公开/公告号CN1619392A
专利类型发明专利
公开/公告日2005-05-25
原文格式PDF
申请/专利权人 LG.菲利浦LCD株式会社;
申请/专利号CN200410088647.0
申请日2004-11-10
分类号G02F1/136;G02F1/133;H01L29/786;H01L21/00;G03F7/20;
代理机构11006 北京律诚同业知识产权代理有限公司;
代理人徐金国;梁挥
地址 韩国汉城
入库时间 2023-12-17 16:12:33
法律状态公告日
法律状态信息
法律状态
2009-01-14
授权
授权
2005-07-27
实质审查的生效
实质审查的生效
2005-05-25
公开
公开
本申请要求2003年11月11日在韩国专利局申请的韩国专利申请No.2003-0079289的权益,在此引用该申请全部内容作为参考。
技术领域
本发明涉及一种液晶显示器件,特别涉及一种包括多晶硅薄膜晶体管(p-Si TFT)的液晶显示(LCD)器件及其制造方法。
背景技术
液晶显示(LCD)器件由于具有重量轻、外形薄和功耗低的优良特性而被开发作为下一代显示器件。一般而言,LCD器件是一种非发射型显示器件,它利用设置在阵列基板与滤色片基板之间的液晶分子的光学各向异性使用折射率差以显示图象。电场施加加到液晶分子上时,液晶分子重新排列。结果,液晶分子光透射比随着重新排列的液晶分子的排列方向改变。
近年来,由于具有按矩阵设置的薄膜晶体管(TFT)和像素电极的有源矩阵液晶显示器件(AM LCD)具有超高分辨率和平稳显示移动图像的能力而得到广泛研究。可以在低温下用含氢非晶硅(a-Si:H)制造薄膜晶体管(TFT)。但是,由于在含氢非晶硅中原子任意排列、存在弱键和悬空键。因此,当光照射或施加电场时,含氢非晶硅(a-Si:H)具有准静态的状态,该准静态的状态会损坏TFT的稳定性。而且,由于使用含氢非晶硅(a-Si:H)的薄膜晶体管具有在0.1cm2/V·sec到1.0cm2/V·sec范围内的低迁移率,所以使用含氢非晶硅(a-Si:H)的薄膜晶体管不能用于驱动电路。
为了克服使用含氢非晶硅(a-Si:H)的薄膜晶体管的这些缺点,已经提出使用多晶硅(p-Si)的薄膜晶体管用于液晶显示器件。多晶硅(p-Si)的迁移率是含氢非晶硅(a-Si:H)迁移率的一百或两百倍并且多晶硅(p-Si)具有比含氢非晶硅(a-Si:H)更快的响应时间。而且,多晶硅(p-Si)比含氢非晶硅的光、热和电场稳定性更好。因此,包括多晶硅(p-Si)的薄膜晶体管可以用于液晶显示器件的驱动电路,并且可以制造在具有像素薄膜晶体管的单个基板上。
图1是现有的包括使用多晶硅驱动电路的阵列基板的平面示意图。在图1中,基板1具有在其中心部分的像素部分3和在其像素部分3的周边处的驱动部分5。驱动部分5包括栅驱动单元5a和数据驱动单元5b。像素部分3中设置有连接到栅驱动单元5a的多条栅线7和连接到数据驱动单元5b的多条数据线9。多条栅线7和多条数据线9交叉以限定像素区“P”,像素电极10形成在像素区“P”中。像素区“P”中的薄膜晶体管“T”连接到栅线7、数据线9和像素电极10。此外,栅驱动单元5a和数据驱动单元5b连接到外部信号输入端12。栅驱动单元5a和数据驱动单元5b使用自外部信号输入端12的外部信号产生控制信号、栅信号和数据信号并经栅线7和数据线9向像素部分3提供所产生的信号。栅驱动单元5a和数据驱动单元5b可以包括使用互补金属氧化物半导体(CMOS)逻辑进行更快信号处理的薄膜晶体管(TFT)。通常,CMOS逻辑用于驱动需要快速信号处理的薄膜晶体管。使用空穴作为载流子的p-型TFT和使用电子作为载流子的n-型TFT用于CMOS逻辑。p-型TFT和n-型TFT互补控制。
图2A是显示现有的像素部分的开关元件的截面图,图2B是显示现有的驱动部分的CMOS开关元件的截面图。在图2A中,在基板20上形成用例如氮化硅(SiNx)或氧化硅(SiO2)的无机绝缘材料形成的缓冲层25。在缓冲层25上形成第一半导体层30,并且在该半导体层30上形成栅绝缘层45。此外,在第一半导体层30之上的栅绝缘层45上形成第一栅极50,以及在该第一栅极50上形成层间绝缘层70。层间绝缘层70具有暴露出第一半导体层30的第一组接触孔73a和73b。在层间绝缘层70上形成第一源极80a和第一漏极80b,第一源极80a和第一漏极80b经第一组接触孔73a和73b连接到第一半导体层30。在第一源极80a和第一漏极80b上形成钝化层90。钝化层90具有暴露出第一漏极80b的第一漏极接触孔95。像素电极97形成在钝化层90上并经第一漏极接触孔95连接到第一漏极80b。
