首页> 中国专利> 铋钛硅氧化物,铋钛硅氧化物薄膜,以及薄膜制备方法

铋钛硅氧化物,铋钛硅氧化物薄膜,以及薄膜制备方法

摘要

本发明提供一种具有烧绿石相的铋钛硅氧化物,一种由铋钛硅氧化物形成的薄膜,以及制备这种铋钛硅氧化物薄膜的方法,用于半导体设备并包含这种铋钛硅氧化物薄膜的电容器和晶体管,采用了这种电容器和/或晶体管的电子设备。铋钛硅氧化物具有良好的介电性质,并且其是热稳定以及化学稳定的。铋钛硅氧化物薄膜可以有效的应用于半导体设备中作为电容器的介电薄膜或者晶体管的门极介电薄膜。应用具有铋钛硅氧化物薄膜的电容器和/或晶体管可以制备出具有良好的电特性的各式电子设备。

著录项

  • 公开/公告号CN1495867A

    专利类型发明专利

  • 公开/公告日2004-05-12

    原文格式PDF

  • 申请/专利权人 三星电子株式会社;

    申请/专利号CN03147080.7

  • 申请日2003-08-06

  • 分类号H01L21/316;

  • 代理机构11105 北京市柳沈律师事务所;

  • 代理人赵仁临;张平元

  • 地址 韩国京畿道

  • 入库时间 2023-12-17 15:18:03

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-09-22

    未缴年费专利权终止 IPC(主分类):H01L21/316 授权公告日:20060419 终止日期:20160806 申请日:20030806

    专利权的终止

  • 2006-04-19

    授权

    授权

  • 2004-07-14

    实质审查的生效

    实质审查的生效

  • 2004-05-12

    公开

    公开

说明书

背景技术

1、技术领域

本发明涉及一种钛硅氧化物,钛硅氧化物薄膜,以及一种用于形成该钛硅氧化物薄膜的方法,更特别的,涉及一种新颖的铋钛硅氧化物,其具有良好的介电性质,此性质可以使得其被用于高度集成存储设备中的电容器和晶体管中,以及涉及一种由该铋钛硅氧化物形成的薄膜,一种用于制备铋钛硅氧化物薄膜的方法,利用该铋钛硅氧化物薄膜的电容器和晶体管,以及具有上述电容器和/或晶体管的电子设备。

2、现有技术

由于存储器的集成密度愈来愈大,单位元件的尺寸和电容器的面积愈来愈小。通常,为了在一个有限的区域形成一个高容量电容器,曾多次尝试使用高介电常数的材料。因此,高介电常数材料,比如氧化钽(TaO),钡钛氧化物(BaTiO3),锶钛氧化物(SrTiO3),吸引了比通常的低介电常数材料比如SiO2和Si3N4更多的关注。

尽管这些高介电常数材料是可以利用的,但是必须使用这些材料,例如,利用金属有机化学汽相沉积(MOVCD)或者原子层沉积(ALD)的方法制备三维的电容器也是必要的。然而,当需要形成这种高介电常数薄膜下,这些方法引起了一些问题。

为了使得这些前体很容易的被汽化,就需要保持高温,以便供给和汽化前体。然而,高温会缩短薄膜制备系统和设备的寿命。此外,当利用这些高介电常数材料制备多-成分薄膜下,不同种类的前体混合在一种单一混合的溶液里面,会彼此间相互作用以至于降低存贮时的前体溶液的稳定性。

发明内容

本发明提供了一种铋钛硅氧化物,作为一种新颖的高介电常数材料。

本发明还提供了一种由上述的铋钛硅氧化物形成的薄膜以及一种简单可重复的制备铋钛硅氧化物薄膜的方法。

本发明还提供了一种具有良好的介电性质,用于半导体设备的电容器或晶体管,其包括铋钛硅氧化物薄膜,本发明还提供了一种使用上述电容器和/或晶体管的电子设备。

关于本发明的一个方面,提供了一种具有烧绿石相的下面的式(1)的铋钛硅氧化物:

      Bi2(Ti2-xSix)O7-y            ...(1)其中x代表从0.8到1.3的数,Y代表从-1到1的数。

关于本发明的另一个方面,提供了一种上述式(1)的具有烧绿石相的铋钛硅氧化物薄膜。

关于本发明的另一个方面,提供了一种制备上述式(1)所示的具有烧绿石相的铋钛硅氧化物薄膜的方法,该方法包括:(a1)将包括铋前体,钛前体,和硅前体的前体混合物加入到汽化器中,在非氧化气氛中,前体混合物吸附到衬底的表面上;和(b1)氧化被吸附到衬底表面上的前体混合物,在衬底表面上沉积前体混合物的原子层。

关于本发明另一种制备上述式(1)所示的具有烧绿石相的铋钛硅氧化物薄膜的方法包括:(a2)在反应器中形成氧化气氛;和(b2)将包括铋前体,钛前体,和硅前体的前体混合物加入到反应器中,并通过汽相沉积在衬底的表面沉积前体混合物。

关于本发明的另一个方面,提供了一种用于半导体设备的电容器,该电容器包括:一个低电极;一个在低电极上由上述式(1)所示的具有烧绿石相的铋钛硅氧化物形成的介电薄膜;以及在介电薄膜上形成的高电极。

关于本发明的另一个方面,提供了一种用于半导体设备的晶体管,该晶体管包括:一个源极;一个漏极;一个在源极和漏极之间的具有导电区的衬底;在导电区上由上述式(1)所示的具有烧绿石相的铋钛硅氧化物形成的一个门极介电薄膜;以及在门极介电薄膜上形成的一个门电极。

关于本发明的另一个方面,提供了一种具有电容器和/或晶体管的电子设备,其中该电容器包括一个低电极,一个在低电极上由如上述式(1)所示的具有烧绿石相的铋钛硅氧化物形成的介电薄膜,以及一个在介电薄膜上形成的高电极;该晶体管包括一个源极,一个漏极,一个在源极和漏极之间的具有导电区的衬底,在导电区上的由如上述式(1)所示的具有烧绿石相的铋钛硅氧化物形成的一个门极介电薄膜,以及在门极介电薄膜上的形成的一个门电极。

本发明的电子设备可以是动态随机存取存储器。

附图说明

本发明上述和其他的特点和有益效果,将通过参照附图对优选实施例的详细描述会更显而易见,其中:

图1A是表示本发明实施例中晶体管结构的横截面图;

图1B和图1C是表示本发明实施例中具有晶体管和电容器的存储器设备的结构的截面图;

图2是关于本发明的实例1-3中形成的铋钛硅氧化物(Bi-Ti-Si-O)薄膜的,相对于衬底温度的薄膜形成率的曲线图;

图3是关于本发明的实例4-6中形成的铋钛硅氧化物薄膜中铋的原子百分比的曲线图,其使用电感耦合等离子-原子发射光谱(ICP-AES)进行测量;

图4是表示本发明实施例5制备的Bi-Ti-Si-O薄膜采用次离子质谱法(SIMS)的分析结果的曲线图;

图5是表示本发明实施例7制备电容器中在退火前后Bi-Ti-Si-O薄膜上X-射线的衍射分析结果的曲线图;

图6A和图6B是扫描电子显微(SEM)照片,显示了本发明实施例7中制备的Bi-Ti-Si-O薄膜表面退火之前的拓扑结构;

图7A和图7B是表示本发明实施例7制备的电容器的电特性的曲线图;

图8是表示本发明实施例8的Bi-Ti-Si-O薄膜的介电常数的曲线图;

图9A和图9B是SEM照片,分别表示在退火前后,本发明实施例9制备的Bi-Ti-Si-O薄膜表面的拓扑结构;

图10A和图10B是表示本发明实施例9中制备的电容器电特性的曲线图;

图11A和图11B是实施例7中制备的Bi-Ti-Si-O薄膜在退火之后的传输电子显微(JEM)照片,以及利用STEM-EDX(扫描传输电子显微镜-能量分散分光计)对薄膜进行组成分析的曲线图;和

图12说明A2B2X7或者A2B2X6Z的晶格结构,其相似于本发明实施例7中制备的Bi-Ti-Si-O薄膜的结晶结构。

发明的详细说明

本发明提供了一种具有烧绿石相的下述式(1)的高介电常数材料:

