首页> 中国专利> 使用电子束辐射形成增强晶体管栅极的方法及包括该晶体管栅极的集成电路

使用电子束辐射形成增强晶体管栅极的方法及包括该晶体管栅极的集成电路

摘要

本发明涉及一种栅极宽度小于70nm的晶体管的制造方法,该方法包含对一个成像在光阻层的栅极(26,36)进行电子束辐射(12),对一个成像在光阻层的栅极(26,36)进行修整,将光阻层上的栅极图案蚀刻至位于光阻层下的多晶硅层(40)上,所述栅极图案是经由电子束的曝光而形成。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-03-20

    未缴年费专利权终止 IPC(主分类):H01L21/027 授权公告日:20060816 终止日期:20170222 申请日:20020222

    专利权的终止

  • 2010-08-11

    专利权的转移 IPC(主分类):H01L21/027 变更前: 变更后: 登记生效日:20100705 申请日:20020222

    专利申请权、专利权的转移

  • 2006-08-16

    授权

    授权

  • 2004-08-04

    实质审查的生效

    实质审查的生效

  • 2004-05-26

    公开

    公开

说明书

相关申请

本申请与下列申请有关:美国专利申请案第09/819,344号(代理人卷标号码39153/406(F1061)),由Okoroanyanwu等人提出申请,标题为″用来减少集成电路装置特征的临界尺寸的过程″;美国专利申请案第09/819,692号(代理人卷标号码39153/404(F0943)),由Okoroanyanwu等人提出申请,标题为″用来避免图案化光阻特征的变形的过程;″以及美国专利申请案第09/819,342号(代理人卷标号码39153/403(F0942)),由Okoroanyanwu等人提出申请,标题为″藉由光阻表面的修改而来形成次平板印刷光阻特征的过程″。本发明同样关于美国专利申请案第09/820,143号(代理人卷标号码39153/405(F0945)),由Okoroanyanwu等人提出申请,标题为″改善图案化光阻特征的SEM(扫瞄式电子显微镜)检测与分析;″美国专利申请案第09/819,343号(代理人卷标号码39153/298(F0785)),由Gabriel等人提出申请,标题为″用以促进横向修整的选择性光阻固化″以及美国专利申请案第09/819,522号(代理人卷标号码39153/310(F0797)),由Gabriel等人提出申请,标题为″用以改善超薄光阻的蚀刻稳定性的过程″。所有以上的申请案均于公元2001年3月28日提出申请,并且让受给本发明的受让人。

技术领域:

本发明一般涉及集成电路(IC)的制造方法。本发明尤其涉及在场绝缘区域上具有均匀的栅极宽度、较小的减少栅极宽度以及栅极的保护最小延长的晶体管的制造方法。

背景技术:

半导体或集成电路(IC)工业的发展目标是,制造集成电路时在较小芯片区域,完成越来越高的装置密度,以获得较高的性能与较低的制造成本。若想生产大规模集成电路,就得不断的缩小电路尺寸与装置图案(device features)。减少结构大小的能力,譬如在场效晶体管里的栅极长度与宽度或者导线的宽度,取决于平板印刷工具的性能(例如,曝光源的波长)、分辨率增强技术(例如,移相遮光罩、轴外照明等等)、以及光阻材料(这里共同称为平板印刷技术)。

不过,目前现有的平板印刷技术在印刷小IC时缺少足够的装置图案的清晰度。因此,在使用平板技术印刷以后,各种非平板印刷技术可同样地予以应用,以缩小或者减少图案(feature)的尺寸。一种此类非平板印刷技术为一保护层修整过程,该过程在将此图案传送到半导体晶片的基底层以前,减少或者″修整(trim)″成像在半导体晶片的光阻材料层上的图案。此保护层修整过程应用一等离子体蚀刻,以将希望数量的图案化光阻材料移除。举例来说,典型地在使用248nm光平板印刷制作波长的情况下,用于制作晶片的一个成像在聚苯乙烯基光阻材料上的图案,其最初具有大约150nm的尺寸,可以通过等离子体修整到大约100nm或者更小的尺寸。

相反的,对于典型地用于193nm波长的平板印刷过程中的以丙烯酸、环丙烯酸醋与以cycloolephine聚合物为基础的光阻材料上成像的图案而言,在一个保护层修整过程中缩减相同数量的尺寸则是有困难的。