第一半导体层30包括;对应第一栅极50的第一有源区30a,第一有源区30a两边处的第一欧姆接触区30c,和设置在第一有源区30a与第一欧姆接触区30c之间的第一轻掺杂漏(LDD)区30b,第一欧姆接触区30c连接到第一源极80a和第一漏极80b。第一欧姆接触区30c用高浓度的n-型杂质(n+)掺杂,而第一轻掺杂漏(LDD)区30b用低浓度的n-型杂质(n-)掺杂。第一轻掺杂(LDD)区30b通过减轻第一栅极50与第一半导体层30的第一欧姆接触区30c之间的电场来降低漏电流。因此,可以由n-型LDD多晶硅薄膜晶体管TFT“I”形成像素部分的开关元件。
在图2B中,驱动部分的CMOS开关元件包括n-型LDD多晶硅薄膜晶体管TFT“II”和p-型多晶硅TFT“III”。在基板20上形成缓冲层25。在缓冲层25上形成彼此分开的第二半导体层35和第三半导体层40。在第二半导体层35和第三半导体层40上形成栅绝缘层45。此外,在位于第二半导体层35和第三半导体层40之上的栅绝缘层45上分别形成第二栅极55和第三栅极60。在第二栅极55和第三栅极60上形成层间绝缘层70。层间绝缘层70具有暴露出第二半导体层35的第二组接触孔75a和75b以及暴露出第三半导体层40的第三组接触孔77a和77b。在层间绝缘层70上形成第二源极83a和第二漏极83b以及第三源极87a和第三漏极87b。第二源极83a和第二漏极83b经第二组接触孔75a和75b分别连接到第二半导体层35,并且第三源极87a和第三漏极870b经第三组接触孔77a和77b分别连接到第三半导体层40。
第二半导体层35包括:对应第二栅极55的第二有源区35a、第二有源区35a两边处的第二欧姆接触区35c,和设置在第二有源区35a与第二欧姆接触区35c之间的第二LDD区35b。第二欧姆接触区35c连接到第二源极83a和第二漏极83b。第二欧姆接触区35c用高浓度的n-型杂质(n+)掺杂,第二LDD区35b用低浓度的n-型杂质(n-)掺杂。此外,第三半导体层40包括:对应第三栅极60的第三有源区40a,和第三有源区40a两边处的第三欧姆接触区40c。第三欧姆接触区40c用高浓度p-型杂质(p+)掺杂。由于在p-型元件中空穴用作载流子,所以不会出现漏电流。因此,p-型元件中可以省去LDD区。因此,驱动部分的CMOS开关元件可以由n-型LDD多晶硅TFT“II”和p-型多晶硅TFT“III”形成。
图3A到图3F是显示现有的像素部分的开关元件的制造工序的截面图。图4A到图4F是显示现有的驱动部分的CMOS开关元件的制造工序的截面图。
在图3A和图4A中,在基板20上通过淀积例如氮化硅(SiNx)或氧化硅(SiO2)的无机绝缘材料形成缓冲层25。在缓冲层25上淀积非晶硅(a-Si)后,对淀积的非晶硅进行脱氢然后使其结晶为多晶硅层。通过第一掩模工序对该多晶硅构图,形成用于像素部分的开关元件“I”的第一半导体层30、用于驱动部分的n-型开关元件“II”的第二半导体层35和用于驱动部分的p-型开关元件“III”的第三半导体层40。
在图3B和图4B中,在第一半导体层30、第二半导体层35和第三半导体层40上形成例如氮化硅(SiNx)或氧化硅(SiO2)等无机绝缘材料构成的栅绝缘层45。通过第二掩模工序在栅绝缘层45上淀积例如钼的金属层和对该金属层构图案成第一栅极50、第二栅极55和第三栅极60。然后,用第一栅极50、第二栅极55和第三栅极60作为掺杂掩模对第一半导体层30、第二半导体层35和第三半导体层40进行低浓度的n-型杂质(n-)掺杂。因此,在对应的第一栅极50、第二栅极55和第三栅极60正下面的每一第一半导体层30、第二半导体层35和第三半导体层40的部分没有被掺杂仍然保持本征状态,而每一第一半导体层30、第二半导体层35和第三半导体层40的其它部分进行了低浓度的n-型杂质(n-)掺杂,形成LDD区。每一第一半导体层30、第二半导体层35和第三半导体层40的没有被掺杂仍然保持本征状态的部分用作开关元件的有源区30a、35a和40a。
