首页> 中国专利> 在大气压下产生的浓等离子体对处理气体排放物的应用

在大气压下产生的浓等离子体对处理气体排放物的应用

摘要

本发明涉及一种用等离子体处理PFC或HFC的系统,上述系统包括:泵送装置(6)和装置(8),所述泵送装置(6)的出口是在一个基本上等于大气压的压力下,而所述装置(8)是在泵送装置出口处,以便产生一个在大气压下的等离子体。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2010-09-22

    未缴年费专利权终止 IPC(主分类):C23C16/44 授权公告日:20070221 申请日:20020521

    专利权的终止

  • 2007-02-21

    授权

    授权

  • 2005-01-05

    实质审查的生效

    实质审查的生效

  • 2004-11-03

    公开

    公开

说明书

技术领域和现有技术

本发明涉及用等离子体处理气体的领域,特别是处理如全氟化气体(PFCS),特别是全氟化碳气体,和/或氢氟化碳气体(HFCS)等气体,用于破坏它们。

本发明涉及一种用于处理这些气体的单元或系统和用于处理这些气体的方法。

这些问题特别涉及的一种产业是半导体工业。这是由于半导体制造是消耗相当大吨位数全氟化气体(PFCS)和氢氟化碳气体(HFCS)的工业活动之一。

这些气体在等离子体腐蚀法中用于腐蚀集成电子电路的图形,并用于离子体清洗中,尤其是用于净化通过化学汽相沉积(CVD)生产薄膜材料的反应器。

它们还用于生产或生长或腐蚀或净化或处理半导体,或半导体或薄膜器件,或半导体或导电或介电薄膜,或衬底的方法中,或是另外用于除去微电路刻蚀法用的光敏树脂的方法中。

为此,使这些PFC和/或HFC气体在一个室或反应器中的冷放电等离子体内分解,以便产生尤其是原子氟。

原子氟与待处理或待腐蚀的材料表面处的原子起反应,以便产生各种挥发性化合物,上述挥发性化合物通过真空泵送系统从室中抽出并送到系统的废气单元。

全氟化或氢氟化碳气体一般不被上述方法完全消耗。设备的排放量可以超过PFC或HFC流入量的50%。

全氟化或氢氟化碳气体的特征在于它们有很好的化学稳定性和它们在红外线中有很高的吸收作用。因此,推测它们能通过增强温室效应对天气整个变热产生很大影响。

某些工业化国家原则上承诺减少它们的温室效应气体的排放。

某些消耗这些气体的工业选择预先考虑法规上的改变。尤其是,半导体工业就处在自愿减少随意排放的政策的前沿。

有几种实现这些排放减少的技术方法。

在各种可接受的解决方案中,优化现有方法似乎在可能性方面受到限制。采用各种包括替代化学方法的技术在大多数现有设备中是不合适的。至于回收和再利用未转化的PFCS或HFCS的技术,如果目的是提供纯度足以能使它们在方法中重新利用的产物,则是很昂贵的。

还有用于消除或破坏留在反应器中未转化的PFCS或HFCS的技术。

在已知的消除技术中,可以提到的有在燃烧器中或电炉中的热转化作用,催化氧化和等离子体技术。

这些技术尤其是对最稳定的分子如CF4具有有限的效率,或者是不能令人满意地有效处理在半导体制造设备实际操作中所遇到的PFC流,上述PFC流具有流速在最大情况下通常约为每分钟数百标准cm3

EP 874537,EP 847794和EP 820201介绍了PFC或HFC气体消除的解决方案,但没有一种解决方案给出在半导体生产单元范围内的任何实用的在线实施方法。其中某些所提出的解决方案(EP 820801和EP 874537)只涉及稀有气体型的载体气的情况,这可以在实验室中实施,但不能在生产单元中实施,在生产单元里消耗稀有气体作为载体气被制造厂家排除。

目前已知的其它的用于(半导体制造过程之外的)过程中处理排放物的“等离子体”型解决方案中,没有一种方案能有效的处理具有高流速的PFCS,如在半导体制造领域所遇到的那些流速,上述高流速通常约为每分钟约数百标准cm3

在所有领域其中包括半导体领域中所用的技术,尤其是所有利用PFC和/或HFC气体的技术的情况下,产生同样的问题。

发明概述

本发明涉及用等离子体处理气体的系统,它包括:

-一个泵送装置,其出口处在一个基本上等于大气压的压力下;