      Bi2(Ti2-xSix)O7-y             ...(1)其中x代表从0.8到1.3的数,y代表从-1到1的数。

上述式(1)的铋钛硅氧化物(下文中,简称为“Bi-Ti-Si-O”)的烧绿石相是由下面的实验数据来确定的。

根据本发明图5的Bi-Ti-Si-O的X-射线衍射图案与JCPDS卡32-0118,Jour.Cryst.Grouth,41,317(1997)中显示的Bi2Ti2O7的X-射线衍射图案是相近似的,且图11B中的高-分辨率传输电子显微(HRTEM)照片确定了在本发明的Bi-Ti-Si-O中有均匀的晶格结构。如图11A所图示的,其显示了沿薄膜厚度方向上单一颗粒组成分析结果,Bi,Ti和Si的组成分布在整个薄膜厚度上是一致的。

烧绿石相指的是立方晶格系统,表示为A2B2X7或者A2B2X6Z,其中A和B是阳离子,以及X和Z是阴离子。在一个例子中(BX6)n表面借助球体彼此连接,且阳离子A存在于间隙内,如图12所示,这在Jour.Appl.Phys.,51卷,第一期(1980)中公开。图12中,各符号分别为,球体(A)表示阳离子A,球体(C)表示阳离子B,以及球体(C)和剩下的球体表示阴离子X和Y。

采用通常的薄膜制备方法可以由式(1)的Bi-Ti-Si-O形成薄膜,例如,金属有机化学汽相沉积(MOCVD),原子层沉积(ALD),脉冲激光沉积(PLD),分子束取向生长(MBE),等等。这些方法将在下面被详细描述。

首先,利用ALD按下述方法形成Bi-Ti-Si-O薄膜。在其上形成薄膜的衬底被加热之后,被加热的衬底传送到一个加热器之中,以保持衬底温度稳定在一个预定的温度范围之内,优选150-700℃的温度范围,更优选250-500℃的温度范围。如果衬底温度低于150℃,高密度薄膜就不能形成,且未发生化学反应的前体和杂质,比如碳或氯依旧保留在薄膜之中,导致不好的薄膜特性,例如结晶。如果衬底温度高于700℃,前体会经历由热引起的前体之间的严重的化学反应,以至于在吸附到衬底表面后的净化排气过程中不能够充分的被汽化。结果,最终形成的薄膜具有粗糙的表面,以及由于被修饰的不充分汽化的配位体(ligand),杂质,例如碳,被保留在薄膜之中。

这种衬底的实例包括,但并不限于Ru/SiO2/Si衬底和Pt/Ti/SiO2/Si衬底。

接下来,利用惰性气体生成非氧化气氛。适合的惰性气体实例包括氩气,氮气,等等。优选的是,这种惰性气体以100-300sccm的速率提供。如果惰性气体的流动速率低于100sccm,将使得从反应器中排出氧化气体或者保持不必要汽化前体的持续时间加长。如果惰性气体的流动速率超过300sccm,由于从氧化步骤或者前体吸附步骤反应器压力的突然变化,在反应器中不能形成稳定的薄膜。

接下来,Bi-Ti-Si-O薄膜的前体混合物被加入汽化器中汽化并被吸附到衬底表面。优选的是汽化器的温度控制在170-300℃的范围之内,更优选的是,200-250℃的范围内,以充分汽化前体混合物且不发生热的变化。优选的是,Bi-Ti-Si-O薄膜的前体混合物以0.01-0.3cc/分钟的速率被提供。如果汽化器的温度低于170℃,就不能有充足量的前体混合物被气化。如果汽化器的温度超过300℃,前体混合物非常轻易的发生热变化以至于不能气化充足量的前体混合物以提供给反应器。

提供本发明Bi-Ti-Si-O薄膜前体混合物的方法,包括但是并不限制于使用发泡剂的方法,直接液体注射(DLI)方法,等等。在DLI方法中,预期的Bi-Ti-Si-O薄膜前体以适合的浓度溶解在有机溶剂中,前体溶液在接近前体或者有机溶剂的汽化温度的温度之下,直接加入到汽化器中,然后进入反应器。这种DLI方法比使用发泡剂的方法更加优选。这是因为超过规定时间,前体混合物的变化被DLI方法有效的制止了,而Bi-Ti-Si-O薄膜的前体混合物在使用发泡剂的方法中要加热很长一段时间。

