主分类):H03K19/094 登记生效日:20190510 变更前: 变更后: 申请日:20021017

    专利申请权、专利权的转移

  • 2016-02-03

    专利权的转移 IPC(主分类):H03K19/094 登记生效日:20160113 变更前: 变更后: 申请日:20021017

    专利申请权、专利权的转移

  • 2007-01-17

    授权

    授权

  • 2005-09-21

    实质审查的生效

    实质审查的生效

  • 2005-07-27

    公开

    公开

查看全部

说明书

技术领域

本发明通常涉及在输入/输出(I/O)操作中使用的电路,并且特别涉及用于支持集成电路(IC)之间高速数字数据路径的I/O电路。

背景技术

现代电信系统发送、接收、存储和检索日益增加的数据量。复杂系统的IC之间信息的传输需要信令方案和输入/输出(I/O)电路能够高速工作、产生最小扰动(噪声)、容忍干扰、消耗极少功率和在IC上占据最小面积。此外,从使用观点看,极其希望I/O电路支持发射机和接收机中的不同电源电压,并且能够进行多模操作,以增强与可以使用不同信令方案的不同代的IC的前向和后向兼容性。

传统I/O电路单元通常仅支持一种类型的信号,例如单端(signal-ended)CMOS信号,并且发送单元的电源电压必须与接收单元的电源电压相同,而且反之亦然。某些传统I/O单元可以被用作发射机或接收机来支持双向信令。

最常用的CMOS数字信令技术使用单端电压型信号,所述信号具有栏到栏(rail-to-rail)电平和快速边缘。然而,公知这种技术方案产生对其他电路的大量的信号扰动和干扰,并且趋于限制最大可用数据速率和/或严重影响系统的性能。所产生的扰动在其中接收的模拟信号可能极其微弱的基于无线电的通信系统中是特别有害的。

减少扰动信号产生的一种技术是在IC之间使用模拟信令。该技术方案意味着发射机和接收机IC必须包含模拟电路,例如,模数转换器(ADC)和数模转换器(DAC)。然而,任何模拟电路并入不同的数字IC都是有问题的,因为数字IC通常使用高度最佳化的数字处理予以实现。在这些处理中,器件的模拟特性时常受到损害。此外,这些深亚微型(deep sub-micron)处理的最大可容许电源电压正在降低,这使得模拟功能的实现愈加困难。此外,可用模拟器件的种类受到限制。例如,无源器件如电阻器只有通过使用昂贵的附加处理步骤才变得可用。另外,数字IC中的模拟信令和相关模拟电路(例如,ADC和DAC)也许导致禁止性大的电路面积要求,以及不能接受的功耗。此外,在大数字IC中实施模拟或者混合信号电路使得设计和检测更加困难、耗时和昂贵,因此增加了风险和时延。

此外,深亚微型CMOS处理中每个硅面积的价格正在增加。由于模拟电路的面积不能按照与数字电路相同的比率缩减,因此在数字IC上布置模拟电路变得愈加昂贵。

从以上说明可以意识到,有利的情形是大数字IC仅包含数字电路,以及RF、模拟和混合信号电路最好设置在使用更合适的处理技术实施的独立芯片中。如果是此情况,还能够进一步意识到,应当最佳化IC之间的信令,而不依赖于基于模拟的I/O电路的使用。

因此,开发出能够使最佳系统分区得以实现的有效IC间信令电路是重要的。但是,在本发明之前,该需要还没有被充分解决。

发明内容

利用根据本发明实施例的方法和设备克服了上述和其它问题。

本发明涉及用于支持低干扰信令方案和用于IC间高速数字接口的协议的多模I/O电路。多模I/O电路的一个当前最佳的应用是在移动无线电通信系统中,但不限于此。所公开的多模I/O电路支持单端和差动电流型、低摆动电压型和CMOS信令,并且只利用少量控制比特就可以选择所公开的接收机和发射机电路的操作模式。I/O电路仅需要使用标准MOS晶体管,并因此可以使用任何传统的CMOS或者BiCMOS技术予以实现。