-在泵的下游用于产生大气压等离子体的装置。

这种系统证明很适合于在基本上等于大气压或约等于大气压的压力下,处理与一种载体气混合的PFC或HFC型气体,尤其是在PFCS的浓度在每分钟数十升氮气或空气中为0.1%-1%的数量级。

优选的是,等离子体是一种非局部热力学平衡的等离子体,也就是说,一种其中至少一个放电区不处于局部热力学平衡的等离子体。

一种保持在MHz或GHz范围内的高频下,例如:在大于50MHz或约数百MHz或几GHz的频率下的等离子体,使它能保持这种非局部热学平衡等离子体。

为了达到等离子体的高转化效率,在泵下游用于产生等离子体的装置如此选择,以便产生一个电子密度为至少1012cm-3,例如:在1012和1015cm-3之间,或优选的是在1013和1014cm-3之间。

优选的是,泵下游的压降限制到小于300mbar。

现在,在泵的下游采用一种大气压等离子体,可以在其内部保持放电的放电管中或一般是管状介电室中,产生对本发明处理系统的有效操作是有害的等离子体中的径向收缩现象。

根据一个实施例,选择一种具有直径在8毫米和4毫米之间,或8毫米和6毫米之间的等离子体管,以便保持一种适度的收缩。

另外可以选择长度在100毫米和400毫米之间的等离子体管,以便限制泵下游的压降。

根据另一方面,用于产生等离子体的装置包括一个等离子体放电管,待处理的气体向下通过这个放电管。

这使得能限制用沉积的液体沾污或堵塞放电管的危险,上述沉积的液体可能导致使微波功率耦合到等离子体中产生波动或导致泵的下游压降过大。

因此,可以在等离子体管的底部部分设置排放装置,以便回收液体冷凝物,并从处理回路中除去它们。

根据另一个方面,在气路中可以设置烘炉干燥或放液装置,以便限制固体或冷凝物的沉积,上述固体或冷凝物的沉积可能会增加泵下游的压降。

本发明还涉及一种反应器单元,它包括一个反应室,产生至少一种PFC或HFC气体,另外还包括一个如上所述的PFC或HFC处理系统。

反应室是,例如一种用于生产或生长或腐蚀或净化或处理半导体或薄膜器件,或半导体或导电或介电薄膜或衬底的设备的一个部件,或是一种用于除去微电路刻蚀法中所有光敏树脂的反应器,或是一种用于在等离子体净化过程中沉积薄膜的反应器。

本发明还涉及用于生产或生长或腐蚀或净化或处理半导体,或半导体或薄膜器件,或半导体衬底的设备,该设备包括:

一种反应器,用于生产或生长或腐蚀或处理半导体,或半导体或薄膜器件,或半导体或导电或介电薄膜,或衬底的反应器,或者另外是用于除去微电路刻蚀法所用光敏树脂,或是是一种用于在等离子体净化过程中沉积薄膜的反应器;

-用于抽出反应器中气氛的第一装置;

-一个如上所述的处理系统。

处理系统优选的是设置在反应器附近。有利的是,它可以设置在处理或生产或腐蚀或净化单元的设施地板上,或是另外设置在一个制造或处理或生产或腐蚀或净化车间的地板上。

本发明还涉及一种用等离子体处理气体的方法,该方法包括:

-在基本上等于大气压的压力下,泵送待处理的气体;

-用一大气压等离子体处理上述气体。

待处理的气体可以与一种基本上是在大气压下的载体气,例如氮气或空气预混合,上述氮气或空气用氮气或空气喷射装置注射。

氮气或空气具有稀释效果(在危险的反应产物情况下)和产生等离子体的作用。

有利的是,等离子体处理是在一种放电管中进行,过程包括事先匹配这个放电管直径的步骤,以便限制在这个放电管中的径向放电收缩现象。

该方法可以应用于反应器中的化学反应,上述反应生产或排放至少一种待用处理方法处理的废气。

上述反应可以,例如是一种用于生产或生长或腐蚀或净化或处理半导体类,或半导体或薄膜器件,或半导体或导电或介电薄膜,或衬底的反应,或是一种用于除去微电路刻蚀法所用光敏树脂的反应,或是用于在等离子体净化,使用PFC和/或HFC气体,废气,尤其是PFC和/或HFC气体进程中沉积薄膜的反应。

