首页> 中国专利> 具有反平行耦合的引线/传感器重叠区的磁阻传感器

具有反平行耦合的引线/传感器重叠区的磁阻传感器

摘要

提供一种具有反平行耦合的引线/传感器重叠区的磁阻传感器,包括与第一和第二引线层同自旋阀传感器层相交叠处的第一和第二无源区中自由层反平行耦合的铁磁偏置层。由第一和第二引线层之间的间隔限定的磁轨宽度区中偏置层的铁磁材料转变成无磁性氧化层,使磁轨宽度区中的自由层响应于来自磁盘的信号场而旋转。

著录项

  • 公开/公告号CN1538386A

    专利类型发明专利

  • 公开/公告日2004-10-20

    原文格式PDF

  • 申请/专利权人 日立环球储存科技荷兰有限公司;

    申请/专利号CN200310114890.0

  • 发明设计人 哈德瓦尔·辛格·吉尔;

    申请日2003-11-07

  • 分类号G11B5/39;

  • 代理机构中国国际贸易促进委员会专利商标事务所;

  • 代理人李德山

  • 地址 荷兰阿姆斯特丹

  • 入库时间 2023-12-17 15:34:51

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2011-02-02

    未缴年费专利权终止 IPC(主分类):G11B5/39 授权公告日:20061206 终止日期:20091207 申请日:20031107

    专利权的终止

  • 2006-12-06

    授权

    授权

  • 2005-10-26

    实质审查的生效

    实质审查的生效

  • 2004-10-20

    公开

    公开

说明书

技术领域

本发明总的涉及用于从磁介质读取信息信号的自旋阀磁阻传感器,特别涉及具有改进的引线/传感器重叠区的引线重叠自旋阀传感器。

背景技术

计算机经常包括具有介质的辅助存储装置,数据可以写到介质上并且可以从介质读取数据用于以后使用。包括旋转磁盘的直接存取存储装置(硬盘)通常用于将数据以磁的形式存储在磁盘的表面上。数据记录在磁盘表面上同心径向间隔开的磁道上。然后使用包括读取传感器的磁头从磁盘表面上的磁道上读取数据。

在高容量磁盘驱动器中,通常称做MR传感器的磁阻(MR)读取传感器为主要的读取传感器,是由于与薄膜感应头相比,它能够在更大的磁轨和线密度从磁盘表面读取数据。MR传感器通过它的MR读出层(也称做“MR元件”)中的电阻变化检测磁场,MR读出层的电阻为MR层读出的磁通量的强度和方向的函数。

常规的MR传感器在各向异性磁阻(AMR)效应的基础上工作,在该效应中MR元件电阻随MR元件的磁化强度和流过MR元件的读出电流方向之间角度的余弦的平方变化而改变。可以从磁介质上读取记录的数据,是由于来自记录的磁介质的外部磁场(信号场)使MR元件中的磁化方向发生变化,进而改变了MR元件中的电阻并相应地改变了读出电流或电压。

另一种类型的MR传感器为显示GMR效应的巨磁阻(GMR)传感器。在GMR传感器中,MR读出层的电阻作为由无磁性层(隔离层)隔开的磁性层之间的传导电子的与自旋相关的传输以及在磁性层和无磁性层的界面以及磁性层内发生的伴随(accompanying)的与自旋相关的散射的函数而改变。

仅使用由无磁性材料(例如,铜)层分开的两层铁磁材料(例如,Ni-Fe)的GMR传感器通常称做显示SV效应的自旋阀(SV)传感器。

图1示出了现有技术的SV传感器100,包括由中心区102隔开的端区104和106。称做钉扎(pinned)层120的第一铁磁层的磁化通常由与反铁磁(AFM)层125的交换耦合固定(钉扎)。称做自由层110的第二铁磁层的磁化没有固定,并且响应于来自记录的磁介质的磁场(信号场)自由旋转。自由层110通过无磁导电隔离层115与钉扎层120隔开。分别形成在端区104和106中的硬偏置层130和135为自由层110提供了纵向偏置。分别形成在硬偏置层130和135上的引线140和145为SV传感器100读出阻值提供电连接。授予Dieny等人在这里作为参考引入的IBM的U.S.专利No.5,206,590公开了在SV效应基础上工作的GMR传感器。