从干扰减轻观点看,最佳信令技术利用了差动电流型信令。所公开的I/O电路支持该优选的操作模式,但是接收机和发射机电路也可以与例如传统CMOS级I/O电路一起使用。这是用于实现与现有的以及不断涌现系统的兼容性的重要特征。例如,装备有所公开的接收机I/O电路的IC可以与来自利用不同信令方案和I/O电路的相同或不同代电路的其它IC的发送I/O电路进行通信。同样,装备有所公开的发射机I/O电路的IC可以与来自利用不同信令方案和I/O电路的相同或不同代的电路的另一个IC的接收I/O电路进行通信。

尽管利用定义当前优选差动信令方案每条信号链路利用两个导线,但是提供附加布线的需要至少由于这种差动链路可以支持比非差动的单导体型链路更高数据速率的事实而部分地被补偿。

本发明提供了对如何最有效地在IC之间发送不断增加的数据量的一般问题的解决方案,而不会因为与高速数字数据链路操作有关的干扰和噪声而牺牲或恶化系统的性能,并且不需要把模拟电路集成到IC中。

这些教导克服了以下特定的技术问题以及其它问题。首先,由I/O电路启动的差动电流型信令展现了比通常使用的CMOS数字信令(它利用具有栏到栏电平和快速边缘的单端电压型信号)更少的噪声和干扰。第二,根据这些教导的低干扰信令技术允许IC之间的高速数字信令,并且可以有利地被用于包含极其微弱的模拟信号的无线电通信系统中。此外,这些教导的使用通过允许不同IC之间系统功能的最佳划分而促进系统设计任务。

根据这些教导的一个方面,提供用于在IC之间发送和接收数据的多模I/O电路或单元,其中每条链路包含至少一个所公开的I/O电路。IC之间的每条数据链路包括发射机电路和接收机电路。发射机电路发送数据给另一个IC中的接收机电路,并且接收机电路接收来自另一个IC中的发射机电路的数据。所公开的I/O电路最好利用基于CMOS的晶体管构成(例如,CMOS或BiCMOS),这些晶体管被多个开关有选择地互连在一起,以作为两个单端电流或电压型链路操作,或者作为单个差动电流或电压型链路操作。在优选实施例中,发射机电路经由第一对邻近布置的导体向另一个IC中的接收机电路发送数据,并且接收机电路经由第二对邻近布置的导体接收来自另一个IC中发射机电路的数据。

发射机电路和接收机电路最好由多个开关中的至少一些开关有选择地配置,所述多个开关用于工作在发射机电路的电源电压等于另一个IC中接收机电路的电源电压的条件下,或者用于工作在发射机电路的电源电压小于另一个IC中接收机电路的电源电压的条件下,或者用于工作在发射机电路的电源电压大于另一个IC中接收机电路的电源电压的条件下。这些可以被认为是双单端CMOS电压链路模式中的不同模式。

需要注意的是,单端电流型链路以及差动电压和电流型链路都支持发射机和接收机IC中的不同电源电压。然而,由于单端电压型链路呈现最困难的情况,因此在下文对其进行最详细地描述。

更具体地说,发射机电路和接收机电路由多个开关选择地配置,这些开关用于工作在双单端电压型链路模式、双单端电流型链路模式、由具有单端输入驱动的单个差动电压型链路定义的模式、由具有差动输入驱动的单个差动电压型链路定义的模式、由具有单端输入驱动模式的单个差动电流型链路定义的模式以及由具有差动输入驱动的单个差动电流型链路定义的模式中。

在所公开的I/O电路中提供附加开关以便在发射机与接收机I/O电路间进行转换,这也落入这些教导的范围之内。

还有,在此方面,还公开了用于在IC之间发送数据的电路和方法。该方法包括:提供至少两个IC,每个IC包括利用基于CMOS的晶体管构成的I/O电路的至少一种情况;编程第一IC中的I/O电路,以充当数据发射机电路,以及编程第二IC中的I/O电路,以充当数据接收机电路,这两个电路通过布置在第一和第二IC之间的多个电导体互连。编程步骤包括编程第一和第二IC中的I/O电路,以支持两个单端电流或电压型链路,或者支持单个差动电流或电压型链路。下一个步骤利用I/O电路和电导体将数据从第一IC发送到第二IC。在第一和第二IC操作期间,该方法还包括以下步骤:重新编程第一IC中的I/O电路,以充当数据接收机电路,以及重新编程第二IC中的I/O电路,以充当数据发射机电路。由此使操作的半双工模式以及其它模式成为可能,比如在IC之间提供双向数据信号路径。