附图说明

鉴于下面的描述,本发明的一些特点和优点变得更显而易见。描述涉及参照附图给出的一些示例性的例子,但不没有任何限制的意思,其中:

图1示出了根据本发明的半导体生产设备的示意图;

图2是一种等离子体源的示意图;

图3和4示意性地示出了半导体生产装置。

实施例的详细说明

首先将在一个半导体生产厂的范畴内说明本发明。

该生产厂装备有根据本发明的处理系统,如图1所示,它包括一个生产反应器或蚀刻机2,一个泵系统,和一个装置8,泵系统包括一个高真空泵4,如:涡轮分子泵4和一个低真空泵(roughing pump)6,而装置8用于消除PFC和/或HFC化合物,装置8属于等离子发生器型。

在运行时,泵4保持过程室中必要的真空并抽出排放的气体。

反应器2被供给用于处理半导体产品的气体,尤其是供给PFC和/或HFC气体。气体供给装置因此供给反应器2,但这些在图中未示出。

通常,这些气体是以约10,或几十到几百sccm(每分钟标准立方厘米)的数量级,例如:在10和200或300sccm之间的流速加入反应器。

通常,这些气体不是完全被半导体制造或处理过程所消耗,这种消耗的最高比例可能大于50%。因此,在低真空泵6的下游,十分普遍的是具有数十到数百sccm,例如:在10和100或200sccm之间的PFC或/或HFC流速。

装置8可用来处理(离解或不可逆转变)这些未消耗的PFC和/或HFC化合物的,但它们也可以由此产生一些副产品,如:F2,和/或HF,和/或SiF4,和/或WF6,和/或COF2,和/或SOF2,和/或SO2F2,和/或NO2,和/或NOF,和/或SO2

这些装置8是用于使进入装置8的气体分子离解及用于形成反应性化合物,尤其是氟化化合物的装置。

更具体地说,装置8的等离子体用来通过剥离起初是中性的气体分子中的电子使经受等离子体的气体分子电离。

由于放电作用,使待处理或待提纯的气体分子,尤其是基本气体的分子离解,因此形成比起初分子尺寸更小的基团,并在此之后,根据具体情况,基本气体分子的各单个原子,若干原子和碎片这样受激发,同时基本上不发生化学反应。

在通过放电之后,基本气体的各原子或分子分别去激发和重新组合,以便在此后变成原封不动。

相反,一些杂质经历,例如通过形成具有与起初分子化学性质不同的新分子碎片的离解和/或不可逆转变,此后,上述杂质可以通过合适的后续处理从气体中提取出来。

反应单元10用来使在装置8处理中所产生的化合物与一相应的反应元素(例如:一种固体反应吸附剂)反应,来破坏上述化合物。装置10处理所产生的气体(实际上,是装满PFC和/或HFC型化合物和/或其它杂质(如上述那些杂质)的载体气)然后被排放到环境空气中,但没有危险,因为PFC和/或HFC的比例适合于环境保护(通常,低于初始浓度的1%)并且很低的,允许的有害杂质的比例,也就是说低于法定的排放限,通常低于0.5ppm或低于1ppm。

由于安全原因,来自反应器或来自生产室2的气态排放物在低真空泵或低真空泵送装置的下游或排放中,在基本上是大气压下的氮气(具有一种添加气体,亦即氧)或空气中是十分稀的。因此,系统包括在图1中未示出的氮气(和氧)或空气喷射装置。空气或氮气(和氧)在低真空泵的高压阶段喷射。

优选的是,注入通过低温蒸馏所得到的干氮气作为稀释气体。因此,稀释减少了一些与可能存在残余水分有关的一些问题(下面说明),残余水分的存在导致形成非气态产物(H2SO4或HNO3或SiOxNy,或在钨腐蚀情况下,WOx或WOF4)或其它问题,如SiF4或WF6的水解,造成刚好在净化等离子体之前沉积。

这种稀释作用施加了在低真空泵6下游的流体流速,通常遇到的流速约为每分钟几十升(例如,在10和50升/分钟之间)的氮气或空气,上述流体流含有0.1%-1%的PFC和/或HFC。

泵下游的压力约为大气压数量级,例如在0.7bar或0.8bar和1.2bar或1.3bar之间。

在大气压下,利用一种载体气,如空气或氮气需要大量的能量,以便通过等离子体发生装置8使气体电离并保持等离子体(每厘米放电管至少150W,例如:每厘米放电管约200W;根据另一个实施例,可以选择每厘米放电管在150和500W的功率之间)。