本发明的Bi-Ti-Si-O薄膜的前体混合物通过在溶剂中混合Bi前体,Ti前体,和Si前体得到。优选的是,Ti前体的量以1摩尔Bi前体的基准,为1-3摩尔的范围,以及Si前体的量以1摩尔Bi前体的基准为0.5-3摩尔的范围。如果Ti前体的量少于下限,最终形成的薄膜包含相对大量的Bi,具有粗糙的表面。如果Ti前体的量超过上限,尽管可以形成具有平滑表面的薄膜,但是沉积速率会变慢,并且薄膜的电特性降低。如果Si前体的量少于下限,最终形成的薄膜会具有粗糙的表面。如果Si前体的量超过上限,尽管可以形成具有平滑表面的薄膜,但是沉积速率会变慢,并且薄膜的电特性降低。

这样的Bi前体的实例包括Bi(MP)3{三(1-甲氧基-2-甲基-2-丙氧基(propxy))铋},Bi(phen)3,其中“phen”表示苯基,BiCl3,以及类似物。这样的Ti前体的实例包括Ti(MMP)4{四(1-甲氧基-2-甲基-2-丙氧基)钛},TiO(tmhd)2,其中“tmhd”表示2,2,6,6-四甲基庚烷-3,5-二酮酸根(dionate),Ti(i-Opr)2(tmhd)2,其中“i-Opr”表示异丙基,Ti(dmpd)(tmhd)2,其中“dmpd”表示二甲基戊二醇,Ti(depd)(tmhd)2,其中,“depd”表示二乙基戊二醇,TiCl4,以及类似物。这样的硅前体的实例包括原硅酸四乙基酯(TEOS),SiCl4,以及类似物。

这样的有机溶剂的实例包括任何一种可以稀释或者溶解Bi前体,Ti前体,和Si前体的溶剂,特别是乙基环己烷(C8H16,下文中简称为“ECH”),四氢呋喃,醋酸正丁酯,丁腈等。优选的是有机溶剂的量这样确定,使得Bi,Ti,和Si前体各自具有0.04-0.2摩尔的浓度。

如上所述,在Bi-Ti-Si-O薄膜的前体混合物被吸附到衬底表面之后,惰性气体被加入以清除被吸附的前体混合物,使得仅仅有1到3层前体混合物保留在衬底表面上。惰性气体的流速根据使用的原子层积设备而不同。然而,优选的是惰性气体的流速在100-300sccm的范围之内,以及反应器的工作压力在0.5-10托的范围内。或者,这个使用惰性气体排气净化的步骤在需要下是可以省略的。

接下来,被吸附到衬底表面的前体混合物被氧化气体氧化,以形成原子氧化层,使得完整的Bi-Ti-Si-O薄膜被形成。氧化气体的实例包括氧气(O2),臭氧(O3),水蒸气(H2O),等等。优选的,氧化气体以100-300sccm的速率被提供。

上述惰性气体净化,前体混合物吸附,惰性气体净化,以及氧化过程被重复进行直到形成预期厚度的Bi-Ti-Si-O薄膜。优选的是最终形成的Bi-Ti-Si-O薄膜具有50-300的厚度和100-200的介电常数。

可选择地,在Bi-Ti-Si-O薄膜被制成之后,为了提高介电性质,附加的高温退火可以被进行用以提高Bi-Ti-Si-O薄膜的结晶特性。高温退火可以在500-800℃的温度下进行1-30分钟。

反应器的工作压力在0.01-100毫托(mtorr)的范围内调节,优选的,是大约35毫托。

根据利用MOCVD形成Bi-Ti-Si-O薄膜的方法,最初,使用例如氧气,臭氧,水蒸气(H2O)等的氧化气体,在反应器中生成氧化气氛。氧化气体的流速可以根据沉积设备而不同。然而,优选的是氧化气体的流速在100-300sccm的范围内。