在图3C和图4C中,通过第三掩模工序在第一栅极50、第二栅极55和第三栅极60上形成第一、第二和第三n+光刻胶(PR)图案62、63和64。然后,使用第一、第二和第三n+光刻胶图案62、63和64作为掺杂掩模在基板20的整个表面用高浓度的n-型杂质(n+)掺杂。第一n+光刻胶图案62完全覆盖第一栅极50和第一栅极50附近的部分第一半导体层30。因此,被覆盖的部分第一半导体层30没有用高浓度的n-型杂质(n+)掺杂并保留作为LDD区,而第一半导体层30的其它部分用高浓度的n-型杂质(n+)掺杂。同样,由于第二n+光刻胶图案63完全覆盖第二栅极55和第二栅极55附近的部分第二半导体层35,因此,被覆盖的部分第二半导体层35没有用高浓度的n-型杂质(n+)掺杂并保留作为LDD区,而第二半导体层35的其它部分用高浓度的n-型杂质(n+)掺杂。此外,由于第三n+光刻胶图案64完全覆盖第三半导体层40,第三半导体层40没有用高浓度的n-型杂质(n+)掺杂而保留没有变化的LDD区。
结果,在第一半导体层30中获得第一LDD区30b和第一欧姆接触区30c。同样,在第二半导体层35中获得第二LDD区35b和第二欧姆接触区35c。在n-型杂质掺杂后,去除第一、第二和第三n+光刻胶图案62、63和64。
在图3D和图4D中,通过第四掩模工序分别在第一和第二栅极50和55上形成第一和第二p+光刻胶图案65和66。然后使用第一和第二n+光刻胶图案65和66作为掺杂掩模对基板20的整个表面进行高浓度的p-型杂质(p+)掺杂。由于第一p+光刻胶图案65完全覆盖第一半导体层30,所以第一半导体层30没有用高浓度的p-型杂质(p+)掺杂。同样,由于第二p+光刻胶图案66完全覆盖第二半导体层35,所以第二半导体层35没有用高浓度的p-型杂质(p+)掺杂。
与第一和第二半导体层30和35相反,由于第三半导体层40没有任何n+光刻胶图案而暴露,所以第三半导体层40用高浓度的p-型杂质(p+)掺杂。在高浓度的p-型杂质(p+)掺杂过程中,由于第三栅极屏蔽了高浓度的p-型杂质,正好位于第三栅极60下面的部分第三半导体层40没有用高浓度的p-型杂质(p+)掺杂而保留作为本征有源区40a。此外,具有高浓度的p-型杂质(p+)补偿了具有低浓度的n-型杂质(n-)。因此,第三半导体层40的暴露部分变成用高浓度的p-型杂质(p+)掺杂的第三欧姆接触区40c。在用p-型杂质掺杂后,去除第一和第二p+光刻胶图案65和66。
在图3E和图4E中,在第一栅极50、第二栅极55和第三栅极60上形成例如氮化硅(SiNx)或氧化硅(SiO2)等无机绝缘材料形成的层间绝缘层70。通过第五掩模工序,在层间绝缘层70和栅绝缘层45中形成第一、第二和第三组接触孔73a、73b、75a、75b、77a和77b。第一组接触孔73a和73b暴露出第一欧姆接触层30c、第二组接触孔75a和75b暴露出第二欧姆接触区35c、第三组接触孔77a和77b暴露出第三欧姆接触区40c。
然后,在层间绝缘层70上顺序淀积钼(Mo)和铝(Al)后,通过第六掩模工序形成第一源极80a和第一漏极80b、第二源极83a和第二漏极83b以及第三源极87a和第三漏极87b。第一源极80a和第一漏极80b经第一组接触孔73a和73b分别连接到第一欧姆接触层30c、第二源极83a和第二漏极83b经第二组接触孔75a和75b分别连接到第二欧姆接触层35c、第三源极87a和第三漏极87b经第三组接触孔77a和77b分别连接到第三欧姆接触层40c。
在图3F和图4F中,在第一源极80a和第一漏极80b、第二源极83a和第二漏极83b以及第三源极87a和第三漏极87b上形成氮化硅(SiNx)钝化层90后,通过第七掩模工序在钝化层90中形成暴露出第一漏极80b的漏极接触孔95。此外,通过第八掩模工序,在钝化层90上淀积氧化铟锡(ITO)层并对所淀积的氧化铟锡(ITO)层构图以行成像素电极97。像素电极97经漏极接触孔95连接到第一漏极80b。
因此,通过八轮掩模工序,在像素部分中形成n-型LDD多晶硅TFT的第一开关元件“I”,在驱动部分中形成n-型LDD多晶硅TFT的第二开关元件“II”和p-型多晶硅TFT的第三开关元件“III”。一轮掩模工序包括涂覆光刻胶(PR)步骤、曝光步骤和显影步骤。因此,随着掩模工序数量的增加,生产成本和制造时间增加。而且,大量工序增加了出现故障的可能性从而造成产品合格率下降。
发明内容
因此,本发明提供一种包括多晶硅薄膜晶体管(p-SiTFT)的液晶显示(LCD)器件及其制造方法,能够克服由于现有技术中存在的限制和缺点所引起的一个或多个问题。
本发明的一个目的在于提供一种在基板上具有驱动单元的液晶显示器件及其制造方法。