该方法和电路能够有利地与多个不同类型设备一起使用,这些设备包括无线通信装置和无线通信装置的辅助装置,以及用于把无线通信装置接口到辅助装置的装置。

附图说明

下面结合附图阅读的优选实施例的详细说明将会使这些教导的上述和其它特征更加清楚。

图1显示了根据本发明的通过I/O单元之间形成的数字链路互连的不同类型和信令需求的多个IC;

图2显示了这些教导的使用如何在使用不同信令方案的新一代IC与前一代IC之间提供兼容性;

图3是显示多模I/O发射机和接收机电路的当前优选的实施例的示意电路图;

图4是图3的多模I/O发射机和接收机电路的方框图,并且该方框图有助于理解在实施优选的差动信令技术时所公开电路的操作;

图5A显示了在提供两个单端(电流或电压型)链路中多模I/O电路的使用,并且其有助于理解分别在图6、图7、图8和图9中所示的模式1、2、3和4;

图5B显示了在提供单端差动(电流或电压型)链路中多模I/O电路的使用,并且其有助于理解分别在图10、图11、图12和图13中所示的模式5、6、7和8;

图6包括显示用于图3中所示的开关的可编程开关设置的图表,用于实现两个单端CMOS电平链路(其中VDD1=VDD2),以及所得到的模式1有效电路的示意图;

图7包括显示用于图3中所示的开关的可编程开关设置的图表,用于实现两个单端CMOS电平链路(其中VDD1<VDD2),以及所得到的模式2有效电路的示意图;

图8包括显示用于图3中所示的开关的可编程开关设置的图表,用于实现两个单端CMOS电平链路(其中VDD1>VDD2),以及所得到的模式3有效电路的示意图;

图9包括显示用于图3中所示的开关的可编程开关设置的图表,用于实现两个单端电流型链路,以及所得到的模式4有效电路的示意图;

图10包括显示用于图3中所示的开关的可编程开关设置的图表,用于利用单端输入驱动实现单个差动低摆动电压型链路,以及所得到的模式5有效电路的示意图;

图11包括显示用于图3中所示的开关的可编程开关设置的图表,用于利用差动输入驱动实现单个差动低摆动电压型链路,以及所得到的模式6有效电路的示意图;

图12包括显示用于图3中所示的开关的可编程开关设置的图表,用于利用单端输入驱动实现单个差动电流型链路,以及所得到的模式7有效电路的示意图;

图13包括显示用于图3中所示的开关的可编程开关设置的图表,用于利用差动输入驱动实现单个差动电流型链路,以及所得到的模式8有效电路的示意图;和

图14包括显示用于在接收机I/O单元与发射机I/O单元之间变换I/O电路的可编程开关设置的图表。

具体实施方式

图1示出了在诸如蜂窝电话或者个人通信器的移动通信终端中包含具有不同信号类型的若干集成电路(IC)1、2和3的一个系统的实例。本发明最关心的是IC1、2、和3之间的信令以及包含在每个IC内的I/O单元10的相关部分。

首先注意,I/O电路在这里也被称作I/O单元10。数据通常经由数据链路在IC之间传送。在数据链路的发送端中布置了包含发射机电路/单元的I/O单元10,并且在接收端中布置了包含接收机电路/单元的I/O单元10。I/O单元10可以是发射机I/O单元或者接收机I/O单元。在一个给定系统中,一个IC可以使用所公开的发射机I/O单元或者接收机I/O单元,或者该IC可以包含两种类型的I/O单元,并且其它IC可以使用不同类型的单元。

在所示的实例中,IC 1是包含具有低电平信号的高速模拟电路,IC 2是利用高速数字信号表征的基带(BB)IC,而IC3是利用混合低速模拟和数字电路的能量管理(EM)装置。IC 1、2和3之间的数字数据通信链路开始于和终止于I/O电路或单元10。

