首页> 中国专利> 一种特别适用于光学、电子学或光电子学器件的基片加工方法和由该方法获得的基片

一种特别适用于光学、电子学或光电子学器件的基片加工方法和由该方法获得的基片

摘要

本发明涉及一种加工基片的方法,该基片包括一构成机械支承的一层来承载的薄层;这一加工方法特别适用于光学、电子学或光电子学器件。根据本发明的方法包括以下步骤:自源基片(6)上分离一层材料,以形成薄层(2);而后在薄层(2)上沉积材料制备一厚层(4),以形成构成机械支承的所述层。

著录项

  • 公开/公告号CN1541405A

    专利类型发明专利

  • 公开/公告日2004-10-27

    原文格式PDF

  • 申请/专利权人 S.O.I.TEC绝缘体上硅技术公司;

    申请/专利号CN01820799.5

  • 发明设计人 B·吉斯内;F·勒泰特;

    申请日2001-11-26

  • 分类号H01L21/20;H01L21/302;H01L29/165;H01L29/205;H01L29/267;

  • 代理机构北京纪凯知识产权代理有限公司;

  • 代理人程伟

  • 地址 法国贝尔内

  • 入库时间 2023-12-17 15:34:51

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2008-12-10

    授权

    授权

  • 2005-01-05

    实质审查的生效

    实质审查的生效

  • 2004-10-27

    公开

    公开

说明书

本发明涉及基片加工方法领域,特别适用于光学、电子学或光电子学器件基片的加工,本发明还涉及由这类方法所加工出来的基片。尤其要特别指出的是,该基片可以用来加工成各种微系统、传感器、发光二极管或激光二极管等。

文件FR2681472公开了一种基片加工方法,按照这种加工方法,要从源基片移送一薄层材料到支承层上。在这种情况下,把该薄层跟支承层接合起来的操作往往要借助分子粘接来实现,而为了获得良好的粘接界面,就要求两个待粘接在一起的表面,在实现接触之前要进行特殊的制备。这种制备一般包括以下一些操作:抛光,平整加工,物理-化学处理,加工中间层,等等;而这些操作可能比较繁冗、复杂。当支承基层是多晶体材料时就尤其是如此。

本发明的一个目的是提供一种基片加工方法,该基片包括在支承层上的一薄层,该方法要比现有的技术方法简单得多,而且加工成本可能也要低得多。

依据本发明,这一目的是借助这样一种基片加工方法来实现的,该基片包括一由构成机械支承的支承层承载的薄层。这一加工方法特别适用于光学、电子学或光电子学器件。该方法包括以下步骤:

从源基片上分离一层材料,以构成该薄层;

而后在该薄层上借助沉积材料制备一厚层,从而形成构成机械支承的该支承层。

本发明所提供的方法易于实现,并且可以省去对两个待接触的表面进行繁冗、昂贵的制备过程,如抛光、平整加工、制备中间层,等等,所有这些步骤都可以随意地仅仅由加工该厚层之前进行蚀刻来代替,而该厚层的生成可以方便地伴随着高温处理。

尤其要指出的是,就现有移送一薄层到厚支承层上的方法而言(而不管该薄层究竟是单晶材料、多晶材料,还是非晶体,等等),一薄层是以单片的形态移送到现有业已制备的厚支承层(同样也由单片构成)上的,而依照本发明,该厚支承层则是直接在该薄层上形成的。因而,实施本发明的方法,就可以大为节省,因为该方法使得有可能省去一些繁冗而又昂贵的表面制备步骤。

就本发明而言,比较有利的是,构成该支承层的材料是直接沉积在该薄层上的,例如,采用化学汽相沉积(CVD)。在这种情况下,所获得的、介于该薄层和该支承层之间的界面,质量上乘,尤其是按电导率和/或导热系数来评价时就更是如此,而采用现有技术方法,情况一般就不是这样。

该厚层还可能适合于沉积金属,例如电解沉积铜。

不过,该厚层同样可以用熔融材料和/或粘性材料或烧结材料来构成。

本发明所提供的方法可以方便地实现对这样一类基片进行加工,其中构成薄厚层的材料具有相近或相同的相应热膨胀系数和/或晶格参数。

本发明所提供的方法还特别有利于加工复合基片,构成这类基片的支承层是多晶体、非晶体、陶瓷、多相材料等,而其上则是单晶体薄层,如半导体材料。某些技术,尤其是某些沉积和/或生长技术,可以使厚层以低成本生成。因而,比方说,要在碳化硅单晶体薄层上生成非晶体或多晶体碳化硅厚层,那么采用本发明所提供的方法,就有可能以较低的成本加工出碳化硅基片,这一成本要低于完全用高质量碳化硅单晶体加工出基片时的成本。

此外,本发明所提供的方法有利于促进构成支承层材料的高质量生长。因而,若需要低成本加工基片,则按以前的技术方法,可能要移送一薄层单晶体到不昂贵的支承层(诸如由多晶体或非晶体材料做成的支承层)上。如果把同样的构想移植到本发明所提供的方法中来,那么可以在具有高附加值的薄层材料上制成一层不昂贵材料的厚层,不过,若该薄层本身是单晶体,则该厚层将具有更好的质量,它优于把跟厚层相同材料做成的单片层直接移送到该薄层上时的质量。如果该支承层(也就是按本发明所提供方法生成的该厚层)是多晶体,那么当优先相生长时,材料内各种晶粒将具有更高的内聚力和更好的取向。然而,要是本发明的方法包括在该薄层和该支承层之间形成中间层,如一非晶体绝缘层的操作,那么这一优点就有可能大打折扣。