由装置8所产生的等离子体优选的是不处于局部热力学平衡(LTE)。这种等离子体也可以是一种其中至少一个放电区不处于局部热力学平衡的等离子体。因此,能用一种微波炬,上述微波炬一般归类于热等离子体,但微波炬的“包络”区基本上不处于LTE,上述包络区形成一相当大的放电体积部分,并且在其中大多数转化反应都可能发生。

优选的是,放电或等离子体源具有在MHz和GHz范围内由一HF场保持的类型。在这些高频下,电子主要或唯一地响应激励场,并因而这些放电的脱离LTE特征。控制偏离热力学平衡使转化化学(conversionchemistry)能通过控制副产物的性质优化。各种外部操作参数对这种偏离有影响,例如:选择稀释气体或小量加入某些添加气体,或是激发频率。这种频率也对等离子体的密度有影响,它一般随频率增加而增加。在大气压下由微波场所保持的等离子体具有很高的密度(在2.45GHz处为1012-1015cm-3,而更具体地说,在氮气或空气中为1013-1014cm-3),上述高密度有助于在PFCS和/或HFCS的转化中达到高效率。

实际上,频率将从集中在433.92MHz,915.00MHz,2.45GHz和5.80GHz上的一个频带中选择。正在40.68MHz之下的频带已经在射频范围之内,因此,等离子体的密度将太低,以致不能得到高效率。

有几类可以在大气压下工作的高频等离子体源族,它们形成不同放电特性范围并具有各种优点或缺点,特别是就设计和制造的简单性,对所提出问题实施的方便,及费用等方面而言,具有各种优点或缺点。

在设计应用的范围内,可以用下面四类等离子体源。

第一类包括保持在谐振腔内的等离子体。谐振腔可以通过一个波导管或一个同轴线供能。放电的空间延伸受腔的大小限制。等离子体的电子密度不能显著超过在相应的频率下的临界密度,尤其是与表面波等离子体源不同。

另外相关的是保持在一个波导管内的等离子体,上述波导管实际上可以比作不完美的腔。这些等离子体也具有上述两种限制,亦即大小和电子密度。而且,最大放电程度对应于波导管横断面若干尺寸的其中之一。

炬代表第三类能在本申请的范围之内使用的高频等离子体源。放电形成一种负载,所述负载在一段传输线(一般是同轴线)的端部处吸收HF功率。炬可以通过一同轴线或一个波导管供能。功率的增加造成火焰和包络二者的密度和体积增加。

能在大气压下工作的第四类高频等离子体源包括表面波加热电极家族。在表面波等离子体源的范畴内,可以在不必重新设计场加热电极的情况下,通过简单地增加入射微波功率,增加等离子体柱的范围。柱中的等离子体密度超过临界密度。

在由M.Moisan和J.Pelletier编辑的“Microwave Excited Plasmas”,Elsevier,Amsterdam,1992,的第4和第5章中,给出了有关这些各种类型等离子体的更详细的信息。

对于每分钟约数十升氮气或空气载体气流速(在PFCS和/或HFCS浓度在0.1%和1%或百分之几之间的情况下),用大气压HF等离子体源十分可能达到转化程度大于95%。

无论采用什么等离子体源(炬除外),它都应用一种一般是放电保持在其内的管状的室或是一种在其内产生放电的介电管。例如,它可以是EP1014761中所述的一种类型的管。长度在100和400毫米之间,例如约300毫米和内径在4毫米和8毫米之间的管或管状室避免将过大的压降引入泵的下游,亦即,与下游的低真空泵6不兼容。这是由于低真空泵一般是能在下游压降至多300mbar的情况下工作,在400mbar附近的太大的压降一般造成低真空泵停止工作,上述情况在半导体生产线应用中难以接受。

尽管选择一支合适长度的管,但另一个问题是在位于低真空泵下游的气路中形成固体和/或液体沉积物。这种沉积可能发生并又产生压降和/或腐蚀作用,上述压降和/或腐蚀作用易于损害生产单元的工作并造成停产。例如,在进行冷却的区域,尤其是在等离子体的下游,情况就是这样。