接下来,其上形成薄膜的衬底的温度被稳定在一个预定的温度范围之内。衬底的温度意指反应器的温度。衬底的温度在300-500℃的范围之内。如果衬底温度超过了上限,与ALD方法一样,产生相同的问题。可以使用与上述ALD方法相同种类的衬底。

接下来,预期的Bi-Ti-Si-O薄膜的前体混合物在氧化气氛中被加入反应器,在衬底上沉积形成薄膜。Bi-Ti-Si-O薄膜的前体混合物的组成和用于提供前体混合物到反应器中去的方法与上述ALD方法相同或者相似。

在与上述ALD相似的方式中,在Bi-Ti-Si-O薄膜形成之后,为了提高介电性质,附加的高温退火可以在与上述相同的条件下进行,以改善Bi-Ti-Si-O薄膜的结晶特性。

本发明的Bi-Ti-Si-O薄膜也可以利用PLD形成。在这个PLD方法中,由于目标前体被强力脉冲激光灯照射,微粒就与目标前体分离,经过后面的光能量照射形成等离子体,然后沉积到衬底上成为良好性质的Bi-Ti-Si-O薄膜。根据这种方法,Bi-Ti-Si-O薄膜利用例如目标前体,衬底,加热器,以及其它反应室中装设的类似设备的简单部件,即使在高氧气分压的条件下也可以发生沉积。由于到达衬底的前体微粒动能,其数量近于几百eV,氧化物层可以在相对较低的温度下形成,并不破坏先前的沉积层,使得性质良好的Bi-Ti-Si-O薄膜可以被制得。在利用PLD形成Bi-Ti-Si-O薄膜的实施例中,当衬底温度为250-600℃,ArF激光波长为198纳米,激光束的尺寸大约为0.3平方厘米,氧气压力为0.1-0.5托,以及激光脉冲重复频率大约5赫兹时,可以制备Bi-Ti-Si-O薄膜。

使用MBE方法,氧化物的生成可以被控制到原子水平。当采用MBE形成Bi-Ti-Si-O薄膜时,Bi,Ti,和Si2H6可以作为前体使用,以及氧气或者臭氧可以作为氧化气体使用。

采用由上述任一方法形成的Bi-Ti-Si-O薄膜,可以制备本发明的电容器。本发明的电容器包括介于上电极和下电极之间的作为介电层的上述Bi-Ti-Si-O薄膜。任何种类的材料,例如铂(Pt)族元素,可以没有限制的被用于上和下电极。这些Pt族元素表示至少一种从由钌(Ru),锇(Os),铱(Ir)和铂(Pt)组成的族中选择的金属。

说明制备本发明电容器的方法。最初,准备预期的Bi-Ti-Si-O薄膜前体混合物,预期的Bi-Ti-Si-O薄膜形成在低电极的表面上,低电极由铂(Pt)族元素利用ALD,MOCVD,PLD,MBE等方法形成。

接下来,在Bi-Ti-Si-O薄膜上形成上电极。

接下来,在高温条件下,最终形成的结构被退火。为了提高介电性质,进行这种高温退火,以提高Bi-Ti-Si-O薄膜的结晶特性。高温退火可以在氧气或者臭氧的氧化气氛中或者惰性的氮气气氛中,或在0.01-100毫托(mtorr)的真空中,优选的,在大约35毫托的真空中,在500-800℃的温度下进行1-30分钟。

高温退火之后紧随着热补偿步骤。进行这种热补偿步骤的目的是,当在非氧化气氛中,例如惰性气体或者真空气氛下进行高温退火时,补偿介电的Bi-Ti-Si-O薄膜和每一个上下电极之间的接触面的氧气匮乏。

热补偿步骤在500℃或者更低的温度下,优选的是在200-450℃下,在真空,在空气中,或者在惰性气体气氛中进行10-60分钟。

本发明的Bi-Ti-Si-O薄膜可以用作晶体管的门极介电层。

本发明的晶体管包括一个源极,一个漏极,以及在源极和漏极之间具有导电区的衬底,在导电区上的由如上述式(1)所示的Bi-Ti-Si-O形成的一门极介电薄膜,以及形成在门极介电薄膜上的门电极。