图2是显现后向(和前向)兼容需求的示意图,该兼容需求是新信令方案的一个必需的前置条件。在该图中,“新的”发射机信令技术需要与“新的”接收机信令技术以及与较旧的接收机信令技术的若干版本相兼容。照此方式,“新的”接收机信令技术需要与“新的”发射机信令技术以及与较旧的发射机信令技术的若干版本或者“代”相兼容。

图3显示了根据本发明当前优选实施例的多模I/O电路10。图3的实施例提供了实现图2所示的前后向兼容性的能力。

应当注意到,能够与所示的I/O电路10一起使用的典型电源电压可以是例如3.3V、2.5V或者1.5V。在低摆动电压型信令中,电压摆动可以是例如0.5V。图3中的VDD1是发射机的正电源,VDD2是接收机的正电源,而地是接收机和发射机的负电源。

更特别地,图3显示了所公开的I/O电路、一个发射机12和一个接收机14,它们可以形成两个单端链路或一个差动链路。I/O电路支持的各种模式被概括地显示在图5至图13中,而图4在概念上显示了差动电流型信令技术。

至于图4的差动电流型信令,发射机12可以被认为由两个恒流源(称之为ibias 1)和多个开关SW_A、SW_B、SW_C、SW_D组成。IC间的信号链路被利用两个邻近布置的导线w1和w2来实施。接收机14包括用两个恒流源(称之为ibias2)偏置的差动互阻抗放大器(DTA)16。发射机和接收机电路12和14可以用标准MOS晶体管构成,如图3所示,但是不需要使用模拟电路或者通常不兼容标准CMOS处理的器件,如电阻器。

在图4的概念图中,输入信号(in)及其倒置通过控制实施开关SW_A至SW_D的四个晶体管来控制信号线w1和w2中的电流方向。利用开关SW_A至SW_D把来自恒流源ibias1的电流从一个分支导引到另一个分支。在信号线w1和w2中,电流大小相等但方向相反,导致导线周围的磁场在短距离内相互抵消。由于恒流偏置,消除了发射机12中的电流峰值,并且通过开关SW_A至SW_D的动作,可以提供“浮动”输出节点。接收端确定共模,并且发射机12和接收机14可以有相同或不同的电源电压。正如结合图6、图7和图8所述的那样,VDD1可以等于VDD2,或者VDD1可以小于VDD2(一定限度内)或者VDD1可以大于VDD2(一定限度内)。

接收机14包括差动互阻抗放大器16,该放大器16由放大器16A和并联(shunt-shunt)配置的MOS反馈电阻器R_A和R_B构成。差动输入电流由DTA16变换到差动输出电压。DTA 16的输入阻抗低,所以输入中的信号摆动以及IC之间的连线w1和w2中的信号摆动很小。

所示的I/O电路10实施例具有包括以下的多个优点。首先,发射机12中取自电源的电流是恒定的,即ibias1。恒流只是从一个分支导引到另一个分支。在该方式中,发射机12的操作造成电源线和基底的最小扰动。第二个优点是,接收机14中取自电源的电流也是恒定的,即ibias2,并且接收机14也造成电源线和基底中的最小扰动。第三个优点是,两个邻近导线w1和w2中的差动信令辐射极少量电磁扰动,并从而明显减少了对其它电路如灵敏的RF电路造成干扰的可能性。由于导线w1和w2中的信号摆动很小,因此耦合到其它导线或者电路的电容低;以及由于差动导线w1和w2周围的电磁场在距导线的短距离内相互抵消,因此从导线w1和w2耦合到其它电线或电路的电感也是低的。另一个优点是外部生成的扰动主要产生共模信号,因为差动信号仅仅由失配造成的。再一个优点是,由于互感原因,差动导线w1和w2与一条信号线与公共回路线(通常是地)的组合相比,具有较低的电感(如果适当选择路由的话)。这降低了信号线中的阻尼振荡(ringing),并从而提高了噪声容限以及减少了定时误差。

I/O单元10可以利用相对低质量的MOS晶体管予以实现,并且不需要其它有源或无源器件。因此,I/O单元10可以利用良好特征的数字或模拟CMOS或者BiCMOS技术,在所有模拟、所有数字或者混合信号集成电路中予以实现。