而且,在大气压HF放电中,及在通常由泵6所施加的流速范围(每分钟数十升载体气)内,可能发生一种径向收缩现象,电子密度从管的轴线朝周边方向降低,而在周边处流动的气体分子在其路线上比靠近管轴线流动的那些气体分子遇到更少的活性物质。在某些情况下,放电可以不再充满整个横断面,并且人们可以目击出现若干以不稳定方式移动的等离子体细丝,因此,转化率突然下降。

收缩的程度取决于几个因素,尤其是管直径,稀释气体的性质,杂质和辅助气体,通量的速度,管壁的导热率及激发频率。一般,所有其它都相等,当放电室的内径减少或频率下降,收缩程度都下降。然而,管的直径不能任意地减小,因为一方面,管壁上的热应力相应地增加,另一方面,横跨等离子体净化反应器8的压降根据总流速可能起阻止作用(例如:在几个低真空泵连接在一起的情况下)。

现在,如上所述,过大的压降导致低真空泵6停止工作,并因此造成整个生产装置停止生产。

为了减少收缩和得到高转化度,而同时不对低真空泵6施加过大的压降,管的内径可以选定在8毫米和4毫米之间。通过在最有利的条件下操作,减少了能得到规定转化度的放电长度。

因此,最好在工厂运行之前,选择管的内径,以便收缩现象不太显著。采用可变直径的管能使过程的效率改变。

增加放电中PFC分子路线长度的另一种方法,是,例如通过产生一个涡流以便使粒子的路线是曲线而不是直线改变气流流动的方法。

优选的是,管具有约1毫米或在1和1.5毫米之间的厚度。

管因此是薄的。在运行时,它的外表面的温度全都更高。然而,现已发现(从试验运行的最后数百小时),这不会损害冷却流体的热稳定性:这种流体即使在很长时间内也不经历任何明显的变坏。

而且,一种具有接近1毫米厚度的管能进行光学测量,以便监测等离子体源的合适工作,尤其是监测等离子体柱的长度。在空气或氮气的等离子体可以用光学方法穿过具有1毫米或在1毫米和1.5毫米之间厚度的管检测,而穿过具有2毫米的管要困难得多。

视所选定的等离子体源的类型而定,这些一般原理可以应用于各种方法,并且在或多或少程度上帮助优化转化效率。

在一个谐振腔中,至少如果限定在实际腔模式,则等离子体密度不会大大超过临界密度。这是由于如果功率增加,则可能出现表面波模式,如果腔体通过在其末端处使壁传导,同时用另外的方法使波前进而保持封闭,则上述表面波相当于驻波。在表面波模式情况下,密度总是大于临界密度。对于一种封闭式腔体,沿着管的放电程度受腔体的大小限制。因此,通过制造选定管的长度,以便提供足够的等离子体体积来得到所希望的转化率。

同样类型的考虑应用于在波导管中的放电。在这种情况下,波导管横断面的一个尺寸确定放电的最大长度,除非,对于足够的功率和视波导管的构造而定,波传播到波导管的外部,然后变成一种表面波加热电极。而且波导管的尺寸将满足在所研究的频率下,导波传播模式存在的条件。

炬的情况则显著不同,在进入室的等离子体火焰的内锥和包络二者都是,上述室的尺寸与喷嘴的尺寸相比一般都十分大,因此,不会扰动流动的规整性和火焰的对称。这种室用来收集充满副产品的气流,因此,使它对着位于下游的后处理装置。喷嘴形状的详细情况(小孔的数量和尺寸及在横断面中的位置)起一种控制物质在火焰中路线的作用。还可以指出,可以优化室中的流动用于同一目的。

最后,在表面波等离子情况下,放电的程度不受场加热电极传导结构的大小限制,因此,它不必根据所希望的性能相配。通过增加由发生器所传送的入射HF功率,可以将管中的放电长度增加到所希望的值。

图1所示系统所有处理装置的气路包括:从低真空泵6开始,输送流出物进入反应等离子体组件8的管线7,然后是将等离子体连接到副产品后处理装置10的管线9,及最后用于将去毒后的气体排入大气的管线12,上述去毒后的气体可以没有任何危险地排放。对这些管线可以加各种流体操纵元件(旁通阀和各种用于维护的清洁和隔离设施)及安全传感器(流动错误和过压报警),图1未示出这些。为了可靠运行,选择各回路元件使之与同它们接触的产品相匹配。