另一种类型的自旋阀传感器为反平行(AP)自旋阀传感器。AP钉扎的阀传感器与简单的自旋阀传感器的不同之处在于AP钉扎结构具有多薄膜层而不是单个钉扎层。AP钉扎结构具有夹在第一和第二铁磁钉扎层之间的反平行耦合(APC)层。第一钉扎层通过与反铁磁钉扎层交换耦合具有在第一方向中取向的磁化。第二钉扎层紧挨自由层,并且由于第一和第二铁磁钉扎层之间的APC层厚度最小(为8),反平行交换耦合到第一钉扎层。因此,第二钉扎层的磁化取向在与第一钉扎层的磁化方向反平行的第二方向中。

AP钉扎结构优于单钉扎层,是由于第一和第二钉扎层的磁化相减地结合提供了小于单钉扎层磁化的净磁化。净磁化的方向由第一和第二钉扎层中较厚的决定。减少的净磁化等于从AP钉扎结构上减少的退磁场(demagnetization field)。由于反铁磁交换耦合与净钉扎磁化成反比,因此这增加了第一钉扎层与反铁磁钉扎层之间的交换耦合。AP钉扎自旋阀传感器介绍在共同受让的这里作为参考引入的Heim和Parkin的U.S.专利No.5,465,185中。

通常的自旋阀传感器具有顶面和底面以及与气浮表面(ABS)相交的第一和第二侧面,其中ABS为面向磁盘的传感器的露出表面。现有技术的读取头采用了邻接第一和第二侧面的第一和第二硬偏置层以及第一和第二引线层,用于纵向地偏置和稳定传感器中的自由层并引导读出电流横向地穿过传感器。在自由层的侧面中心之间测量头的磁轨(track)宽度。为了将磁轨宽度减小到亚微米级别,现已发现硬偏置层使自由层磁刚化(稳定)(magnetically stiff),所以它的磁矩不能自由地响应于来自旋转的磁盘的场信号。因此,非常需要提供一种亚微米的磁轨宽度自旋阀传感器,仍然在横向上对来自旋转磁盘的信号以及自由层的纵向偏置敏感,从而使自由层保持在单磁畴状态中。

发明内容

因此,本发明的一个目的是公开一种自旋阀传感器,具有对来自旋转的磁盘的信号非常敏感的高度稳定的自由层。

本发明的另一目的是公开一种自旋阀传感器,具有反平行耦合的引线/传感器重叠区。

本发明的另一目的是公开一种自旋阀传感器,具有反平行耦合到引线重叠(无源)区中自由层的铁磁层。

本发明的另一目的是公开一种制造自旋阀传感器的方法,传感器具有反平行耦合到引线重叠区中自由层的铁磁层。

根据本发明的原理,公开了本发明的优选实施例,其中自旋阀(SV)传感器具有第一和第二侧面之间的横向长度,该长度被分成第一和第二无源区之间的磁轨宽度区,其中磁轨宽度区由第一和第二引线层限定。自由层位于传感器顶部。具有几乎等于自由层厚度的厚度的铁磁偏置层反平行耦合到第一和第二无源区中的自由层。在磁轨宽度区中,铁磁偏置层在随后的制造步骤中被氧化形成无磁性的氧化物。由于它的净磁化小,因此反平行耦合的自由层和偏置层的组合对来自磁盘的信号不敏感,造成第一和第二无源区中的自由层稳定。在磁轨宽度区,由于通过氧化步骤铁磁偏置层被转变成磁轨宽度区中的无磁性的氧化物层,自由层没有反平行耦合到偏置层,自由层磁化在有信号场的情况下可以自由转动。

从下面详细说明中本发明的以上以及其它的目的、特点和优点将变得很显然。

附图说明

为了更好地理解本发明的特点和优点以及使用的优选方式,结合附图阅读下面详细的说明。在下面的各图中,在所有图中类似的附图标记表示类似或相似的部分。

图1为没有按比例画出的现有技术的SV传感器的气浮表面图;

图2为使用本发明的SV传感器的磁记录盘驱动系统的简化图;