本发明实施例的晶体管的结构如图1A所示。参照图1A,晶体管10包括源极15a,漏极15b,以及在源极15a和漏极15b之间的硅衬底11的导电区12上设置的门电极13。门极介电薄膜14形成在门电极13之下。门极介电薄膜14由如上述式(1)所示的铋钛硅氧化物形成,其两边设置有间隔物17用于保护门电极13和形成在门电极13之下的门极介电薄膜14。图1A中,参考标记16表示不导电区。

本发明中包括如上述式(1)所示的铋钛硅氧化物薄膜的电容器和晶体管可以分别或者同时被应用于各种电子设备之中。这种电子设备的实例包括动态随机存取存储器(DRAM)设备。

图1B和图1C是说明具有本发明实施例中电容器C和晶体管Tr的存储器设备的结构的截面图。在图1B和图1C中,参考标记10表示晶体管,参考标记11表示硅衬底,参考标记12表示导电区,参考标记13表示门电极,参考标记14表示门极介电薄膜,参考标记15a表示源极,参考标记15b表示漏极,参考标记16表示非导电区,参考标记17表示间隔物,参考标记18表示下电极,参考标记19表示由如上述式(1)所示的Bi-Ti-Si-O形成的介电薄膜,参考标记20表示上电极,参考标记21表示电容器,以及参考标记22表示底部结构。

参考下面的实施例对本发明更详细地说明。下面的实施例是用于说明本发明的而不是用来限定本发明的保护范围。

实施例1

30毫升Bi(MMP)3(0.4摩尔/升)的乙基环己烷(ECH)溶液,25毫升Ti(MMP)4(0.4摩尔/升)的乙基环己烷(ECH)溶液,以及3.6毫升原硅酸四乙酯(TEOS)混合得到Bi-Ti-Si-O薄膜的前体混合物,其中Bi(MMP)3浓度是0.06摩尔/升,Ti(MMP)4浓度是0.05摩尔/升,以及TEOS浓度是0.08摩尔/升。

这种前体混合物在230℃下经直接液体注射加入汽化器,通过闪蒸蒸发,然后送入反应器,通过原子沉积,在温度保持为400℃的Ru/SiO2/Si衬底上形成Bi-Ti-Si-O薄膜。

实施例2

25毫升Bi(MMP)3(0.4摩尔/升)的乙基环己烷(ECH)溶液,30毫升Ti(MMP)4(0.4摩尔/升)的乙基环己烷(ECH)溶液,以及3.6毫升原硅酸四乙酯(TEOS)混合得到Bi-Ti-Si-O薄膜的前体混合物,其中Bi(MMP)3浓度是0.05摩尔/升,Ti(MMP)4浓度是0.06摩尔/升,以及TEOS浓度是0.08摩尔/升。

这种前体混合物在230℃下经直接液体注射加入汽化器,通过闪蒸蒸发,然后送入反应器,通过原子沉积,在温度保持为400℃的Ru/SiO2/Si衬底上形成Bi-Ti-Si-O薄膜。

在这个实施例中,Bi-Ti-Si-O薄膜以和实施例1相同的方法形成,除了前体混合物中Bi(MMP)3,Ti(MMP)4,以及TEOS的ECH溶液浓度分别变化为0.05摩尔/升,0.06摩尔/升,和0.08摩尔/升。

实施例3

25毫升Bi(MMP)3(0.4摩尔/升)的乙基环己烷(ECH)溶液,25毫升Ti(MMP)4(0.4摩尔/升)的乙基环己烷(ECH)溶液,以及4毫升原硅酸四乙酯(TEOS)混合形成Bi-Ti-Si-O薄膜的前体混合物,其中Bi(MMP)3浓度是0.05摩尔/升,Ti(MMP)4浓度是0.05摩尔/升,以及TEOS浓度是0.09摩尔/升。

这种前体混合物在230℃下经直接液体注射加入汽化器,通过闪蒸蒸发,然后送入反应器,通过原子沉积,在温度保持为400℃的Ru/SiO2/Si衬底上形成Bi-Ti-Si-O薄膜。

在这个实施例中,Bi-Ti-Si-O薄膜以和实施例1相同的方法形成,只是前体混合物中Bi(MMP)3,Ti(MMP)4,以及TEOS的ECH溶液浓度分别变化为0.05摩尔/升,0.05摩尔/升,和0.09摩尔/升。