在某些情况下,采用本发明所提供的方法在该薄层上生长该厚层时,该薄层用做在厚层中单晶或准单晶引晶生长的籽晶。这些情况相当于该厚层是在该薄层上外延生长或准外延生长成的。

本发明的方法最好包括(但可任选)下列可单独采用或组合采用的特征:

它包括在该薄层的一面和/或另一面上沉积一层有效层所构成的操作;举例来说,这一有效层可能是具有大带隙的材料,如氮化镓、氮化铝、或其他这类材料,如取自包括铝、铟和镓列表中至少两个元素的化合物;

在形成成厚层之前沉积至少一个有效层;

在形成成厚层之后沉积至少一个有效层;

该有效层和该厚层各自沉积在该薄层的不同表面上;

该薄层是由单晶材料构成的;

该厚层是由从包括下列材料的清单中选取的一种材料沉积形成的:单晶材料、多晶材料、非晶体材料、包含多相的材料、以及比构成该薄层的材料低廉的材料;

它包括在薄层上形成一个粘接层的操作,该粘接层系由包括下列材料中的一种材料构成的:非晶体材料、多晶材料以及金属材料(如钨或硅化钨);不用说,这些性质可以加以组合(如多晶体和金属材料);该粘接层可以在薄层从源基片上分离之前形成,例如:

·包括这样一个步骤,即在薄层上形成厚层之前,把薄层移送到一个中间支承层上;

·包括除去中间支承层所构成的操作;

·通过把薄层跟中间支承层分离开来除去中间支承层,为了能再回收利用该中间支承层,尤其需要进行分离;

·它包括在移送该薄层到该中间支承层上之前,在该中间支承层上形成一个粘接层的操作,该粘接层是由包括下列材料之一种构成的:非晶体材料、多晶材料以及金属材料(如钨或硅化钨);当然,这些性质可以加以组合(如多晶体和金属材料);

·该薄层是由从包括下列材料的清单中选取的一种材料构成的:硅、碳化硅、蓝宝石、金刚石、氮化镓、氮化铝、以及至少两种这类材料的组合或叠加;

·该厚层是由从包括下列材料的清单中选取的一种材料构成的:硅、碳化硅、金刚石、蓝宝石、石墨、氮化镓、氮化铝、氮化硼、以及至少两种这类材料的组合或叠加;

·该薄层是通过薄弱区自源基片上分离的;

·该薄弱区是在源基片中、在确定的深度附近用注入原子形式(atomic species)的办法形成的;

·该薄层是用除去(如化学蚀刻)介于该薄层和该源基片剩余部分之间的一个区的办法来分离的;

·该厚层系在最优条件下沉积,以便使该厚层具有来自下列材料性质的特有的特性:单晶体、多晶体、绝缘性能、以及导电导热特性;当然,两种这种特性可以随意相关联,如单晶体和导电导热特性。

本文件以上和以下提到的术语“原子注入”,涵盖所有各种适合于把该物质引入材料中的原子或离子形式的轰击,以便在该材料中、在离该轰击表面确定深度处使该物质的浓度达到最大。原子或离子形式是按最大值周围分布的能量被注入该材料中的。原子形式可以采用离子束注入机(一种浸没在等离子体中工作的注入机)等方法注入该材料中。术语“原子或离子形式”用来包括处于离子、中性、或分子形式的原子,或者处于离子、中性形式的任何分子,或者甚至是处于离子、中性形式的不同原子或分子的组合。

阅读下列详细说明,将会看出本发明的其他一些特点、目标、以及优点,而借助附图还可以对本发明有更好的了解,其中:

·图1是表示依本发明所提供方法的一种实施方式的技术步骤流程图;

·图2是表示依本发明所提供方法的另一种实施方式的技术步骤流程图;

·图3是表示依本发明所提供方法的又一种实施方式的技术步骤流程图;

·图4是表示依本发明所提供方法的还有一种实施方式的技术步骤流程图;

·图5是表示依本发明所提供方法的还有另一种实施方式的技术步骤流程图;

·图6是表示依本发明所提供方法的又是一种实施方式的技术步骤流程图;

·图7是一个带有四个薄层的中间支承层的示意透视图,这一示例可以用在本发明所提供方法的一个变化方案中;

·图8a和8b是加工获得的基片的示意截面图,该图示出依本发明所提供方法的一个变化方案加工获得的基片的实例。

下面将参照本文给出的五个特定实施方式(但不限于这五个实施方式)对本发明的方法作详细说明。

如图1所示,在第一种实施方式中,制备的成品基片14包括一个厚层4和在其上的一个薄层2,厚层4构成对薄层的机械支承层;要获得成品基片14,需执行以下步骤:

·在待进行原子形式注入的源基片6的一个表面上形成一层非晶体材料,以制成粘接层10,在一个中间支承层12的一个表面上形成一层非晶体材料,以制成另一粘接层11;

·在源基片6的确定深度处进行原子形式注入,以形成一个薄弱区8;

·100,使粘接层10和11相接触;

·200,通过薄弱区8自源基片6上分离(detach)薄层2;

·300,在对应于薄弱区8的薄层2的表面上沉积厚层4;