本发明的另一个目的在于提供一种具有作为像素部分和驱动部分的开关元件的底栅多晶硅薄膜晶体管的液晶显示(LCD)器件及其制造方法。
本发明的再一个目的在于提供一种能够降低制造成本并提高产品合格率的液晶显示器件及其制造方法。
本发明的其它特征和优点将在下面的说明书中描述,其中的一部分可以从说明书中清晰得到,或者通过实践本发明学习到。本发明的这些和其它优点可以本发明的文字说明书、权利要求书以及附图中指出的具体结构实现和获得。
为了获得这些和其它优点,按照本发明原理的一实施例提供一种具有在像素区中的开关元件和在驱动部分中的CMOS元件的液晶显示器件,该液晶显示器包括:一种液晶显示器件,具有在像素部分中的开关元件和驱动部分中的互补金属氧化物半导体元件,该液晶显示器件包括:基板;基板上的栅极;栅极上的栅绝缘层;栅绝缘层上的多晶硅层,该多晶硅层具有在中心部分中对应栅极的有源区和在有源区边缘部分的欧姆接触区;层间绝缘层,具有用于连接在边缘部分的多晶硅层的接触孔组;和层间绝缘层上相互隔开的源极和漏极,该源极和漏极经接触孔组接触多晶硅层。
按照本发明的另一方面,一种用于液晶显示器件的阵列基板包括:基板;基板上的栅极;栅极上的栅绝缘层;栅绝缘层上的多晶硅层;多晶硅层上的层间绝缘层,其中,层间绝缘层的端部与多晶硅层的端部一致;用于接触多晶硅层的接触孔组;和层间绝缘层上相互隔开的源极和漏极对,经接触孔组接触多晶硅层。
按照本发明的再一方面,一种用于液晶显示器件的阵列基板的制造方法包括以下步骤:设置具有像素部分和驱动部分的基板;形成基板上像素部分中的第一栅极,以及基板上驱动部分中的第二栅极和第三栅极;在所述第一栅极、第二栅极和第三栅极上形成栅绝缘层;在栅绝缘层上形成多晶硅层;在驱动部分中用p-型杂质掺杂多晶硅层的第一部分;在驱动部分中用n-型杂质掺杂多晶硅层的第二部分并且在像素部分中用n-型杂质掺杂多晶硅层的第三部分;形成具有暴露出多晶硅层的第一、第二和第三部分的接触孔的层间绝缘层;在层间绝缘层上形成金属层,该金属层经半导体接触孔接触多晶硅层的第一、第二和第三部分;在金属层上形成具有第一厚度的第一光刻胶图案和具有第二厚度的第二光刻胶图案,其中第一厚度大于第二厚度;使用第一和第二光刻胶图案作为蚀刻掩模,顺序蚀刻金属层和多晶硅层,以形成像素部分中的第一半导体层以及驱动部分中的第二和第三半导体层;部分去除第一和第二光刻胶图案,使得第一光刻胶图案具有比第一厚度小的第三厚度;使用具有第三厚度的第一光刻胶图案蚀刻金属层,以形成像素部分中的第一源极和第一漏极,以及驱动部分中的第二源极和第二漏极、第三源极和第三漏极;和形成接触第一漏极的像素电极。
按照本发明的又一方面,一种用于液晶显示器件的阵列基板的制造方法,包括以下步骤:设置具有像素部分和驱动部分的基板;通过第一掩模工序,在基板上像素部分中形成第一栅极,以及在基板上驱动部分中形成第二栅极和第三栅极;在其上具有第一栅极、第二栅极和第三栅极的基板的整个表面上顺序形成栅绝缘层和多晶硅层;通过第二掩模工序,用p-型杂质掺杂驱动部分中的多晶硅层的第一部分;通过第三掩模工序,用n-型杂质掺杂驱动部分中的多晶硅层的第二部分和像素部分中的多晶硅层的第三部分;通过第四掩模工序,在多晶硅层上形成具有半导体接触孔的层间绝缘层,所述半导体接触孔暴露出多晶硅层的第一、第二和第三部分;在其上具有层间绝缘层的基板的整个表面上形成金属层,该金属层经半导接触体孔接触多晶硅层的第一、第二和第三部分;通过第五掩模工序,在金属层上形成具有第一厚度的第一光刻胶图案和具有第二厚度的第二光刻胶图案,其中第一厚度大于第二厚度;使用第一和第二光刻胶图案作为蚀刻掩模,顺序蚀刻金属层和多晶硅层,以形成像素部分中的第一半导体层,和驱动部分中的第二和第三半导体层;部分去除第一和第二光刻胶图案,使得第一光刻胶图案具有比第一厚度小的第三厚度;使用具有第三厚度的第一光刻胶图案蚀刻金属层,以形成像素部分中的第一源极和第一漏极,和驱动部分中的第二源极和第二漏极、第三源极和第三漏极;和通过第六掩模工序形成接触第一漏极的像素电极。
应了解,以上的一般描述和以下的详细描述都是示例性和解释性的,意欲对要求保护的本发明提高进一步的解释。
附图说明
所包括的附图用于更好地理解本发明,其包括在说明书中作为说明书的一个构成部分,附图中显示的实施例与说明书一起说明本发明的原理。附图中:
图1是现有的包括使用多晶硅驱动电路的阵列基板的平面示意图;