而且还可以有烘炉干燥或过滤(trapping)系统。

这是由于通过低真空泵6抽出并返回大气压的排出物并非都必须保持气态形式。一般由于稀释气体中残留的水分(几百PPMV)存在而使问题变得严重。例如,SF6腐蚀过程可能产生固体硫,H2SO4和HNO3等。某些排出物可以冷凝或以固态形式沉积,因此,有增加低真空泵6下游压降的危险。结果,有一种上面已经提到的低真空泵6的危险,并且在上述危险情况下,整个生产单元停止生产。

而且,考虑上面已经提到的径向收缩现象,管状等离子体室的直径一般不可以超过约10毫米。对于约数十Slm(通过低真空泵6施加)的总流速,气流的速度是这样的,以致对大多数在等离子体中产生的热能来说,热交换(径向热扩散)太慢而不能被流体带走用于冷却室。由于需要保持氮气或空气中足够浓等离子体的微波功率很高的结果,在低放电室的下游输送相当大量的热含量。在这个区域,气体通过冷却装置,例如通过一种水热交换器结构被迅速冷却,以防管线被破坏。这样做,一个用于冷凝残留物的优选区域因此产生腐蚀和/或上述管线堵塞,并因此,又有增加真空泵6下游压降的危险。

在这些条件下,根据本发明的一个实施例,与目前所有的等离子体装置不同,防止净化反应器8以上行流,利用反应器顶部处的交换器操作。

而且,在上行流情况下,固体和液体残留物可以简单地在重力作用下返回等离子体室,并损害其运行。例如:在SF6腐蚀情况下,可以看出,硫酸,它是一种具有低蒸汽压的粘性液体,润湿管的内壁,所述硫酸由于具有很差的介电性能而妨碍等离子体再次点燃。因而管必须进行清洗和干燥,由于其几何形状而更难处理。

由于这些原因,因此,最好是使气流的流动方向颠倒并使气流向下流动。可任选地,排放装置可以设置在管的底部中,例如:设置在能使液体残留物排放到底部点的交换器收集器结构中。

图2示出了根据本发明的处理装置8,它包括一个微波发生器14,一个波导管18和一个放电管26。放电管26安放在一个套管20中,上述套管20用一种导电材料制造,例如:文献EP-820810中所述的材料。

这种Surfatron-guide另外设置装置24,52,用于调节波导柱塞46和与放电管同轴的调谐柱塞48的轴向位置。该第二柱塞形成一个四分之一波长陷波器。它固定到一个例如用Teflon制造的滑动圆盘50上。装置24,52实际上是杆件,它们可以用手动起动以调节系统的阻抗。

在图2中,气体根据上述情况向下流动。标号22还代表在管16底部位置中的排放装置,用于将液体残留物排放到底部点。

管线的长度可能影响实际到达后处理系统10的产品性质。可以指出,在系统10具有一种固体反应吸附剂的情况下,将上述这系统尽可能靠近等离子体出口设置,以便它只处理其专门设计用于处理的气态产物。

最好选择后处理系统10的规格,以便考虑过程产生的副产品(腐蚀性的含氟气体,如HF,F2,COF2,SOF2等,氮氧化物等)及PFC转化等离子体。利用偏离热力学平衡不能提供用于控制这些副产物各自浓度的绝对灵活性。

而且,可以,例如在用户处的已有工厂或已形成的净化方法的情况下,预先强加后处理装置10的某些特点。

一般来说,为等离子体源(尤其是为放电室和气体出口)及电磁能供应设置冷却装置。除了提取热功率之外,可以强加某些温度范围,以便例如防止在停止工作时冷凝。因此,最好是设计冷却回路的结构体系,以便能利用设备中的标准水冷式网络作为制冷源。

入射的HF功率是电磁能回路和等离子体源二者的运行参数。为了使等离子体在合适的能效条件(功率有效的传输到等离子体中)工作,设法使由发生器所反射的功率和场加热电极结构中的加热损失减至最少。

根据等离子体源的设计,可以采用外部调节装置以保证正确的阻抗调谐,如可以在波导管端部处移动的短路柱塞46(图2)或调谐螺钉。

阻抗调谐可以对操作条件(设备起动/停止,多级过程,漂移和波动)相对不太敏感。基于腔体的系统比,例如表面波系统“更尖锐”,且它可以表示提供随反射功率测量而动的自动调谐装置。反射功率一般也是表征等离子体源正确运行的参数,不正常一般与反射功率明显增加有关。