剩下的图显示了如何利用开关配置I/O电路10的各种操作模式,以支持各利信令方案。

被一起称作图5的图5A和图5B显示了所建议的电路如何以在一电流型、低摆动电压型或者CMOS模式中被用作两个单端链路或者单个差动链路。具体而言,图5A显示了在提供两个单端(电流或电压型)时多模I/O电路10的使用,并且有助于理解分别在图6、图7、图8和图9中所示的模式1、2、3和4;而图5B显示了在提供单个差动(电流或电压型)链路时多模I/O电路10的使用,并且有助于理解分别在图10、图11、图12和图13中所示的模式5、6、7和8。

图3使得多个开关被提供来设置操作的各种模式更加清楚。这些开关的状态是通过对经由相应的发射机电子线路12B和接收机电子线路14B(如图5所示)应用的多个发射机模式信号线12A和多个接收机模式信号线14A输入的比特编程设置的。

S1:发射机开关S1用来把PMOS晶体管Q1A的栅极连接到地,晶体管Q1A位于由Q2和Q3形成的发射机差动对的尾部。同样,第二开关S1用来把NMOS晶体管Q1B的栅极连接到VDD1,晶体管Q1B位于由Q4和Q5形成的发射机差动对的尾部。在此情况下,Q1A和Q1B从电流源变成一个小电阻,并且双差动对被有效地转换成两个独立的反相器,如图6所示。

S2:发射机开关S2用来把输入节点i2连接到DC电压,该DC电压具有近似正电源与负电源中点的量值。该电压由充当电压分压器的Q6、Q7设定。在此情况下,单端输入信号被启动,以驱动双差动对Q2、Q3、Q4和Q5,例如,如图10所示。

S3:接收机开关S3用来连接由CMOS传输门Q8、Q9、Q10和Q11组成的反馈电阻,如图9所示,这些传输门位于接收机14的输入与输出之间。按此方式,接收机14从一个电压放大器转换成具有低输入阻抗和低输入信号摆动的互阻抗放大器。

S6:接收机开关S6用来把一个电阻器(由Q8、Q9、Q10、Q11形成的传输门)连接到具有接近正电源与负电源中点量值的DC电压上。该电压由充当分压器的Q12、Q13设置。这减少了接收机14的输入上的输入阻抗以及信号摆动。

S7:接收机开关S7用来把PMOS晶体管Q14A的栅极连接到地,晶体管Q14A位于由Q15和Q16形成的接收机差动对的尾部。同样,第二开关S7用来把NMOS晶体管Q14B的栅极连接到VDD2,晶体管Q14B位于由Q17和Q18形成的接收机差动对的尾部。在此情况下,Q14A和Q14B从电流源变成一个小电阻,并且把双差动对有效地转换成两个独立的反相器,如图6所示。

S8:接收机开关S8用来把PMOS晶体管Q19、Q20的栅极连接到接收机14的输出(O1和O2),晶体管Q19和Q20被连接在接收机14与正电源VDD2的输入之间,如图7实例所示。在此情况下,PMOS晶体管Q19和Q20充当再生负载,并把接收机14的输入上拉到正电源VDD2。

S9:接收机开关S9用来把PMOS晶体管Q19、Q20的栅极连接到VDD2,如图9的实例所示。在此情况下,PMOS晶体管Q19和Q20被断开,并且不充当再生负载。

S11:发射机开关S11用来旁通与发射机12的输出串联的NMOS晶体管Q21和Q22。当接收机14的电源电压高于发射机12的电源电压时,未旁通时的串联晶体管Q21和Q22用来保护发射机12的晶体管,如图7所示。如果发射机和接收机的电源电压相同,则串联NMOS晶体管S11通过闭合开关S11被旁路,如图6所示。

S12:接收机开关S12用来旁通与接收机14的输入串联的NMOS晶体管Q23和Q24。当发射机12的电源电压高于接收机14的电源电压时,未旁通时的串联NMOS晶体管Q23和Q24用来保护接收机14的晶体管,如图8所示。如果发射机12和接收机14的电源电压相同,串联NMOS晶体管S12通过闭合开关S12被旁路,如图6所示。