图2A是显示现有的像素部分的开关元件的截面图;
图2B是显示现有的驱动部分的CMOS开关元件的截面图;
图3A到图3F显示现有的像素部分的开关元件的制造工序的截面图;
图4A到图4F显示现有的驱动部分的CMOS开关元件的的制造工序的截面图;
图5A是显示按本发明实施例的用于液晶显示器件的阵列基板的像素部分中的开关元件的截面图;
图5B是显示按本发明实施例的用于液晶显示器件的阵列基板的驱动部分中的CMOS开关元件的截面图;
图6A到图6M是显示按本发明实施例的用于液晶显示器件的阵列基板的像素部分中的开关元件的制造工序截面图;和
图7A到图7M是显示按本发明实施例的用于液晶显示器件的阵列基板的驱动部分中的CMOS开关元件的制造工序截面图。
具体实施方式
现在详细描述附图中所示的本发明的优选实施例。全部附图中相同的部分用相同的参考数字标注。
图5A是显示按本发明实施例的用于液晶显示器的阵列基板的像素部分中的开关元件的截面图。图5B是显示按本发明实施例的用于液晶显示器件的阵列基板的驱动部分中的CMOS开关元件的截面图。
如图5A所示,在基板100上形成缓冲层105,缓冲层105用氮化硅(SiNx)或氧化硅(SiO2)的无机绝缘材料形成。在缓冲层105上形成第一栅极110。第一栅极110可以用包括例如铬(Cr)、铝(Al)或钼(Mo)等金属材料的单层或多层形成。第一栅极110用于基板上的像素区中的开关元件“IV”。在第一栅极110上形成栅绝缘层120并且在位于第一栅极110之上的栅绝缘层120上形成第一半导体层130。在第一半导体层130上形成层间绝缘层150,在层间绝缘层150上形成第一源极170a和第一漏极170b。层间绝缘层150具有暴露出第一半导体层130的第一组接触孔153a和153b。
第一半导体层130包括:对应第一栅极110的第一有源区130a,在第一有源区130a两边的第一欧姆接触区130c和设置在第一有源区130a与第一欧姆接触区130c之间的第一轻掺杂漏(LDD)区130b。第一欧姆接触区130c经第一组接触孔153a和153b连接到第一源极170a和第一漏极170b。第一欧姆接触区130c用高浓度n-型杂质(n+)掺杂,而第一LDD区130b用低浓度n-型杂质(n-)掺杂。第一LDD区130b通过减轻栅极110与第一半导体层130的第一欧姆接触区130c之间的电场来减小漏电流。因此,像素部分的开关元件可以由n-型LDD多晶硅薄膜晶体管(TFT)“IV”形成。此外,在第一漏极170b上形成像素电极180。尽管图5A中未示,像素电极180形成在由相互交叉的栅线和数据线限定的像素区中。
在图5B中,驱动部分的CMOS开关元件包括n-型LDD多晶硅薄膜晶体管(TFT)“V”和p-型多晶硅薄膜晶体管(TFT)“VI”。在基板100上形成缓冲层105。缓冲层105用氮化硅(SiNx)或氧化硅(SiO2)的无机绝缘材料形成。在缓冲层105上形成第二和第三栅极112和114,在第二和第三栅极112和114上形成栅绝缘层120。第二和第三栅极112和114可以用包括例如铬(Cr)、铝(Al)或钼(Mo)等金属材料的单层或多层形成。此外,在位于第二栅极112之上的山绝缘擦120上形成第二半导体层133,在位于第三栅极114之上的栅绝缘层120上形成第三半导体层136。在第二半导体层133和第三半导体层136上形成层间绝缘层150。层间绝缘层150具有暴露出第二半导体层133的第二组接触孔156a和156b以及暴露出第三半导体层136的第三组接触孔159a和159b。在层间绝缘层150上形成第二源极173a和第二漏极173b以及第三源极176a和第三漏极176b。第二源极173a和第二漏极173b分别经第二组接触孔156a和156b连接到第二半导体层133,第三源极176a和第三漏极176b分别经第三组接触孔159a和159b连接到第三半导体层136。
第二半导体层133包括:对应第二栅极112的第二有源区133a、在第二有源区133a两边处的第二欧姆接触区133c以及设置在第二有源区133a与第二欧姆接触区133c之间的第二LDD区133b。第二欧姆接触区133c连接到第二源极173a和第二漏极173b。第二欧姆接触区133c用高浓度n-型杂质(n+)掺杂,而第二LDD区133b用低浓度n-型杂质(n-)掺杂。此外,第三半导体层136包括:对应第三栅极114的第三有源区136a和在第三有源区136a两边处的第三欧姆接触区136c。第三欧姆接触区136c用高浓度p-型杂质(p+)掺杂。由于p-型元件用空穴作为载流子,不会出现漏电流,所有在p-型元件中省去LDD区。因此,驱动部分的CMOS开关元件可以用n-型LDD多晶硅薄膜晶体管(TFT)“V”和p-型多晶硅薄膜晶体管(TFT)“VI”形成。