用实施例1-3中形成的Bi-Ti-Si-O薄膜,测定在不同衬底温度下Bi-Ti-Si-O薄膜的生成速率。结果被显示在图2中。在图2中,“Bi-Ti-Si-O(Bi浓)”表示实施例1,“Bi-Ti-Si-O(Ti浓)”表示实施例2,“Bi-Ti-Si-O(Bi∶Ti=1∶1)”表示实施例3。如图2所示,当相对于Ti,Bi的用量更多下,Bi-Ti-Si-O薄膜的生长速率提高。更多量的Ti导致Bi-Ti-Si-O薄膜更低的生长速率。可以发现衬底温度对于Bi-Ti-Si-O薄膜生长速率的影响相对较小,说明本发明的Bi-Ti-Si-O薄膜可以在采用原子沉积技术时的高温下形成。

实施例4

35毫升Bi(MMP)3(0.4摩尔/升)的乙基环己烷(ECH)溶液,25毫升Ti(MMP)4(0.4摩尔/升)的乙基环己烷(ECH)溶液,以及3.6毫升原硅酸四乙酯(TEOS)混合得到Bi-Ti-Si-O薄膜的前体混合物,其中Bi(MMP)3浓度是0.07摩尔/升,Ti(MMP)4浓度是0.05摩尔/升,以及TEOS浓度是0.08摩尔/升。

这种前体混合物在230℃下经直接液体注射加入汽化器,通过闪蒸蒸发,然后送入反应器,通过原子沉积,在温度保持为400℃的Ru/SiO2/Si衬底上形成Bi-Ti-Si-O薄膜。

在这个实施例中,Bi-Ti-Si-O薄膜以和实施例1相同的方法形成,只是前体混合物中Bi(MMP)3,Ti(MMP)4,以及TEOS的ECH溶液浓度分别变化为0.07摩尔/升,0.05摩尔/升,和0.08摩尔/升。

实施例5

25毫升Bi(MMP)3(0.4摩尔/升)的乙基环己烷(ECH)溶液,25毫升Ti(MMP)4(0.4摩尔/升)的乙基环己烷(ECH)溶液,以及4.4毫升原硅酸四乙酯(TEOS)混合得到Bi-Ti-Si-O薄膜的前体混合物,其中Bi(MMP)3浓度是0.05摩尔/升,Ti(MMP)4浓度是0.05摩尔/升,以及TEOS浓度是0.1摩尔/升。

这种前体混合物在230℃下经直接液体注射加入汽化器,通过闪蒸蒸发,然后送入反应器,通过原子沉积,在温度保持为400℃的Ru/SiO2/Si衬底上形成Bi-Ti-Si-O薄膜。

在这个实施例中,Bi-Ti-Si-O薄膜以和实施例1相同的方法形成,只是前体混合物中Bi(MMP)3,Ti(MMP)4,以及TEOS的ECH溶液浓度分别变化为0.05摩尔/升,0.05摩尔/升,和0.1摩尔/升。

实施例6

35毫升Bi(MMP)3(0.4摩尔/升)的乙基环己烷(ECH)溶液,25毫升Ti(MMP)4(0.4摩尔/升)的乙基环己烷(ECH)溶液,以及3.6毫升原硅酸四乙酯(TEOS)混合得到Bi-Ti-Si-O薄膜的前体混合物,其中Bi(MMP)3浓度是0.05摩尔/升,Ti(MMP)4浓度是0.07摩尔/升,以及TEOS浓度是0.08摩尔/升。

这种前体混合物在230℃下经直接液体注射加入汽化器,通过闪蒸蒸发,然后送入反应器,通过原子沉积,在温度保持为400℃的Ru/SiO2/Si衬底上形成Bi-Ti-Si-O薄膜。

在这个实施例中,Bi-Ti-Si-O薄膜以和实施例1相同的方法形成,只是前体混合物中Bi(MMP)3,Ti(MMP)4,以及TEOS的ECH溶液浓度分别变化为0.05摩尔/升,0.07摩尔/升,和0.08摩尔/升。