目前使用在193nm平板印刷术的光阻材料表现出不佳的修整特性,尤因为其较高的垂直保护层腐蚀速度(Rv)、较低的水平修整速度(Rh)、线末端(Re)的高腐蚀率而受损。当试图修整保护层到现代ULSI(超大规模集成电路)晶体管所必须的小栅极尺寸时,就垂直腐蚀速度而言,在达到希望的平面尺寸以前,完全地耗损部分保护层图案是非常普遍的,这造成了受到损坏的或者间断的晶体管栅极,或者表示出无法接受的高并变化的串联阻抗的栅极。

使用在193nm平板印刷的典型保护层材料显示出不佳的修整特性,尤因其在水平与垂直方向上的无法控制与不同的修整速度而受损。就成像在193nm光阻材料的图案来说,在保护层修整的过程中变形与/或消耗并非罕见,因而影响了随后过程的进行。

例如,对于使用193nm平板印刷术成像的晶体管栅极和一种典型商业可用的光阻材料,其可能在保护层修整过程以前具有130-110nm的临界尺寸(CDs),而在保护层修整过程以后具有大约70-80nm的最后临界尺寸(CDs)。任何进一步的修整将典型地导致沿着该栅极长度方向的非均匀宽度、在场绝缘区域上栅极的最小延长的不可接受耗损(亦即,无法接受的大拉回线端点(large end ofthe line pull back))以及/或者在表面台阶上栅极图案的过度薄化,使传送到晶片的基底层的图案不可用。此不佳的修整结果可影响该晶体管的工作条件与/或者性能到该保护层修整过程在不破坏已知技术换算需求的设计规则下变得不再可用的范围。

于是,需要一种在蚀刻期间内提高保护层修整能力与在蚀刻期间内提高保护层稳定性的方法,以便将在光阻材料上成像的晶体管栅极成功地传送。进一步需要一种制造具有较小临界尺寸、在长度方向上具有均匀宽度、以及/或者在场绝缘区域上具有受到保护的栅极最小延长的晶体管栅极的方法,其比用常规平板印刷技术与保护层修整方法要更有效。

发明内容:

本发明的一个具体实施例涉及一种集成电路的制造方法。该方法包括在一个光阻材料层上成像一个晶体管栅极图案,以及用电子束来固化该晶体管栅极图案。该方法进一步包括修整固化过的晶体管栅极图案,以及将受到修整的晶体管栅极图案传送到位于该光阻材料层下面的一层,以形成一个晶体管栅极。该晶体管栅极包括一个宽度与一个长度。沿着该晶体管栅极长度方向的宽度的变化会因为该固化步骤而减少。

本发明的另一个实施例涉及一种形成栅极宽度小于70nm的晶体管的方法。该方法包括对一个光阻材料层的栅极图案的电子束辐射,以及修整该光阻层的受到电子束辐射的栅极图案。该方法进一步包括根据受到修整的栅极图案而将位于光阻层下面的多晶硅层蚀刻,以形成该晶体管的栅极。该栅极宽度较佳地小于70nm。

本发明的另一个实施例涉及一种集成电路。该集成电路包括一个绝缘区域以及由该绝缘区域所围绕的一个晶体管。该晶体管包括一个栅极。该栅极的一个临界尺寸大约小于60nm。该栅极由在光阻层上受到电子束辐射的栅极图像,以及修整该光阻层的受到电子束辐射的栅极图案所定义,在这期间保留栅极到绝缘线延长区,以确保提高晶体管的性能。

附图说明

这些实施例将由以下的详细说明和所附图示而更加透彻明了,其中同样的单元以同样的参考数字标示:

图1为一个流程图,其表示依据一个实施例的用来提高在光阻层上成像的晶体管栅极的蚀刻修整能力与蚀刻稳定性的过程;

图2为包含晶体管的晶片一部分的顶部视图,表示在光阻层上显影的一个晶体管栅极图案;

图3为沿着图2所示晶片的线3-3而截取的截面图;

图4为沿着图2所示晶片的线4-4而截取的截面图;

图5为图2所示晶片的顶部视图,表示一个栅极的蚀刻过程;

图6为沿着图5所示晶片的线6-6而截取的截面图;以及

图7为沿着图5所示晶片的线7-7而截取的截面图。

具体实施方式:

本发明的一个实施例提供了在制造集成电路(IC)期间,用来提高成像在一个光阻层上的晶体管栅极的蚀刻修整能力与蚀刻稳定性的较好方法。本发明的一个具体实施例将以图1所示的流程图来做说明。该流程图包括一个显影步骤10、一个电子束固化或电子束(E-beam)辐射曝光步骤12、一个保护层修整步骤14、与一个蚀刻步骤16。