图3为没有按比例画出的“背负”(piggy back)读取/写入磁头的垂直剖面图;

图4为没有按比例画出的“合并的”(merged)读取/写入磁头的垂直剖面图;

图5为没有按比例画出的本发明的引线重叠SV传感器的一个实施例的气浮表面图;以及

图6a-6d为没有按比例画出的图5的SV传感器的气浮表面图,依次示出了通过本发明的方法制造传感器的步骤。

具体实施方式

下面介绍的是目前考虑的实施本发明的最佳实施例。本说明是为了说明本发明的一般原则,并不意味着局限在这里要求的本发明的概念。

现在参考图2,示出了体现本发明的磁盘驱动器200。如图2所示,至少一个可旋转的磁盘212支撑在轴214上并通过磁盘驱动电机218旋转。每个盘上的磁记录介质为磁盘212上同心的数据磁轨(未示出)的环形图形的形式。

至少一个浮动块定位在磁盘212上,每个浮动块213支撑一个或多个磁读取/写入磁头221,其中磁头221结合了本发明的SV传感器。随着磁盘的旋转,浮动块213在磁盘表面222上径向地来回移动,由此磁头221可以访问记录了数据的磁盘的不同部分。每个浮动块213借助悬臂215连接在致动臂219上。悬臂215提供了轻微的弹簧力将浮动块213偏向盘表面222。每个致动臂219连接到致动器227。图2中所示的致动器可以是音圈电动机(VCM)。VCM包括固定的磁场内可移动的线圈,线圈移动的方向和速度由控制器229提供的电机电流信号控制。

磁盘存储系统的操作期间,盘212的旋转在浮动块213(包括磁头321并面向磁盘212表面的浮动块213的表面称做气浮表面(ABS))和在浮动块上施加向上的力或升力的盘表面222之间产生气浮。气浮由此平衡了悬臂的轻微弹簧力并在正常操作期间支撑浮动块213离开盘表面并位于盘表面之上很小基本上不变的间距处。

磁盘存储系统的各部件的操作可以由控制单元229产生的控制信号控制,例如存取控制信号和内部的时钟信号。通常,控制单元229包括逻辑控制电路、存储芯片以及微处理器。控制单元229产生控制信号以控制各个系统的操作,例如线223上的驱动电机控制信号以及线228上的磁头位置和查找控制信号。228上的控制信号提供了需要的电流分布以将浮动块213最佳地移动并定位到磁盘212上需要的数据道上。借助记录信道(channel)225,读取和写入信号与读取/写入头221来回通信。记录信道225可以是部分响应最大似然(PMRL)信道或峰值检测信道。这两种信道的设计和实现在本领域中对于本领域中的技术人员来说是公知的。在优选实施例中,记录信道225为PMRL信道。

对常规磁盘存储系统的以上说明及图的图示仅为说明的目的。显然磁盘存储系统可以包含大量的磁盘和致动臂,并且每个致动臂可以支撑多个浮动块。

图3为“背负”式(piggy back)磁读取/写入头300的侧视剖面图,包括写入头部分302和读取头部分304,写入头部分利用了根据本发明的自旋阀传感器306。传感器306夹在非磁性、绝缘的第一和第二读取间隙层308和310之间,读取间隙层夹在铁磁的第一和第二屏蔽层312和314之间。传感器306的阻值响应于外部磁场而改变。穿过传感器传导的读出电流Is使这些阻值的变化表现为电位的变化。这些电位变化由图2所示的数据记录信道246的处理电路作为回读信号加以处理。

磁读取/写入头300的写入头部分302包括夹在第一和第二绝缘层318和320之间的线圈层316。可以利用第三绝缘层322使头部平面化以消除由线圈层316造成的第二绝缘层320中的波纹。第一、第二和第三绝缘层在本领域中称做绝缘叠层。线圈层316和第一、第二和第三绝缘层318、320和322夹在第一和第二磁极片层324和326之间。第一和第二磁极片层324和326在背间隙(back gap)328处磁耦合,并具有由写入间隙层334在ABS 340处隔开的第一和第二极尖330、332。绝缘层336位于第二屏蔽层314和第一磁极片层324之间。由于第二屏蔽层314和第一磁极片层324为隔开的层,因此这种读取/写入头称做“背负”头。