·400,除去粘接层10和11,以使薄层2跟中间支承层12分离开来。

形成粘接层10和原子形式注入这两个技术步骤可以按上面规定的顺序执行,或者也可以按另外的顺序执行。

例如,原子形式注入的技术步骤和分离该薄层2的技术步骤200在法国专利FR2681472中已作了说明。

形成粘接层10和11的技术步骤对应于形成一层非晶体材料,这可以采用本领域技术人员都公知的诸多方法之一来实现。

应该看到,薄层2在进行沉积厚层4的技术步骤300之前,还可以进行一些附加的技术步骤,以便构成全部或某些电子组件,或者可以在其上用外延的方法或用其他方法均匀沉积附加的薄膜。

下表概括了可以用于实施上述第一种实施方式的一些材料的实例。

表1

薄层2中间支承层12支承的厚层4粘接层10,11单晶SiC多晶SiC或单晶SiC多晶SiC或多晶AlN或金刚石或质量次于该薄层的单晶SiCSiO2或Si3N4单晶GaN多晶SiC或单晶SiC或蓝宝石多晶SiC或多晶AlN或多晶GaN或金刚石或质量次于该薄层的单晶SiCSiO2或Si3N4{111},{100}等,单晶Si多晶Si或单晶Si或多晶SiC或单晶SiC多晶Si或质量次于该薄层的单晶SiSiO2或Si3N4

上表和下表中,“mono”表示单晶“poly”表示多晶。

实施例1

第一个实施例对应于表1中的第一行。

第一种实施方式对加工包括多晶碳化硅的厚层4和其上的单晶碳化硅的薄层2的基片是特别有利的。

碳化硅难于获得单晶结构,即便直径远小于通常单晶硅所获得的尺寸。这尤其是由于拉晶技术所致,单晶碳化硅的拉晶技术要比单晶硅的拉晶技术更复杂、更昂贵;还有一个原因,这就是在给定的碳化硅硬度和脆性之间的不利比例的条件下,其基片的加工步骤更困难、更费时、也更昂贵。

因而,本发明所提供的方法特别有利于加工带有碳化硅薄层2的基片,这是由于该方法能够从一个源基片6上取下多个薄层2,而这些薄层2的每一个都将移送到低成本的厚层4上。

此外,碳化硅主要应用于高功率半导体器件。不巧的是,在这些应用场合,某些苛刻约束的技术条件限制了对适合于容纳该碳化硅薄层2的支承基片的选用。在某些情况下,这类应用要求该支承基片具有良好的导电和导热性能。多晶碳化硅满足这些要求。其某些特性非常接近单晶碳化硅:就热膨胀系数而论,它具有良好的匹配特性;它适合于在温度可能高达1600℃或1700℃(这是碳化硅在注入原子形式之后重新开始外延并进行退火所要求的温度)的条件下进行处理。

还有,采用多晶碳化硅几乎不需要修改通常应用于单晶碳化硅的各种工艺。

最后,多晶碳化硅具有良好的耐化学腐蚀的性能。

在多晶碳化硅的厚层4上加工单晶碳化硅的薄层2时,粘接层10和11最好用二氧化硅做成。

厚层4可以用以下一些方法形成:化学汽相沉积(其主要优点是能够在比较低的温度下进行沉积,对碳化硅而言,这一温度约为1350),汽相外延(VPE)或氢化物汽相外延(HVPE),高温化学汽相沉积(HTCVD),或者其他一些相应的工艺。厚层4也可以采用取自加工单晶时通常所采用的技术,诸如升华技术或其他一些一般在拉球(drawing ball)方法中用到的技术。从沉积质量的角度(低温、不均匀条件、高生长率等)来看,采用这些技术并不总是令人满意的,但从成本的角度来看,采用这些技术则可能会有助益。

就直径为50毫米(mm)的碳化硅基片而言,该厚层4有利地是300微米(μm)厚。比较有利的是用化学汽相沉积法形成该碳化硅厚层4,此时其生长率约为每小时100微米。

此外,在采用与薄层2单晶材料对应的一个表面来沉积300微米厚的厚层4时,可以对沉积参数进行优选,以便制出单晶体支承基片。因而,在这些情况下,薄层2就用做生长单晶厚层4的籽晶。依沉积参数优化的程度和打算应用的场合而定,这一单晶厚层4可能质量要差一些或者是质量中等的,但成品基片则仍然具有成本较低的优点。不过,该单晶厚层4也可能达到良好或极好的质量,要是预定应用的基片如此要求的话。视应用场合而定,该厚层4可以生成极厚,也就是说其厚度远大于几百微米,从而形成具有极厚一层4的基片。在上述实施方式的变化方案中,该厚层4不仅可以用碳化硅做成,而且也可以用多晶氮化铝、金刚石、或其他一些材料做成。

中间支承层12必须能承受该碳化硅厚层4生长的条件,还必须能被除去。所选用的去除中间支承层12的方法可能限定所选用的制造该中间支承层12的材料。如果需要用浸蚀或者机械或化学去除方法使该中间支承层12损耗掉,那么浸蚀和去除的步骤,还有该中间支承层12本身就必须是低成本的。在这种情况下,比较有利的是采用氮化铝材料。低成本的硅也可以用,不过比较难于使其跟该厚层4沉积的碳化硅相容。相反,如果该中间支承层12是予以去除并加以回收的,那么就可以采用昂贵一些的材料。就这种情况而言,可以选用多晶碳化硅,或者甚至可能的话,选用单晶碳化硅,因为它并不消耗掉,而是可以重复使用。