图2表示制造晶体管的晶片20的一部分的顶部平面视图。在图3、4中,分别显示沿着图2所示的线3-3与4-4截取的晶片20的截面图。在图3、4中,晶片20包括一个基底层或基板21、一个第一晶体管22、一个第二晶体管32与绝缘区域30(图3)。第一与第二晶体管22、32形成于基板21上。第一与第二晶体管22、32系借由绝缘区域30而彼此电绝缘。第一与第二晶体管22、32彼此类似。虽然未显示,晶片20可在基板21上包括超过两个的晶体管。

基板21可包含单晶材料,譬如单晶硅晶片。或者,基板21可以是表体基板、外延层、硅绝缘(SOI)基板、砷化镓(GaAs)材料、或者其它半导体材料。仅为了说明,基板21将在下文以SOI基板来讨论。

如图3、4所示,将基板21的选择性区域(亦即,晶片20上的顶部硅层)蚀刻并且将一绝缘体(例如,一个氧化物绝缘体)生长或者沉积。该绝缘体可用来形成绝缘或场区域30。该氧化物绝缘体可以是场氧化物,譬如二氧化硅、硅酸四乙酯(TEOS)、封装二氧化硅的多晶硅或者其它绝缘体。或者,绝缘区域30可以是浅沟绝缘(STI)结构。同样地,基板21包括第一晶体管22的第一作用区(active region)24以及第二晶体管32的第二作用区34。如图3所示,对于具有100nm尺寸设计规格的典型技术,相邻绝缘区域30间的距离可以是160nm。

多晶硅层40在第一与第二作用区域24、34与绝缘区域30上。底部抗反射涂层(BARC)42在多晶硅层40上、光阻层下。多晶硅层40可包含多晶硅、非晶硅、金属或者典型的厚度在200nm或更小的这些材料的迭层。一个电介质或者电介质材料迭层适用于多晶硅与基板间的栅极绝缘体。多晶硅层40可以借由扩散炉LPCVD(低压化学气相沉积法)过程而形成。ARC层42可包含化学量论的氮化硅(SiN)、非化学量论的硅氮化物SixN(例如,富含硅的氮化物,在此x>1),硅氮氧化物SixOyN,或者包括这些材料的迭层及可能的氧化物覆盖层或基底层其中的一者,而厚度基本上则是在10nm至80nm的范围里。当ARC层42(抗反射涂层)由一迭不同薄膜组成时,ARC层42可由等离子体增强化学气相沉积法(PECVD:Plasma Enhanced ChemicalVapor Deposition)或者低压化学气相沉积法(LPCVD:Low PressureChemical Vapor Deposition)过程或者一连串的这些过程所形成。

光阻层在ARC层42上。根据由掩膜或光栅和平板印刷系统提供的图像,将一个栅极图案曝光至光阻层,以用于制造在晶片20上的各晶体管。在显影步骤10中,将成像的光阻层适当地显影,以定义出第一晶体管22所用的第一栅极光阻层图案26以及第二晶体管32所用的第二栅极光阻层图案36。

定义第一与第二栅极结构或图案26、36的光阻层可包含适合平板印刷应用的各种光阻材料。包含光阻层的材料可以包括矩阵材料或者树酯、感光剂或者抗化剂、和溶剂,并且是化学增强的、正或负调的、有机碱光阻材料。包含光阻层的材料可能是,但不限于以丙烯酸醋为基础的聚合物、脂肪基聚合物、酚基聚合物或者聚苯乙烯基聚合物。例如,光阻层在商业上可能包含可用的丙烯酸醋基或者聚苯乙烯基光阻材料。该光阻层更好地是旋涂于ARC层42上。光阻层的厚度小于1.0nm。

第一图案26被定义为沉积于第一作用区域24的中间部分上,其具有延长入绝缘区域30内的一特定量的长度。同样地,第二图案36被定义为沉积于第二作用区域34的中间部分上,其具有延长入绝缘区域30的一特定量的长度。第一图案26具有一个宽度50和一个长度延长52(例如,该线尺寸的末端)。第二图案36与第一图案26相同,而且对第一图案26的宽度50与长度延长52的说明可同样地应用到第二图案36。

例如,当光阻层是使用248nm波长平板印刷技术曝光的以ES-cap、缩醛、或其它苯乙烯为基础的聚合物时,宽度50可以大约是150nm,而长度延长52可以大概是100nm。当光阻层是使用193nm平板印刷术来曝光的以丙烯酸醋为基础的光阻材料时,宽度50可大概是110-130nm,而且长度延长52可大概是120nm。