除了第二屏蔽层414和第一磁极片层424为公用层之外,图4与图3相同。这种类型的读取/写入头称做“合并”头400。图3中背负头的绝缘层336在图4的合并头400中省略了。

图5为没有按比例画出的根据本发明的一个优选实施例的引线重叠自旋阀传感器500的气浮表面(ABS)图。SV传感器500包括由中心区506相互隔开的端区502和504。基底508可以是包括玻璃、半导体材料或如氧化铝(Al2O3)的陶瓷材料的任何合适物质。籽晶层509为淀积的一层或多层以改变结晶学结构或随后的层的晶粒尺寸。反铁磁(AFM)层510淀积在籽晶层上。反平行(AP)钉扎层512、导电隔离层514和自由层516依次淀积在AFM层510上。AFM层具有的厚度足以提供所需的交换特性以作为用于反平行钉扎层512的钉扎层。在优选实施例中,AFM层510比钉扎层所希望的薄,并且用于提供附加的籽晶层以有助于改进检测器的随后层的性质。AP钉扎层512包括由反平行耦合(APC)层518隔开的第一铁磁(FM1)层517和第二铁磁(FM2)层519,反平行耦合(APC)层518使FM1层517和FM2层519为强AP耦合,如反平行磁化542(由指向纸内的箭头头部表示)和543(由指出纸的箭头头部表示)所分别表示的。在优选实施例中,AP耦合层512设计为本领域中公知的自钉扎层。自由层516包括Co-Fe的铁磁第一自由子层520以及Ni-Fe的铁磁第二自由子层521。

由APC层523与自由层516隔开的偏置层522包括淀积在APC层523上的Co-Fe的铁磁第一偏置子层524和淀积在第一偏置子层524上的Ni-Fe的铁磁第二偏置子层525。APC层523使偏置层522强AP耦合到自由层516。第一帽盖层526形成在偏置层522上。

第一和第二引线L1 528和L2 530形成在无源区532和534中的帽盖层526上以及与第一和第二无源区中传感器的中心区506重叠的端区502和504上。传感器的中心区506中L1 528和L2 530之间的间距限定了磁轨宽度区536,磁轨宽度区536限定了读取头的磁轨宽度。通过溅射蚀刻和反应离子蚀刻(RIE)工艺除去L1和L2之间的磁轨宽度区536中的第一帽盖层536,之后进行溅射蚀刻和氧化工艺将偏置层522的铁磁材料转变成磁轨宽度区536中的无磁性氧化物层538。第二帽盖层540形成在端区502,504以及无源区532和534中的引线L1 528和L2 530上,以及磁轨宽度区536中的无磁性氧化物层538上。

AP钉扎层512使FM1层517和FM2层519的磁化被钉扎(固定)在垂直于ABS的方向中,如分别指入和指出纸平面的箭头尾部542和箭头543表示。在磁轨宽度区536中,由箭头544指示的自由层516的磁化为铁磁地耦合的第一和第二自由子层520和521的净磁化,并且在存在外部(信号)磁场时不旋转。当不存在外部磁场时,磁化544优选平行于ABS取向。在第一和第二无源区532和534中,自由层516强AP耦合到偏置层522。

第一和第二无源区532和534中的偏置层522的磁化546为铁磁地耦合的第一和第二偏置子层524和525的净磁化。由于存在使自由层516强AP耦合到偏置层522的APC层523,因此偏置层的磁化546取向平行于自由层的磁化545。

该AP耦合的效果是稳定无源区532和534中的自由层,并且由于磁化545不响应外部场旋转,由此阻止了在旋转的磁盘上不希望的侧面读取(side reading)。

邻接自旋阀层的端区层548和550可以由如氧化铝的电绝缘材料形成,或者可以由合适的硬偏置材料形成以便将纵向偏置场提供到自由层516以确保自由层中的单磁畴状态。用硬偏置材料形成端区层548和550的优点在于这些层远离磁轨宽度区536,所以不会使该区域中自由层的磁化544磁刚性(magnetically stiffening),磁刚化使自由层对来自旋转磁盘的场信号不敏感。