然而,这是不对称的,并且可以用其它物理参数来保证合适的操作安全,如等离子体的某些特征(范围,亮度等),这些特征通过若干光学传感器或等离子体中异常热变化来诊断。等离子体源另外设置合适的起动装置。这是由于当建立HF功率时,氮气或空气等离子体在大气压下不能自发地起动。

在实际中,可能存在与半导体制造单元中集成和操作有关的限制。然而,一般来说,本发明所提出的结构可以与这个领域中操作过程机器的方法协调,并与半导体制造的通常操作,例如只在过程阶段中间歇操作的情况协调,与合适的停止/起动程序协调及一种用于使带泵和带沉积/腐蚀设备的控制器接口的单元协调。

它也与常常由半导体生产单元的结构所要求的占据小面积相匹配,因为在半导体生产设施中存在场地面积不足和场地面积的费用问题。

如图3和4所示,可以选择各种安排。

如图3所示,处理单元8可以在生产单元中设施地板60上距机器或反应器2或距低真空泵6几米远(如少于5米)设置。反应器2本身位于制造车间62中。

在图4情况下,处理单元可以与真空泵6更紧凑和一体化,并尽可能接近制造车间62地板上的设备2。

现在将给出一个特别举例说明的例子。它涉及一种用于SF6/C4F8腐蚀反应器的表面波系统。

1.微波电路和场加热电极

选定的激励频率是2.45GHz。在这种频率下,使用一种符合WR340标准的具有一合理大小的横截面的波导管,能转移足够应用的微波功率(几KW)。场加热电极可以属于Surfatron-guid或Surfaguide类型,后者提供更大的简单性。一个Surfaguide仅通过调节在其端部处封闭波导管的活动的短路柱塞的位置,就能提供极好的阻抗调谐,而不必用三螺旋匹配器。

因此,微波电路包括:

-一个微波发生器(开关式电源和磁控管头),所述微波发生器具有可调功率高达6KW的最大功率;

-一个充水的循环器,适合于耗散所有反射的功率,因此,没有反射功率返回磁控管;

-用于测量入射功率和反射功率的装置;

-Surfaguide场加热电极,与介电放电管一起,构成等离子体源;

-最后,一个活动的短路柱塞,在波导管的末端处,手动或电机驱动式操作,用于阻抗调谐。

2.气路

这种气路主要用一种耐含氟腐蚀性产物的材料,亦即PVDF或PFA型聚合物制成,不过等离子体源8的活性部件和有大量热产生的元件,如与放电管紧邻的下游部件除外,上述各部件仍然用金属或陶瓷材料制造。

在低真空泵6的排气侧,一个旁通阀系统(一个三通阀或三个两通阀,视商业上的可用性而定)使它能避免在操作事故或维护阶段期间处理系统通过气流。这些阀机械或电气接口,以防任何不合时宜的封闭排气,上述不合时宜的封闭会造成压力升高并使泵停止工作。等离子体净化单元8本身包括用于检测待处理的气流中任何过大压降的装置。

放电管是双壁式管,冷却通过一液压齿轮泵使介电流体在这两个壁之间循环来提供。这种流体又通过与输送到半导体制造单元设施的冷自来水热交换持续地冷却。与等离子体接触的中心管用一种合适的陶瓷材料制造,上述陶瓷材料是一种优良的绝缘材料,难熔和耐化学应力,并且耐腐蚀性含氟物质的化学侵蚀。

尽管一般不处于热平衡,由于大气压微波等离子体不是一种与低压放电类似的“冷”等离子体,气体在离开放电管时的温度可以很高。因此,在被送入下游管之前,气体通过一种水热交换器冷却,这种冷却可能引起局部液体或固体产物冷凝(理想的情况是能将其适当地收集),以便不遭受设备堵塞的危险。由于这个原因,如上所述,操作是用一种下行流进行,交换器设置在一个低的位置中。合适的抽出使得能在必要时每隔一定时间排放收集器。

用于中和腐蚀性含氟气体的装置10最好是安装在等离子体下游的一个短距离处。它是一种带有固体反应吸附剂,优选的是用来固定分子氟,的筒,如果腐蚀或清洗过程不用水或氢,则分子氟将是主要的副产物。吸附床还以更少的量保持腐蚀产物,如SiF4或WF6,以及过程等离子体或净化等离子体中的其它离解产物,如COF2,SOF2等。