比较有利的是,中间支承层12用多晶碳化硅做成,并用二氧化硅的粘接层11完全覆盖住。

使用二氧化硅就更易于自该源基片6上取下该薄层2。平整化沉积二氧化硅使得有可能消除表面不平度,并采用熟悉而又易于实行的技术进行抛光、平整、清洗、化学制备、以及在二氧化硅上粘接二氧化硅等步骤。

该粘接层10和11的二氧化硅也可以用其他一些材料来代替,如氮化硅(Si3N4)。这一材料可以承受比二氧化硅更高的温度。此优点尤其适合于厚层4的优化沉积,以便生成高质量的单晶层或多晶层,或者甚至是需要提高沉积率的话。

本发明所提供方法的一种实施方式的第一个实施例随后的步骤包括:

·制备由叠层构成的结构,该叠层结构包括一层单晶碳化硅的薄层2,两层二氧化硅的粘接层10和11,以及一层多晶或单晶碳化硅的中间支承层12;这种叠层结构是用本领域技术人员公知的层移方法形成的(例如采用法国专利No.FR2681472中所述的Smart-Cut那类方法);

·300,沉积碳化硅的支承厚层4,例如在薄层2的自由表面上,在1350℃温度下进行化学汽相沉积;

·400,在氢氟酸槽中用化学浸蚀法除去粘接层10和11,并回收中间支承层12;碳化硅(可以是多晶或单晶形态)在氢氟酸中是惰性的,而二氧化硅在氢氟酸中则极易腐蚀;

·对多晶碳化硅的厚层4的表面进行最后粗抛光;粗抛光就足够了,因为它构成该成品基片14的背支承面;若在良好控制的条件下沉积厚层4,则甚至有可能省去这一抛光步骤。

如有必要,可对成品基片14的几何形状进行修整,例如保证该成品基片14具有所需要的直径,沿其侧边微量切削成形,以从该基片的边缘除去小结节,等等。

还有一个比较有利的是,在精整操作时,尤其是进行抛光该成品基片14背面的任选操作时,可以保护该成品基片14的单晶碳化硅的正面,也就是该薄层2的自由面。可以看到,在实施本发明所提供方法的头几个步骤时,该中间支承层12自然就对该薄层2进行了保护。

由本发明上述实施方式所获得的成品基片14,在该薄层2和该厚层4之间有一个高导电性能和高导热性能的界面;首先,这是因为该厚层4的材料是用本发明的方法直接在该薄层2上沉积的,使得有可能避免出现空隙,而用现有的方法,在粘接时就会产生空隙;其次,不同于现有的方法,没有通常在粘接方法中用到的二氧化硅或其他材料的中间层。本发明的方法还有可能省去对很硬,且化学上具有极大惰性的碳化硅进行平整和抛光的步骤。这一点是特别有益的,因为若是采用多晶碳化硅,抛光操作就会出现麻烦,之所以如此,是由于抛光时的化学腐蚀率在晶粒与晶粒之间以及晶粒与晶界之间是变化的,并且还随着晶粒的固有和整体结晶特性而变化。

然而,应该看到,在某些应用场合,可以实施本发明的方法来形成这样一种厚层4,其中通过选择材料或本发明方法的实施条件,例如,通过在薄层2和厚层4之间采用绝缘材料的中间层,用来获得作为电或热的不良导体的界面。

如上所述本发明方法的第一种实施方式可能是众多变化方案的对象,尤其是上述材料可以用表1第一行中作为例子而提到的其他一些材料来代替。

就本发明所提供方法这第一种实施方式而言,用化学蚀刻法来去除该粘接层10和11的步骤400,也可以用分离中间支承层12和薄层2的操作来代替,比方说,这种分离操作包括预先在该中间支承层12中注入原子形式和/或施加机械应力。也有可能采用本领域技术人员都熟悉的方法来简化去除粘接层10和11和/或把中间支承层12跟薄层2分离开来的步骤400的操作,如在该粘接层10和11中加工沟槽等。

也还有可能不用中间支承层12而实施上述本发明的方法。这尤其适用于移送的薄层2足够厚、且用强度足够高的材料做成的情况。因而,厚度为几十微米的碳化硅薄层2可能具有足够的机械强度。

还应该看到,取自该源基片6的碳化硅薄层2,其极性可以加以选择,它是初始源基片6的极性的函数。碳化硅基片的极性对应于Si面或对应于C面,这是本领域技术人员众所周知的一个概念。或许可以进行两次移送才把该薄层2从该源基片上取下,从而使它有可能改变极性两次。

还可以实现包括以下步骤的操作:在沉积该厚层4之前,在该薄层2上形成一个中间层,如一个绝缘层。举例来说,该中间层可能是微细的氧化物(500埃()厚)。这样就得出,例如一种覆盖在绝缘层上的SiC基片,其构成是:在一层微细的二氧化硅中间层上有一SiC薄层2,之后把这两层一起放在多晶硅,例如厚层4上。

下面说明本发明所提供方法第一种实施方式的第二个实施例。作为例子,它对应于形成特别适合于光电应用场合的氮化镓基片。

实施例2

这第二个实施例对应于表1的第二行,包括以下技术步骤(如图2所示)。

·采用金属有机化学汽相沉积法(MOCVD)或分子束外延法(MBE)在单晶碳化硅的源基片6上沉积单晶氮化镓的薄层2;

·在该薄层2上沉积二氧化硅粘接层10;

·在多晶碳化硅的中间支承层12上沉积粘接层11;

·100,使两个粘接层10和11互相接触,并把该粘接层10和11粘接在一起;