通常,长度延长52不是依由所使用的保护层类型来设定。长度延长52的设定可以依据下列的电路布线的原则而来:1.迫使布线规则依据设计规则进一步压缩的经济竞争力,2.在蚀刻以后为了得到特定的晶体管性能所需要保留的末端护盖数值,以及3.该拍照过程的边缘。例如,130nm与100nm技术所用的长度延长52的″图示″值可以分别是210nm与160nm。

一般而言,在蚀刻以后,长度延长52应该保留大约是80nm。因此,在平板印刷期间内,延长52的尺寸应大于在修整期间的80nm的末端护盖。不管怎样,超过尺寸的延长52可对线末端之间的最小间隔产生妨碍。该最小间隔由设计规则所设定。因此,由于这些限制,将在蚀刻过程内末端护盖的消耗速度降低是大有价值的,这可通过在此所阐述的有利过程而得到。

为了讨论结构而假定的各种尺寸与材料,包括BARC(底部抗反射涂层)层42、多晶硅层40与区域30,并不以有限制的方式来说明。如上述,各种设计参数与过程标准的示范性尺寸和材料可以在不背离本发明范围的情形下予以改变。例如,该过程并不需要特定的ARC(抗反射涂层)尺寸或材料或者特定栅极层迭结构或材料。

在显影步骤10以后,但在将第一与第二图案26、36传送到任何基底层(将层40与42蚀刻)以前,包含一个图像(保护层图案26、36)的晶片20被暴露于受到精确控制的大量电子束曝光过程(电子束辐射步骤12)。大量的电子束照射并且穿透暴露的第一与第二图案26、36,并且化学性地修改或转换电子束辐射譬如曝光结构,以影响第一与第二图案26、36的蚀刻特征。特别是,第一与第二图案26、36的每一个绝缘区域30上的最小延长的水平或修整蚀刻速度、垂直或腐蚀蚀刻速度、以及腐蚀速度会受到影响,以在保护层修整步骤14中促进并且控制第一与第二图案26、36的蚀刻。

电子束较佳地从外部区域的电子源(未显示)发射,并且是大量曝光于晶片20上的均匀平行射束。适合产生电子束的外部区域电子源实例,是由Califomia,San Diego的Electron Vision Corporation所制造。

在保护层修整步骤14,电子束大量曝光的条件或者参数(例如,剂量、加速电压与束电流)被选定,为第一与第二图案26、36提供最佳希望的蚀刻修整能力与蚀刻稳定特性。电子束曝光电子束辐射条件可取决于光阻材料的种类、包含电子束辐射光阻的后续过程步骤、以及/或者该光阻材料的希望特性而改变。一个示范性的电子束固化方法是依据该保护层和应用,在具有从50至2000V的加速电压的一个或者多个步骤中输送全部的电子剂量(例如,2000μC/cm2)。

包含第一与第二图案26、36的光阻材料是一种248nm光阻材料(例如,聚苯乙烯基聚合物),其典型表现出较高比率的垂直或水平保护层消耗速度,以便使没有使用电子束辐射的实际加工范围显现出来。为了得到该聚合物的由电子束引发的适当的交联反应(cross linking),以便促进所希望的修整蚀刻,较高的电子束辐射剂量是必须的。丙烯酸醋与丙烯基保护层具有比较高的电子束引发交联反应效率。因此,需要给定能量的更高的剂量以得到在248nm保护层中的相同结果是令人希望的。

电子束辐射步骤12将化学性的改变,亦即交联反应与沉积,由电子束所轰击的光阻材料区域中的功能性基团(functional groups)与添加物。于是光阻材料的这些区域将增加基板保护层聚合物黏合(亦即光阻层与ARC层42之间的黏合)的蚀刻阻抗(亦即降低蚀刻率)、表体模量、表体坚韧性、和界面坚韧性。交联反应或电子束辐射区域可以是第一与第二图案26、36的顶部部分、顶部与侧表部分,或整体图案。一个示范性的电子束固化方法是依据该保护层和应用,在具有从50至2000V的加速电压的一个或者多个步骤中输送全部的电子剂量(例如,2000μC/cm2)。

第一与第二图案26、36被电子束辐射的范围(例如,电子束辐射深度、电子束辐射区域、与光阻材料的功能基团的分解程度)取决于在修整步骤14中被电子束辐射的第一与第二图案26、36的修整范围。第一与第二图案26、36的电子束辐射或者穿透深度和电子束辐射区域与大量电子束曝光条件、加工气体与/或晶片温度有关。光阻材料的功能性基团的分解程度与单位面积的全部电子剂量电子数以及在电子束辐射方法序列中个别步骤的剂量与能量相关。其也可能与基板温度相关。