晶体管Q25、Q26、Q27和Q28是形成恒流源ibias1和ibias2的电流镜的部分。

通过有选择地设置图3所示的各个开关,如下文的详细说明,晶体管12可以被用作如图10的实例所示的单个差动发射机,或者被用作如图6实例所示的两个单端发射机。在前一种情况下,利用S2把晶体管输入i2连接到DC电压,并且把输入信号连接到i1。在后一种情况下,i1和i2都被使用,并且其每个被连接到不同输入信号。尽管图4实际上更概念化,但是图12和图13更详细地显示了该操作模式。在图12中,以单端模式驱动输入;而在图13中,差动地(对称地)驱动输入。

在以下的图6-图13的讨论中,Sx=1指示开关被闭合(导通),而Sx=0指示开关打开(不导通)。在一个特定实施中,开关可以是NMOS或者PMOS晶体管(或者两者并联),并且用本领域熟练技术人员公知的适当控制信号驱动这些开关。

图6包括显示用于图3中所示的开关的可编程开关设置的图表,用来实现两个单端CMOS电平(栏到栏摆动)链路(其中VDD1=VDD2),并且还显示了所得到的模式1有效电路的示意图。在该模式中,发射机12和接收机14可以与传统CMOS I/O单元一起操作。

注意在图6-9中,W/L=宽度/长度,即晶体管的纵横比:W/L(M1)=W/L(Q1A),W/L(M2)=W/L(Q1B),W/L(M3)=W/L(Q14A),W/L(M4)=W/L(Q14B)。这些关系通过实例来显示,但是根据本发明的实践,不应以限制意义上来观察这些关系。

图7显示了当发射机的电源低于接收机的电源时,I/O电路10可以如何用来实现两个单端CMOS电平(栏到栏摆动)信号链路。在此情况下,与晶体管12输出串联的NMOS晶体管Q21和Q22在输出电压到达晶体管12的正电源之前,停止导通,从而保护了发射机的输出晶体管。保护NMOS晶体管Q21和Q22两端的电压降足够低,以致它们不会被损坏。NMOS晶体管Q21和Q22还防止直流经由再生上拉晶体管Q19和Q20流动于发射机12和接收机14的正电源之间。利用弱晶体管Q19和Q20的再生上拉在接收机14中被用于确保足够的信号电平。

处理电源电压中差值的另一项技术是利用附加导线把晶体管12的较低电源电压送到接收机14,并且在接收机14的I/O单元10中使用该较低电压。

图8显示了当发射机12的电源高于接收机14的电源时,当开关被设置为实施两个单端CMOS电平(栏到栏摆动)信号链路时的I/O电路10。在此情况下,与接收机14的输入串联的NMOS晶体管Q23和Q24在输入电压达到接收机14的正电源之间,停止导通,从而保护了接收机14的输入晶体管。保护NMOS晶体管Q23和Q24两端的电压是足够低的,所以不会发生损坏。NMOS晶体管Q23和Q24还防止直流经由再生上拉晶体管Q19和Q20流动于发射机12和接收机14的正电源之间。

至于图7的实施例,处理电源电压中差值的另一项技术将是利用附加导体把接收机14的较低电源电压送入发射机12,并且在发射机12的I/O单元10中使用该较低电压。

应当注意,单端电流型以及差动电压和电流型链路支持发射机和接收机IC中的不同电源电压(在一定限度内)。这些模式不一定需要任何附加开关或者晶体管执行该功能。由于单端电压型链路最难于利用链路的每端上的不同电源电压来实施,因此最好使用附加保护晶体管Q21至Q24以及附加开关S11和S12。

图9显示了当开关被设置为实施两个单端电流型信号链路时的I/O电路10。接收机14被配置为两个互阻抗放大器,以及CMOS传输门Q8、Q9和Q10、Q11用来实施两个反馈电阻器。

图10显示了当开关被设置为实施单个差动低摆动电压型信号链路时的I/O电路10。在此模式下(模式5),输入驱动是单端的,并且电阻性负载(Q8、Q9和Q10、Q11)被用来在接收机14中限制信号摆动。由于经由S6对Q12与Q13之间的DC电压的连接,这些电阻性负载还设置输入共模电压。