·200,通过该薄层2和该源基片6之间的界面(例如施加机械应力)或者通过业已形成的薄弱区,比如在该源基片6的单晶碳化硅中或在该薄层2的氮化镓中注入原子形式,把该氮化镓的薄层2跟该源基片分离开来;

·300,在该薄层2的自由表面上用CVD法沉积多晶碳化硅的厚层4;

·400,通过去除该粘接层10和11,例如浸在氢氟酸槽中,或者仅通过是除去材料(用所谓“深腐蚀”法除去该中间支承层12和该粘接层10和11),或者甚至是通过预制的薄弱区或其他位置使该粘接层10和11断裂,或者通过采用本领域技术人员熟知的任何其他方法使该中间支承层分离开来,并借助施加机械应力、热应力、化学应力、静电应力等使基片在预定区域分离成两部分。

可以预计实施例2会有其他一些变化方案。这样,沉积多晶碳化硅的操作300可以代之为化学汽相沉积多晶氮化铝或多晶氮化镓,或者通过形成金刚石层,从而制成厚层4。

在另一个变化方案中,该厚层4的多晶氮化镓是用高压VPE法形成的。

还有另一个变化方案,此时该中间支承层12的多晶碳化硅代之以氮化铝或蓝宝石;接着按300用CVD法沉积多晶氮化铝的厚层4,而后按400去除粘接层10和11。

在又一个变化方案中,本发明的方法跟实施例2的变化方案之一是一样的,只是所取的薄层2不同,这时所取的薄层2不仅包括氮化镓层,而且还包括源基片其下的一层碳化硅。这可以这样做到,在源基片中,在某个深度上比方说用注入原子形式法形成一层薄弱层。在这种情况下,在又一个变化方案中,不仅是该粘接层10和11被去除掉,而且该由碳化硅制成的薄层2部分也被去除,这只要在薄层2上进行两次移送即可,也就是在把它放到该中间支承层12上之前进行一次附加的移送。

此外还有另一些变化方案,其中构成薄层2的氮化镓层代之以氮化铝或某种其他材料,或者甚至是一种不同材料(可能与其他一些中间化合物一起)。

下面说明本发明所提供方法的第一种实施方式的第三个实施例。

实施例3

这一实施例对应于制造大直径的单晶硅基片。这类基片难于制造,因而比较昂贵。如同单晶碳化硅基片那样,比较有利的是,在质量较差的支承层(如多晶体、非晶体、或其他材料)上制成一单晶材料的薄层。若是把该薄层直接粘接在支承层上,那么就会有抛光、平整的困难,粘接界面处的物理-化学困难,除气的困难,等等。本发明的方法的一个优点就是使得有可能避免这些困难,该支承层是直接沉积一厚层4制成的,该厚层4在该薄层2表面之一上构成支承层。

如上所述,本发明的方法使得有可能提供具有极好质量的界面。

比较有利的是,当沉积该厚层4时,有可能随着深度的变化而变化进行掺杂,从而强化该界面的导电和导热性能。

这第三个实施例对应于表1的第三行,该实施例要进行以下步骤:

·在位于中间支承层12上面的绝缘层(粘接层10和/或11)上制成一层单晶硅的薄层2;

·在该薄层2上按300形成多晶硅的厚层4,该厚层4具有厚度至少为725μm;

·400,分离并回收该中间支承层12;

·通过硅/二氧化硅的选择性浸蚀(如用氢氟酸)进行的物理-化学处理并进行/或进行机械除去操作,以便保证薄层2的单晶硅表面区具有良好的质量;

·在平面、厚度、边缘等处进行成形加工(抛光,搭接,修整边缘,成品基片14的化学处理,以使其符合标准,例如诸如SEMI或JEIDA,的要求)。

上面已经作了说明,可以这样进行在绝缘层上制成硅基片的步骤:在硅源基片6的薄弱区8中注入原子形式,并在该源基片6上形成二氧化硅粘接层10,同时还在该硅的(可以是多晶体,或者甚至是单晶体)中间支承层12上形成另一层二氧化硅粘接层11,接着按100使该粘接层10和11相接触并把两者粘接在一起,而后自该源基片6上分离该薄层2。

这一在绝缘层上制成硅基片的步骤可以用,例如Smart-Cut法(例如参看法国专利No.FR2681472)进行。

在该厚层4已形成之后,必须把绝缘基片上的硅切除掉;这可以采用任何适合于自该源基片6上分离该薄层2的已知方法。一种这样的方法可以称之为“移去”法,借此把被盖住的二氧化硅(例如该粘接层10和11)除去。另一种方法可以使用机械应力。不用上述移去法,还可以应用机械应力、热应力、静电应力等,以使位于粘接界面、外延界面、多孔区、预制薄弱区等任意一侧的两部分分离开来。

该中间支承层12可以通过第一个粘接界面或通过该粘接层10和11与该中间支承层12间的粘接界面之任一个界面加以分离,或者,如果在该粘接层10和11中、在该薄层2中、或在该中间支承层12中还进行注入原子形式(如氢)这一附加步骤的话,那么就可以通过为这种注入所减弱的区域分离该中间支承层12。