图6A到图6M是显示按本发明实施例的用于液晶显示器件的阵列基板的像素部分中的开关元件的制造工序截面图;图7A到图7M是显示按本发明实施例的用于液晶显示器件的阵列基板的驱动部分中的CMOS开关元件的制造工序截面图。
在图6A和图7A中,在基板100上通过淀积氮化硅(SiNx)或氧化硅(SiO2)的无机绝缘材料形成缓冲层105。然后,通过第一掩模工序,在缓冲层105上通过淀积例如铬(Cr)、铝(Al)或钼(Mo)等金属材料并对该金属材料构图以形成第一、第二和第三栅极110、112和114。第一栅极110设置在基板100上的像素部分,第二和第三栅极112和114设置在像素部分周围的基板100的驱动部分中。
在图6B和图7B中,在第一、第二和第三栅极110、112和114上形成氮化硅(SiNx)或氧化硅(SiO2)的无机绝缘材料形成的栅绝缘层120。然后,在栅绝缘层120上淀积非晶硅(a-Si),对淀积的非晶硅(a-Si)进行脱氢并且第一、第二和第三半导体层130、133和136转变为多晶硅。第一、第二和第三半导体层130、133和136具有在各自对应的栅极110、112和114正上方的中心部分和在栅极110、112和114侧边的侧边部分。第一半导体层130对应像素部分,第二和第三半导体层133和136对应驱动部分。第一、第二和第三半导体层130、133和136形成在基板100的整个表面上,并在以后的步骤中构图。然后,通过第二掩模工序,分别在第一、第二和第三半导体层130、133和136上形成第一、第二和第三p+光刻胶图案141a、141b和141c。然后,使用第一、第二和第三p+光刻胶图案141a、141b和141c作为掺杂掩模在基板100的整个表面用第一浓度的p-型杂质(p+)掺杂。例如,第一浓度p-型杂质的浓度范围是1×1015cm-2到6×1016cm-2。
由于第一p+光刻胶图案141a完全覆盖第一半导体层130,第一半导体层130没有用p-型杂质(p+)掺杂而保持本征态。同样,由于第二p+光刻胶图案141b完全覆盖第二半导体层133,第二半导体层133没有用p-型杂质(p+)掺杂而保持本征态。此外,第三p+光刻胶图案141c覆盖第三半导体层136对应第三栅极114的部分,而第三半导体层136的其他部分暴露出。因此,第三半导体层136对应第三栅极114的部分没有用p-型杂质(p+)掺杂而保持本征态,而第三半导体层136暴露出的其它部分用p-型杂质(p+)掺杂而形成第三欧姆接触区136c。用第一浓度p-型杂质掺杂后,用灰化或者剥离工序去除第一、第二和第三p+光刻胶图案141a、141b和141c。
在图6C和图7C中,通过第三掩模工序,分别在第一、第二和第三半导体层130、133和136上形成第一、第二和第三n+光刻胶图案143a、143b和143c。然后,用第一、第二和第三n+光刻胶图案143a、143b和143c作为掺杂掩模,对基板100的整个表面用第二浓度n-型杂质(n+)掺杂。n-型杂质的第二浓度范围是1×1015cm-2到6×1016cm-2。
第一n+光刻胶图案143a覆盖对应第一栅极110的第一半导体层130的中心部分和在随后的工序步骤中用于第一LDD区130b的第一半导体层130的附加部分。因此,被覆盖的第一半导体层130的中心部分没有用n-型杂质(n+)掺杂而保持本征态,而第一半导体层130的其它部分,包括侧边部分用n-型杂质(n+)掺杂而形成第一欧姆接触区130c。同样,由于第二n+光刻胶图案143b覆盖对应第二栅极112的第二半导体层133的中心部分和在随后的工序步骤中用于第二LDD区133b的第二半导体层133的附加部分。因此,被覆盖的第二半导体层133的中心部分没有用n-型杂质(n+)掺杂而保持本征态,而第二半导体层133的其它部分,包括侧边部分用n-型杂质(n+)掺杂而形成第二欧姆接触区133c。此外,由于第三n+光刻胶图案143c完全覆盖第三半导体层136,所以,第三半导体层136没有用第二浓度的n-型杂质(n+)掺杂。结果,通过用第二浓度n-型杂质(n+)掺杂获得第一半导体层130的第一欧姆接触区130c和第二半导体层133的第二欧姆接触区133c。