分别淀积在端区502和504中的引线L1 528和L2 530提供了电连接,使读出电流Is从电流源流动到SV传感器500。电连接到引线的信号检测器读出由外部磁场(例如,由存储在旋转的磁盘上的数据位产生的场)在自由层516中感应的变化造成的阻值改变。外部场使自由层516的磁化544的方向相对于优选垂直于ABS钉扎的钉扎层519的磁化543的方向旋转。

参考图5和6a-d介绍SV 500的制造。在磁控溅射或离子束溅射系统中依次淀积图5所示的多层结构制造SV 500。存在约40Oe的纵向磁场时进行溅射淀积工艺。通过依次淀积厚度约30的氧化铝(Al2O3)层、厚度约20的Ni-Fe-Cr层以及厚度约8的Ni-Fe层在基底508上形成籽晶层509。厚度范围4-150的PtMn的FM层510淀积在籽晶层509上。通过依次淀积厚度约10的Co-Fe的FM1层517、厚度约8的钌(Ru)的APC层518以及厚度约19的Co-Fe的FM2层519,AP钉扎层512形成在AFM层上。厚度约20的铜(Cu)的隔离层514淀积在FM2层519上,通过首先淀积厚度约10的Co-Fe的第一自由子层520,之后为厚度约15的Ni-Fe的第二自由子层521,在隔离层514上淀积自由层516。厚度约8的Ru的APC层523淀积在第二自由子层521上。通过首先淀积厚度约10的CoFe的第一偏置子层524,之后接厚度约20的Ni-Fe第二偏置子层525在APC层523上淀积偏置层522。淀积在偏置层522上的第一帽盖层526包括厚度约20的钽(Ta)的第一子层和第一子层上厚度约20的钌(Ru)的第二子层。或者,第一帽盖层可以由厚度40的单个钽(Ta)层形成。

完成中心区506的淀积之后,涂覆光致抗蚀剂602并在光刻装置中曝光,以掩蔽中心区506中的SV传感器500,然后在溶液中显影露出端区502和504。通过离子铣除去未掩蔽的端区502和504中的各层,氧化铝(Al2O3)的端区层548和550淀积在端区中。此外,纵向硬偏置层可以形成在端区502和504中,以便将纵向偏置场提供到自由层516,以确保自由层中的单磁畴状态。

使用光致抗蚀剂604和光刻工艺形成SV传感器500中中心区506中的磁轨宽度区536。厚度范围200-600的铑(Rh)的第一和第二引线L1 528和L2 530淀积在端区502和504上以及提供了需要的引线传感器重叠的第一和第二无源区532和534中的未掩蔽第一帽盖层526上。除去磁轨宽度区536中的光致抗蚀剂掩模604之后,使用引线L1 528和L2 530作为掩模用于溅射蚀刻和反应离子蚀刻(RIE)以除去磁轨宽度区536中的第一帽盖层526。除去第一帽盖层526之后,用含氧气体溅射蚀刻磁轨宽度区536中偏置层522的露出部分,将铁磁偏置层524和525转变成无磁性氧化物层538。厚度约40的铑(Rh)或钌(Ru)的第二帽盖层540淀积在端区502和504及无源区532和534中的引线L1 528和L2 530上以及磁轨宽度区536中无磁性氧化物层538上。

应该理解本发明的引线/传感器重叠区(无源区532和534)中的反平行耦合偏置/自由层结构可以和具有位于叠置层底部附近的钉扎层的任何底部自旋阀(SV)传感器一起使用。在底部自旋阀结构中,自由层可以容易地AP耦合到偏置层,并且使铁磁偏置层氧化以在磁轨宽度区中形成无磁氧化物是容易实现的。特别是,引线/传感器重叠区中的AP耦合偏置自由层可以和AFM钉扎的简单钉扎或AP钉扎的SV传感器以及自钉扎的SV传感器一起使用。

虽然参考优选实施例具体示出和介绍了本发明,但本领域中的技术人员应该理解可以不脱离本发明的精神、范围和指教对形式和细节进行各种改变。因此,公开的发明仅为说明,并且仅由附带的权利要求书中的具体内容限定。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号