气路包括多个由人工操作或电机驱动的阀,使它能用惰性气体隔离、清洁和冲洗系统的各种不同部件。

3.冷却流体回路

输送到半导体制造厂各设施的水用来冷却开关式电源和磁控管头,以及用于冷却放电管和等离子体管输出侧上的气体的介质流体。为了从介质流体中的取出热量,在一板式交换器内的闭合回路(约5℃)中使用实际冷自来水。另一方面,在发生器情况下,不希望产生可能造成短路的冷凝现象的危险。因此,优选的是采用在20℃下的“城市”水,它将在开关式电源和磁控管头中和然后在远离等离子体的交换器-收集器中连续地循环。在实际中,这种“城市”水也将来自闭合回路,并且如果安装了大量机器则它的温度优选的是集中式调节。

4.过程和性能实例

根据本发明,如图1中的示意图所示,一种等离子体净化系统安装在ALCATEL 601E型等离子体蚀刻机2的下游。用于腐蚀单晶硅的化学药品依次采用气体SF6和C4F8(例如:14”-13”),上述气体SF6和C4F8各自流速分别为170sccm和75sccm。

在实际中,在通过真空泵4,6和输出管线之后,气体以按时间平均的浓度进入等离子体净化单元8。在上述浓度下,进入单元8的SF6的浓度为90sccm,伴随有浓度为24sccm的C4F8

用于中和含氟酸性气体的系统10是一种市场上可得的CleansorbTM牌的筒(cartridge)。利用四极质谱仪分析系统中各不同点处气态排出物流。

ALCATEL腐蚀过程采用PFC气体SF6和C4F8。从低真空泵6排出的废气用30slm下的干空气稀释(约100-150ppm残留H2O)。在腐蚀室2(高密度ICP源)的下游测量SF6和C4F8的浓度。净化等离子体中的破坏度按离开上述等离子体时的浓度与进入上述等离子体的浓度之比计算,亦即不包括腐蚀过程本身的在先离解。

除了残留的两种PFCs的浓度之外,净化等离子体8的输出包括下列副产物:SiF4,F2,COF2,SOF2,NO2,SO2,NOF及可能的HF,因为在稀释空气中有残留的水分。通过中和筒之后,没有一种危害空气的污染物在气流中以大于平均值或限制的暴露值的浓度存在。

C4F8的清除度几乎是100%,残留浓度低于检测噪音水平。在各种条件下SF6的清除程度被列于表1中。可以很清楚地看到,随入射微波功率即随着等离子区域,的增加,消除程度增加。还可以看出,所有其它都相等时,当管的直径减小时,破坏效率增加。而且,气流的流动的方向,即上行或下行,对破坏效率几乎没有影响,但能避免某些上面已提到的危险。

对于其它的PFCs,如:C3F8,NF3,C2F6,CF4,CHF3等,用较高的SF6流速(最高达300sccm)和用较大的稀释(最高达70slm),得到类似的结果。

在表1中,“过程入口”代表反应器2的入口,而“去毒入口”代表处理装置8的入口。

表1

     稀释气体  添加  气体              破坏度  管件  (mm)  SF6流速,过程入口(slm)  SF6流速,解毒入口(slm)空气(slm) N2(slm) O2(slm)Pmin(kw)Pmax(kw)  %    10(1)    -    170    -    20    1    3  70  3  70    170    75    30    -    -    3  70  3  70    8(1)    170    -    20    1    3  97  3.5  98    170    75    30    -   2.5  94  3.5  97    6(1)    -    170    -    20    1   1.6  95  2.5  99    10(2)    -    300    30    -    0.45   3.5  77  3.5  77    8(3)    -    200    20    -    0.3   3.5  97  3.5  97    10(3)    -    200    20    -    0.3   3.5  81  3.5  81    12(2)    -    200    20    -    0.3   3.5  67  3.5  67                       (1)  用开/关腐蚀过程测量alpha测试                       (2)  用上行流的实验室测量                       (3)  用下行流的实验室测量

已在用于半导体元件的生产和腐蚀的室2的范畴内对本发明作了说明。

它以相同的方式应用于室或反应器2生产或生长或腐蚀或清洁或处理半导体,或半导体或薄膜器件,或半导体或导电或介电薄膜或衬底,例如在制造微型元件或微型光学器件的硅衬底的情况,并具有相同的优点。

它也应用于除去用于微电路刻蚀的光敏树脂的反应器的情况,及在等离子净化过程中沉积薄膜的反应器的情况,也具有上述优点。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号