可以看到,在把该薄层2从该中间支承层12分离开来之前,还可以部分或全部实施上述成形操作。

还可以看到,在按步骤300沉积该厚层4之前,就可以在该薄层2上形成绝缘层(一种氧化物、氮化物、金刚石等),因而该成品基片14就具有硅在绝缘层上的结构。

在上述本实施例的一个变化方案中,在该薄层2上形成出一层金刚石的厚层4。若需要该薄层2中产生的热量有良好的去除,那么所获得的这种成品基片就特别有利。

在本发明所提供方法的第二种实施方式(如图3所示)中,薄层2是按以上对本发明所提供方法的第一种实施方式所描述的方式在厚层4上生成的,而后在该薄层2的自由表面上沉积一层有效层16。

从电子学、光学、光电子学领域内感兴趣的基片制造的角度,下面的表2归纳了本发明的方法第二种实施方式的六个实施例。

表2

有效层16薄层2中间支承层12厚层4粘接层10,11GaN或AlN或AlGaN或GaInN或其他材料单晶SiC多晶SiC或单晶SiC(尤其是可再循环利用时)多晶SiC或金刚石或氮化硼SiO2或Si3N4GaN或AlN或AlGaN或GaInN或其他材料{111}Si多晶SiC或单晶SiC(尤其是可再循环利用时)多晶SiC或金刚石或氮化硼SiO2或Si3N4GaN或AlN或AlGaN或GaInN或其他材料蓝宝石多晶SiC或单晶SiC(尤其是可再循环利用时)多晶SiC或金刚石或氮化硼SiO2或Si3N4GaN或AlN或AlGaN或GaInN或其他材料单晶SiC或{111}Si或蓝宝石多晶SiC或单晶SiC(尤其是可再循环利用时)多晶AlN或金刚石或氮化硼SiO2或Si3N4GaN或AlN或AlGaN或GaInN或其他材料单晶SiC或{111}Si或蓝宝石多晶SiC或单晶SiC(尤其是可再循环利用时)多晶GaN或金刚石或氮化硼SiO2或Si3N4GaN或AlN或AlGaN或或其他材料单晶SiC或{111}Si或蓝宝石多晶AlNAlN或GaN或多晶SiC或金刚石或氮化硼SiO2或Si3N4

实施例4

在这一实施例(表2第一行)中,单晶碳化硅的薄层2是在多晶碳化硅的中间支承层12上制成的,而在这两者之间的是二氧化硅粘接层10和11。随后用CVD法沉积多晶碳化硅的厚层4。所获得的结构而后要进行适当的分离处理,即把该厚层4上的该薄层2所构成的结构与该中间支承层分离开来的处理。例如,这种处理包括:在氢氟酸中浸蚀该粘接层10和11(施加或不施加机械应力),或者仅仅是通过去除该中间支承层12的材料,也可能要去除该粘接层10和11的材料。最后,用MOCVD法在该薄层2的单晶碳化硅的自由面上沉积氮化镓的有效层16。该氮化镓的有效层16特别适合于光电子学方面的应用。

实施例5

就这一实施例(表2的第二行)而言,包括{111}硅的薄层2的结构是按上述方法在多晶碳化硅的中间支承层12上形成的,而在这两者之间有一层二氧化硅。用CVD法在{111}硅的该薄层2上沉积多晶碳化硅的厚层4。所获得的结构而后在氢氟酸槽中进行处理(施加或不施加机械应力),或者进行适合于把具有该厚层4的该薄层2跟该中间支承层12分离开来的任何其他处理。在这之后,采用MOCVD法在该{111}硅的自由表面上沉积单晶氮化镓({111}硅是使氮化镓能良好外延的众所周知的材料)。最为有利的是,限制该{111}硅的厚度小于1000,以便使它能适应进行上述各种操作时可能发生的热膨胀而不会断裂。

实施例6

在这一实施例(表2第三行)中,在多晶碳化硅的中间支承层12上制备蓝宝石的薄层2,同时在这两者之间制备二氧化硅的粘接层10和11,之后在该薄层2上按300沉积碳化硅的厚层4。去除该粘接层10和11,回收该中间支承层12。最后,在该蓝宝石上沉积氮化镓的有效层16。蓝宝石是另一种众所周知的能使氮化镓良好外延的材料。

实施例7

这第七个实施例(表2第四行)制备上述三个实施例之任一个所描述的一种结构,不同的是多晶碳化硅的厚层4被一层多晶氮化铝取代。

实施例8

这一实施例(表2第五行)中按以上实施例4-6之任一个所描述的类型制备一种结构,不同的是多晶碳化硅的厚层4被一层用HVPE法沉积的多晶氮化镓取代。

实施例9

这一实施例(表2第六行)中按以上五个实施例之任一个所述制备一种结构,不同的是中间支承层12的多晶碳化硅被多晶氮化铝取代。

在以上这最后六个实施例中,采用单晶碳化硅、{111}硅、或蓝宝石作为氮化镓外延的基片。碳化硅的优点是其热膨胀系数与氮化镓的热膨胀系数相近。

应该看到,厚层4的厚度性能是重要的,例如当需要跟与成品基片14的背面实现电接触时,或者当散出该有效层16中所构成组件产生的热量是决定性因素时,或者甚至是需要引出和控制该有效层16中制成的二极管或激光器所发出的光时,该厚层4的厚度就是重要的性能参数。