在电子束辐射步骤12以后,下一步是保护层修整步骤14。较好的修整步骤14是一个等离子体蚀刻步骤。将晶片20暴露于等离子体蚀刻剂,将成像在光阻层上的图案(譬如第一与第二图案26、36)的尺寸修整或减少。等离子体蚀刻剂可包含各种等离子体蚀刻化学物,譬如氧、溴化氢/氧、氯/氧、氮/氦/氧、或者氮/氧。各种标准的蚀刻装置,譬如那些由Applied Materials,圣克拉拉市,美国加利福尼亚州或者LamResearch,弗雷蒙特市,美国加利福尼亚州所制造的,可用来提供该等离子体蚀刻剂。一个示范性的修整/栅极迭层蚀刻可使用溴化氢/氧/氩(HBr/O2/Ar)化学制剂以用于保护层修整,四氟化碳/氩(CF4/Ar)化学剂以用于ARC蚀刻,以及应用溴化氢(HBr)、二氧化氦(HeO2)、三氟化碳(CF3)与氯(Cl2)的其中一者或多者的一系列步骤,以用于多晶硅蚀刻。

等离子体蚀刻剂将在第一与第二图案26、36之间的所有暴露表面蚀刻,包括顶部与侧表面,以分别形成第一与第二修整栅极图案28、38(显示于第2-4图的虚线)。因为紧接着电子束辐射步骤12,第一与第二图案26、36的每一个不同区域或部分具有不同的蚀刻速度(例如,垂直蚀刻速度与水平蚀刻速度),所以第一与第二图案26、36的所有表面的尺度减少是不相同的。

再者,第一与第二修整图案28、38的每一个在沿其长度方向的宽度上具有一致性,在绝缘区域30上保持一个最小延长(亦即,不受损于末端护盖拉回问题),而且保留有充分的厚度或垂直高度以用于将图案28、38的图像随后传送到晶片20的基底层上。

就以丙烯酸醋为基础的光阻材料而言,大约110-130nm的宽度50可以修整到大约20-60nm的宽度60。在绝缘区域30上的第一修整图案28的延长长度62(也称为末端护盖)大概可以是数十奈米。沿着第一修整图案28的长度方向的宽度60的变化可以小于1nm。第二修整图案38与第一修整图案28一样,上述说明可以类似地应用于第二修整图案38。

在修整步骤14以后,下一步是蚀刻步骤16。如图5-7所示,依照第一与第二修补图案28、38,将多晶硅层40与ARC层42蚀刻,以分别定义出第一晶体管22的第一栅极70与第二晶体管32的第二栅极74。

更好地,相较于宽度60,第一与第二栅极70、74具有栅极宽度。第一栅极70包括在绝缘区域30上的一个最小延长72,而且第二栅极74包括在绝缘区域30上的一个最小延长76。最小延长72、76的每一个均具有可相较于延长长度62的一个长度。沿着第一与第二栅极70、74每一个的长度方向的宽度具有小于1nm的变化量,与未受到电子束辐射的光阻材料形成的栅极相比,其沿着它的长度方向上的宽度变化大约为5nm。在一个具体实施例中,局部栅极宽度在3nm栅极长度(3sigma)上的变化是4至6nm。更好地,此变化可因为技术的允许而进一步减少。

以这种方法,具有狭窄与均匀栅极宽度的晶体管可以一致性地制造。因为较少耗损在场绝缘区域上的各栅极的最小延长(亦即,在保护层修整过程内的拉回末端护盖的减少速度),所以每单位面积的晶体管数目则会增加,而且有缺陷晶体管的数目则会减少。在显影以后,但在保护层修整过程以前,用电子束将成像在晶片上栅极图案予以电子束辐射,将希望的蚀刻图像传给到此成像的图案,甚至到具有固有不佳修整特性的光阻材料。于是,在将受到电子束辐射的栅极图案修整以后,该修整过的栅极图案会有许多优点,包括在栅极宽度或门极间的临界尺寸的高度一致性,在栅极宽度或者沿着给定栅极的长度方向的临界尺寸的高度均匀性,较窄的栅极宽度,在场绝缘区域上给定栅极的最小延长部分的耗损的减少,以及在修整过程期间内受到改善的控制与可预测性,以及在其它方面更有可能的优点。

应该理解,虽然详细附图、特定的举例以及具体实施例用来示范本发明,但是它们仅用做说明。具体实施例中的确切细节与说明不构成对本发明的限制。例如,虽然将特别的材料或化学物说明,但是其它的材料或化学物仍可使用。在不违背权利要求所定义的发明精神的前提下,可以对描述中的细节做各种修改。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号