在图6D和图7D中,分别部分蚀刻掉第一、第二和第三n+光刻胶图案143a、143b和143c形成第一、第二和第三n-光刻胶图案144a、144b和144c。例如,第一、第二和第三n+光刻胶图案143a、143b和143c可以用干蚀刻法腐蚀。第一n-光刻胶图案144a小于第一n+光刻胶图案143a。因此,第一n-光刻胶图案144a的高度和宽度小于第一n+光刻胶图案143a的高度和宽度,因此,减小了第一n+光刻胶图案143a的体积。同样,第二n-光刻胶图案144b小于第二n+光刻胶图案143b,第三n-光刻胶图案144c小于第三n+光刻胶图案143c。然后,基板100的整个表面用第三浓度的n-型杂质(n-)掺杂。例如,n-型杂质的第三浓度范围是1×1013cm-2到1×1014cm-2。
第一n-光刻胶图案144a只覆盖第一半导体层130对应第一栅极110的部分而暴露出要用于第一LDD区130b的第一半导体层130的附加部分。因此,被覆盖的第一半导体层130的中心部分没有用n-型杂质(n-)掺杂而保持本征态以用作第一有源区130a,而第一半导体层130的其它部分,包括侧边部分用n-型杂质(n-)掺杂。由于用于第一欧姆接触区130c掺杂的n-型杂质的第二浓度高于第三浓度,所以,第一欧姆接触区130c不受第三浓度的n-型杂质影响。但是,第一半导体层130的附加部分用n-型杂质掺杂,在第一栅极110上面和侧边形成具有n-型杂质第三浓度的第一LDD区130b。同样,第二n-光刻胶图案144b只覆盖第二半导体层133对应第二栅极112的部分,而暴露出要用于第二LDD区133b的第二半导体层133的附加部分。因此,被覆盖的第二半导体层133的中心部分没有用n-型杂质(n-)掺杂而保持本征态以用作第二有源区133a,而第二半导体层133的其它部分,包括侧边部分用n-型杂质(n-)掺杂。第二半导体层133的其它部分用n-型杂质(n-)掺杂成为具有n-型杂质第三浓度的第二LDD区133b。第三n-光刻胶图案144c覆盖第三半导体层136的大部分,而暴露出的第三半导体层136的部分用高于第三浓度的第一浓度的p-型杂质掺杂。因此,第三半导体层136不受第三浓度的n-型杂质影响。
结果,用三浓度的n-型杂质掺杂获得第一半导体层130的第一LDD区130b和第二半导体层133中心部分中的第二LDD区133b。用n-型杂质掺杂后,用灰化或剥离工序去除第一、第二和第三n-光刻胶图案144a、144b和144c。此外,去除第一、第二和第三n-光刻胶图案144a、144b和144c后,用加热或激光激活第一半导体层130、第二半导体层133和第三半导体层136。
在图6E和图7E中,在第一半导体层130、第二半导体层133和第三半导体层136上形成层间绝缘层150。层间绝缘层150包括例如氮化硅(SiNx)或氧化硅(SiO2)的无机绝缘材料。在随后形成源极和漏极的工序中,层间绝缘层150保护TFT的沟道区。
在图6F和图7F中,通过第四掩模工序在层间绝缘层150中形成第一半导体接触孔153a和153b、第二半导体接触孔156a和156b、和第三半导体接触孔159a和159b。第一半导体接触孔153a和153b暴露出第一半导体层130的第一欧姆接触区130c。此外,第二半导体接触孔156a和156b暴露出第二半导体层133的第二欧姆接触区133c,以及第三半导体接触孔159a和159b暴露出第三半导体层136的第三欧姆接触区136c。而且,暴露出像素部分和驱动部分的边界部分,驱动部分的开关元件之间的分界部分“NPCA”也通过层间绝缘层150暴露出。
在图6G和图7G中,在层间绝缘层150上通过淀积例如铝(Al)或铝合金的金属材料形成金属层165。
在图6H和图7H中,在金属层165上形成光刻胶(PR)层167,在光刻胶(PR)层167上设置具有透射区“TA”、遮蔽区“BA”和半透射透区“HTA”的光掩模190。光刻胶(PR)层167可以是正型光刻胶也可以是负型光刻胶。使用负型光刻胶层时,在显影液中被光照射过的部分保留而没有被光照射过的部分被去除。相反,使用正型光刻胶层时,甚至在显影步骤后,被光照射过的部分被显影液去除而没有被光照射过的部分保留。设置光掩模190后,光经过光掩模190照射到光刻胶(PR)层167上。半透射区“HTA”的光透射比高于遮蔽区“BA”的光透射比但低于透射区“TA”的光透射比。例如,半透射区“HTA”具有网版掩模(half-tone)或狭缝。半透明度具有中等的光透射比,通过狭缝的光通过衍射具有中等强度。