图11显示了当开关被设置为实施单个差动低摆动电压型信号链路时的I/O电路10。输入驱动是差动的,并且电阻性负载(Q8、Q9、Q10、Q11)用来在接收机14中限制信号摆动。如同图10的模式5实施例,电阻性负载(Q8、Q9和Q10、Q11)还通过经由S6对Q12与Q13之间的DC电压的连接来设置输入共模电压。

图12显示了当开关被设置实施单个差动电流型信号链路时的I/O电路10。输入驱动是单端的,并且晶体管Q15、Q16、Q17和Q18被配置为一个互阻抗放大器16A(参见图4)。CMOS传输门Q8、Q9和Q10、Q11用来实施反馈电阻R_A和R_B,如图4所示。

图13显示了当开关被设置为实施单个差动电流型信号链路时的I/O电路10。在该模式(模式8)中,输入驱动是差动的。如同图12的实施例,接收机14被配置为一个互阻抗放大器16A,并且CMOS传输门Q8、Q9和Q10、Q11用来实施反馈电阻R_A和R_B。

因此本发明公开了一种用于实现支持多个不同数字数据传送协议的多模I/O电路的技术。已知技术(差动电流型和低摆动电压型信令)被组合为通过使用可编程开关有选择互连的一组装置。通过使用模式比特可以选择一个希望的操作模式。就此而言,可以把少量比特(例如两个编码比特)输入到存储在存储装置中的查找表上,并且可以把用来控制发射机12中所包含的三个开关S1、S2、S11的状态的所得到的被解码的3比特输出以及类似的少量比特(例如,三个编码比特)输入到存储装置中所存储的查找表上,以及用来控制接收机14中的S3、S6、S7、S8、S9、S12的状态的所得到的被解码6比特输出终止给定的数据链路。在其它实施例中,这些模式比特可以被硬线连接到预定的逻辑电平上,以提供预期操作模式。在任一种情况下,图3所示的一般CMOS电路的使用都提供了优于传统方案的多个优点,比如上述的模拟电路的使用。

所得到的多模操作为了支持IC各代之间的兼容性是重要的,并且提供前后向可兼容的信号接口。这些技术的使用使得本发明与若干不同单模I/O结构的组合相比,实现多模I/O结构更经济(更小的总硅面积)。这些教导还提供了通用基于COMS的I/O单元方案,该方案不需要外部部件或者集成电阻器。

尽管以上已经描述了多个开关和所得到的模式,但是提供比该数量的开关或者模式更多或者更少的开关或者模式也是可以实现的。例如,如果人们事先知道所有系统IC的电源电压都相同,那么人们可以选择取消S11、S12以及Q21、Q22、Q23和Q24,并且经由电线或者导体w1和w2提供从晶体管12到接收机14的直接连接。

还应当注意到,发射机I/O单元12和接收机I/O单元14包含类似的功能块,比如双差动对、基于电流镜的偏置电路、由与I/O线串联的电压分压器和保护晶体管组成的基准电压生成器。因此,通过增加少量附加开关,接收机电路将被变换成发射机电路,以及发射机电路将被转换成接收机电路,从而同样支持双向(半双工)链路。

就此而言,图14所述图表还规定了用于一个实施例的开关S4、S5、S10和S13-S16的设置,其中I/O电路10可以被配置为接收机I/O单元14或者被配置为发射机I/O单元12。该实施例特别有吸引力,因为它利用公共I/O电路核心归纳和简化了IC电路布局。所公开的开关可以是硬线连接的,或者可以是可编程的(加电或者初始配置时,和/或操作期间)。

这里公开的方法和电路的优点是,可以用于多种不同类型的设备,比如当然并不限于无线通信装置如蜂窝电话和个人通信装置,以及用于无线通信装置的辅助装置。这些电路和方法还可以用来将无线通信装置接口到辅助装置上。

因此,尽管已经结合本发明的优选实施例具体显示和说明了本发明,但是本领域熟练技术人员将会明白,可以在不背离本发明范围和精神的条件下对其形式和细节作出改动。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号