还应该看到,如果薄层2具有足够的厚度,并且如果其所构成材料也具有足够的刚性,那么可以不用中间支承层12而制成与上述各种结构相当的结构。

本发明的方法第二种实施方式还可以有诸多其他变化方案。因此,形成多晶SiC、氮化铝、或氮化镓的厚层4的步骤,可以代之以形成金刚石或氮化硼的厚层4的步骤。

在另外一些变化方案中改变的是该中间支承层12的特性。例如,可以用单晶碳化硅(尤其是其可以重复利用时)来代替多晶碳化硅或多晶氮化铝。

同样,这些实施例可以变换技术细节,其中依本发明形成的氮化铝、铝镓合金、或镓铟合金等的有效层16,可以如上述取代氮化镓的有效层16。该氮化镓的有效层16还可以是一种多层结构,包括氮化镓、氮化铝等型式的层叠结构,任选各种不同种类的掺杂等。

本发明的方法第三种实施方式如图4所示,与上述本发明的方法第二种实施方式所描述的结构相反,这时厚层4是直接沉积在有效层16上的。在薄层2与源基片分离开来之后,有效层16本身就直接沉积在薄层2上。

下面参看三个实施例,借以对本发明的方法第三种实施方式作些说明。

用在这三个实施例中的材料归纳在表3中。

表3

有效层16薄层2中间支承层12厚层4粘接层10,11GaN或AlN或AlGaN或GaInN或其他材料单晶SiC或{111}SiC或蓝宝石多晶(或单晶)SiC或多晶AlN或金刚石或其他材料AlN或GaN或多晶SiC或其他材料SiO2或Si3N4GaN或AlN或AlGaN或GaInN或其他材料单晶SiC或{111}SiC或蓝宝石+蚀刻多晶(或单晶)SiC或多晶AlN或金刚石或其他材料AlN或GaN或多晶SiC或其他材料SiO2或Si3N4+蚀刻一部分GaN或其他材料单晶SiC或{111}SiC或蓝宝石+蚀刻多晶(或单晶)SiC或多晶AlN或金刚石或其他材料AlN或GaN或多晶SiC或其他材料SiO2或Si3N4

实施例10

这一实施例(表3第一行)中,按上面对本发明的方法第一和第二种实施方式所描述的方式制备一种结构,该结构包括:在多晶碳化硅的中间支承层12上的单晶碳化硅的薄层2,以及这两者之间的二氧化硅的粘接层10和11。此后,用MOCVD法在碳化硅薄层2的自由表面上形成单晶氮化镓的有效层16。接着,在该有效层16上用CVD法沉积多晶碳化硅的厚层4。所获得的结构而后按步骤700进行适当的分离处理,这种分离处理适合于把薄层2、有效层16、以及厚层4所构成的结构与该中间支承层12分离开来。例如,这种处理包括在施加或不施加机械应力的条件下在氢氟酸中进行浸蚀,或者仅仅是用去除的方法进行分离。这样一来,首先是提供一种层叠结构,该结构连续包括对氮化镓的有效层16起支承作用的厚层4,为单晶碳化硅的薄层2所覆盖的有效层16本身,并且中间支承层12易于回收利用。

不同于上述本发明的方法第二种实施方式,在本实施例的情况下,该单晶氮化镓是在形成厚层4之前沉积的。

实施例11

在本发明的方法第三种实施方式的另一个实施例中,先制备实施例10的结构,而后分离单晶碳化硅的薄层2,例如按步骤800在等离子体中进行蚀刻(表3第二行)。

实施例12

在本发明的方法第三种实施方式的又一个实施例(表3第三行)中,制备实施例11所描述的结构,不同的是去除的不仅是单晶碳化硅的薄层2,而且还有一部分该氮化镓的有效层。

可以看到,该单晶碳化硅的薄层2或该单晶氮化镓的有效层16,在进行沉积厚层4之前,可以进行各种附加的技术步骤,采用这些技术步骤试图全部或部分制出电子组件,或者这些技术步骤可能包括用外延或其他方法形成均匀的附加沉积薄膜。

还应该看到,该单晶碳化硅的薄层2和该单晶氮化镓的有效层16的极性可以通过选择初始源基片6的极性来加以确定。可供选择的方案是,本发明的方法有可能包括至少一个双转换步骤,使极性可以接连改变两次。

同样,这些实施例可以更换技术细节,其中依本发明形成的氮化铝、或铝镓合金、或镓铟合金等的有效层16,可以如上述取代氮化镓的有效层16。该氮化镓的有效层16还可以是一种多层结构,包括氮化镓、氮化铝等型式的叠层结构,任选各种不同种类的掺杂等。

在另外一些变化方案中改变的是该中间支承层12的性质。例如,采用单晶碳化硅(尤其是当中间支承层可重复利用时),要不就采用金刚石或某些其他材料,来代替多晶碳化硅或氮化铝。

就本发明的方法的第四种实施方式(如图5所示)而言,先是在薄层2上沉积有效层16,而薄层2本身则位于中间支承层12之上,之后把该中间支承层12与由薄层2和有效层16所构成的结构分离开来,接着在薄层2上或在有效层16上,也就是在薄层2和有效层16所构成的结构的一侧或另一侧上沉积厚层4。

本发明的方法的第四种实施方式将用两个实施例来加以说明。

实施例13

这一实施例要进行以下一些技术步骤:

·首先在具有薄弱区8的源基片6上形成由单晶碳化硅的薄层2所构成的结构,其次,例如按上述第一种实施方式形成中间支承层12,且在该薄层2和该中间支承层12之间形成粘接层10和11;

·通过薄弱区8(例如,在该源基片6与中间支承层12进行接触之前,在源基片6中进行注入而获得)将薄层2从源基片6分离;

·在该碳化硅的薄层2的自由表面上沉积单晶氮化镓的有效层16;

·把薄层2和有效层16所构成的组件跟中间支承层12分离开来(如在氢氟酸槽中进行处理);