在图6I和图7I中,光照射后,光刻胶(PR)层167显影。当光刻胶(PR)层167是负型光刻胶时,除去对应遮蔽区“BA”的没有被光照射的部分。而且,保留对应透射区“TA”的被光照射过的部分和对应半透射区“HTA”的被光半照射过部分。因此,获得分别对应透射区“TA”和半透射区“HTA”的第一光刻胶图案167a和第二光刻胶图案167b。第一光刻胶图案167a具有第一厚度而第二光刻胶图案167b具有小于第一厚度的第二厚度。第一光刻胶图案167a覆盖用于每一元件的源极和漏极的部分金属层165,第二光刻胶图案167b覆盖对应每一栅极110、112和114的金属层165的另一部分。金属层165的其它部分被暴露出。
在图6J和图7J中,使用第一光刻胶图案167a和第二光刻胶图案167b作为蚀刻掩模顺序蚀刻金属层167和每一半导体层130、133和136。例如,使用蚀刻剂用湿蚀刻方法去除金属层167,通过用等离子体的干蚀刻方法去除每一半导体层130、133和136。第一、第二和第三半导体层130、133和136分成隔离的图案,使得第一、第二和第三半导体层130、133和136的端部与对应每一半导体层的层间绝缘层150的端部一致。
在图6K和图7K中,第一光刻胶图案167a和第二光刻胶图案167b通过灰化工序同等地减低。在灰化工序过程中,灰化气体各向异性地作用于第一光刻胶图案167a和第二光刻胶图案167b。因此,去除第二光刻胶图案167b,暴露出金属层165对应第二光刻胶图案167b的部分,而保留具有比第一厚度小的第三厚度的第一光刻胶图案167a。例如,第一厚度与第三厚度之间的差基本上等于第二厚度。
在图6L和图7L中,使用具有第三厚度的第一光刻胶图案167a作为蚀刻掩模蚀刻金属层165,形成第一源极170a和第一漏极170b、第二源极173a和第二漏极173b、和第三源极176a和第三漏极176b。因此,在源极和漏极之间暴露出层间绝缘层150。
在图6M和图7M中,用灰化或剥离工序去除具有第三厚度的第一光刻胶图案167a。在基板100的整个表面上淀积例如氧化铟锡(ITO)和氧化铟锌(IZO)的透明导电材料后,通过第六掩模工序在第一漏极170b上形成像素电极180。尽管在图6M中没有示出,像素电极180设置在由栅线和数据线限定的像素区中。因此,通过第六轮掩模工序获得本发明的用于液晶显示器件的阵列基板。
在本发明的上述实施例中,在形成层间绝缘层之前执行杂质掺杂步骤。因此,半导体层要进行比较长的掺杂时间周期。此外,重复进行形成光刻胶掺杂掩模的步骤。结果,半导体层、特别是沟道区可能被杂质和/或光刻胶造成化学和机械损伤。
为了解决这些问题,按本发明的另一实施例,在形成层间绝缘层后进行掺杂步骤。通过第一掩模工序,在基板上形成缓冲层,并且在缓冲层上形成栅极。然后,在栅极上顺序形成栅绝缘层和多晶硅半导体层。在半导体层上形成层间绝缘层。形成层间绝缘层后,通过第二和第三掩模工序,用高浓度p-型杂质(p+)、高浓度n-型杂质(n+)和低浓度n-型杂质(n-)对半导体层顺序掺杂。通过调节杂质的加速能,杂质可以穿透层间绝缘层并停止在半导体层中。由于半导体层不暴露出,所以由杂质和光刻胶造成的半导体层损伤会减少。然后,通过第四掩模工序,在层间绝缘层中形成半导体接触孔。然后,通过第五掩模工序,对半导体层构图并且在层间绝缘层上形成源极和漏极。然后,通过第六掩模工序,在像素部分中的漏极上形成像素电极。
按照本发明的一种液晶显示器件包括通过六轮掩模工序形成的在像素部分和驱动部分中的底栅型薄膜晶体管。因此,简化了制造工序、减少了制造时间,从而降低了生产成本。此外,通过在半导体层上形成层间绝缘层可以防止半导体层中的沟道区损坏。
本行业的技术人员应了解,在不脱离本发明的范围和精神的前提下,本发明的液晶显示器件还会有各种变化和改进。因此,本发明覆盖这些变化和改进。这些变化和改进落入权利要求书及其等效物限定的本发明范围内。
机译: 多晶硅层的制造方法,包括该多晶硅层的薄膜晶体管的制造方法,由该薄膜晶体管制造的薄膜晶体管以及包括该薄膜晶体管的有机发光装置
机译: 形成多晶硅层的方法,包括该方法的薄膜晶体管的制造方法,使用该薄膜晶体管的制造方法制造的薄膜晶体管以及包括该薄膜晶体管的有机发光显示装置
机译: 形成多晶硅层的方法,包括该多晶硅层的薄膜晶体管,其制造方法以及包括该薄膜晶体管的液晶显示装置。