·在有效层16的自由表面上沉积多晶碳化硅的厚层4。

实施例14

这一实施例的技术步骤跟上一实施例的相同,只是在有效层16上沉积厚层4的步骤,要代之以在薄层2上沉积厚层4的步骤。

如上所述,如果薄层2以及有效层16的厚度和强度使这一点有可能做到,那么就本发明的方法而论,任何时候都可以不用中间支承层12而实施上述实施方式,或者在沉积厚层4的同时不用中间支承层12,但随后在执行将薄层2与源基片6分离开来这一步骤时,则采用一个临时支承作为加强件,临时支承在沉积厚层4之前去除掉。

对应于本发明方法的第五个实施方式既不用中间支承层12,也不用上面所描述的那种临时支承。

图6示出本发明的方法这一实施方式的几个实施例,其中不用中间支承层12。

例如,从业已产生薄弱区8(如用注入原子形式的办法形成)的源基片开始,可以直接分离薄层2,要不然就在通过薄弱区8将薄层2与其源基片6分离开来之前,就在那上面沉积有效层16。

在第一种情况下,厚层4是在薄层2上沉积的(因而重现,例如,实施例1的成品基片14)。这一方法可以任意继续进行以下步骤:在薄层2的与业已沉积厚层4的表面相对的表面上沉积有效层16(因而重现,例如,实施例4的成品基片14)。

在第二种情况下,厚层4沉积在与薄层2相同的一侧(因而重现实施例4的成品基片14),或者沉积在与有效层16相同的一侧(因而重现实施例10的成品基片14)。可以任选的步骤是,如参看图4所作的说明(见步骤800),随后可以去除薄层2(因而重现,例如,实施例11的成品基片)。

上述实施方式也可以设想会有诸多变化方案而并不超越本发明的范围。

例如,为说明本发明的方法的实施方式而列举上述几个实施例,其中所描述的各项操作可以加以组合。

因而,如图7所示,一个变化方案是,在沉积厚层4之前所获得的薄层2可以成批进行处理。在这种情况下,薄层2是固定在单个大尺寸的中间支承层12上的。

这单个中间支承层12的形状可以任选(圆形、矩形等)。

在这种情况下,薄层2可以是相同的,也可以是不同的。薄层2的每一个都可以进行分离操作,以使其与中间支承层12分离开来。举例来说,单个中间支承层12可以是覆盖在二氧化硅中的多晶碳化硅板。

在业已沉积厚层4之后,包括单个中间支承层12以及相关的薄层2和厚层4的组件要在氢氟酸槽中进行移离(lift-off)操作。每一个单个中间支承层12都可以回收利用。

在上述实施方式的又一变化方案中,厚层4是在比薄层2的主表面更大的表面上沉积的。这一变化方案示于图8。

这一变化方案中,按上述第一种实施方式制备的类型制备一种结构,该结构包括一层中间支承层12,其上为一层薄层2,在这两层之间是粘接层10和11。这一结构而后按这样一种方式放在试样容器20中:使薄层2的自由表面与试样容器20的表面齐平(参看图8a)。而后,在自由表面上形成厚层4,并使其在试样容器20上溢满。

按此方法形成的基片可以随意进行适当的处理,以去除薄层2凸起的边缘。沉积层的边缘通常都会有凹凸不平、缺陷、起泡等。本变化方案使得有可能消除这样的边缘。

这一变化方案还有利于形成直径大于薄层2的基片,并且适合于加工给定直径的基片的生产线,即使薄层2不能直接在所述直径下形成。

若是在多个薄层2上形成单个厚层4,并且已对多个薄层2和/或有效层16形成单个支承层(参看图8b),则这一变化方案就更显示出其优越性。这一变化方案还可以这样实施:在每一个由中间支承层12和薄层2所构成、并已放进平的试样容器的组件上形成厚层4。该厚层4随后退回(drop back)到薄层2的边缘。

如上所述,本发明的方法的一个变化方案包括优化沉积厚层4的参数,以便使厚层4成为单个晶体。

即使这样一种单晶厚层4的质量不是太好,它也可以足够好地应用于诸多方面,在这些场合,仅仅是在表面层2或6处对晶体的质量要求很高。

在不可能生长单晶的情况下(如对氮化镓的情况),或者是生长单晶比较昂贵时(如对单晶碳化硅的情况),本发明方法的这样一些变化方案就特别有利。

可以在表面层2或16上进行碳化硅的厚层4的化学汽相沉积,该表面层2或16随后起着引晶生长厚层4的籽晶的作用,与之同时采用很高的生长率(每小时几十到几百微米)。

可以看到,按以前的技术,薄层2往往是在支承层上用外延的方法生长的。在这种情况下,源基片必须具有很好的质量,以便保证在其上外延生长的薄层同样具有很好的质量,也就是说,以便保证缺陷不会被迁移。

就本发明的方法而论,支承层,也就是厚层4,可以以比较低的成本制备,因为这是一种质量往往会比较低的支承层,尤其是因为它不必用于重新启动外延生长。

在另一些变化方案中,上述说明可以变换而用于其他一些半导体,诸如磷化铟和砷化镓、或者甚至是其他一些材料(如铌酸锂)。

在又一些变化方案中,要在薄层和/或有效层以及厚层4之间、或者甚至是在薄层2和有效层之间形成中间层(如绝缘层)。例如,这一中间层可以用金刚石或细氧化物等制成(500厚)。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号