实施例4-6中形成的Bi-Ti-Si-O薄膜中的Bi使用电感耦合等离子-原子发射光谱(ICP-AES)来量化。结果被显示在图3中。在图3中,“Bi-Ti-Si-O(Bi浓)”表示实施例4,“Bi-Ti-Si-O(Ti浓)”表示实施例5,“Bi-Ti-Si-O(Bi∶Ti=1∶1)”表示实施例6。

如图3所示,所有的Bi-Ti-Si-O薄膜包含60%或者更多的Bi。由此结果可知Bi比Ti更快的混入Bi-Ti-Si-O薄膜之中。当衬底温度为400℃或者更低时,没有挥发性的Bi2O3生成,以至于薄膜中Bi的量保持不变。

在实施例6中形成的Bi-Ti-Si-O薄膜的沿其的厚度方向的组成分布,通过次级离子质谱法(SIMS)测量。结果显示在图4中。图4中的结果证明Si混入Bi-Ti-Si-O薄膜。

实施例7

以和实施例1相同的方法形成Bi-Ti-Si-O薄膜,只是使用一Pt(1000)/Ti(100)/SiO2(2000)/Si的衬底,准备由浓度分别为Bi(MMP)30.04摩尔/升,Ti(MMP)40.08摩尔/升,以及TEOS 0.08摩尔/升的各前体的乙基环己烷(ECH)溶液形成的前体混合物,汽化器温度设置到230℃,衬底温度设置到400℃用于沉积,以及沉积之后紧跟着进行在氧气气氛中,在600℃的情况下退火30分钟。

利用在这个实施例中形成的Bi-Ti-Si-O薄膜,通过X-射线衍射(XRD)观察Bi-Ti-Si-O薄膜(具有300的厚度)在600℃退火前后晶体结构的变化。结果显示在图5之中。在图5中,(a)和(b)分别用于表示Bi-Ti-Si-O薄膜在退火前后的情况。

参见图5,在沉积之后退火之前,结晶峰以★标记,出现在靠近27度2θ的位置。在退火之后,更多的结晶峰出现了,并且在退火之前在27度附近观察到的峰的强度变小了,然而在30度附近峰的强度显著的增加了。根据这些结果,显然通过退火结晶取向改变了。

利用扫描电子显微镜(SEM)观察实施例7中形成的Bi-Ti-Si-O薄膜在退火之前的表面拓扑情况。结果显示在图6A和6B中。图6A是以一个角度拍摄的薄膜表面的SEM照片,图6B是同一薄膜表面的SEM照片。

如图6A和6B所示,Bi-Ti-Si-O薄膜沉积相当平滑。利用原子力显微镜(AFM)测量表面粗糙程度得出的结果,测出的表面粗糙度用均方根(RMS)表示,是一个大约为6.6的很小的值。

实施例7中形成的Bi-Ti-Si-O薄膜的电特性被测量。结果显示在图7A和7B中。

图7A显示了当使用不同前体组成引起薄膜组成变化时,介电常数的改变,其是在700℃退火5分钟之后被测量的。图7B显示了在700℃退火5分钟之前和之后介电常数的变化。

参见图7A,Bi-Ti-Si-O薄膜介电常数的变化非常依赖于薄膜中的阳离子组成。参见图7B,介电常数在退火之前是73,在退火之后是193,其中损耗因数小于3%。损耗因数是对具有多少介电特性的量度,例如电容,其损耗由在测量中使用的交流(AC)信号引起。

实施例8:电容器的制备

22.5毫升Bi(MMP)3(0.4摩尔/升)的乙基环己烷(ECH)溶液,37.5毫升Ti(MMP)4(0.4摩尔/升)的乙基环己烷(ECH)溶液,以及3.6毫升原硅酸四乙酯(TEOS)混合得到Bi-Ti-Si-O薄膜的前体混合物,其中Bi(MMP)3浓度是0.045摩尔/升,Ti(MMP)4浓度是0.075摩尔/升,以及TEOS浓度是0.08摩尔/升。

这种前体混合物在230℃下经直接液体注射加入汽化器,通过闪蒸蒸发,然后送入反应器,通过原子沉积,在温度保持为400℃的带有Ru电极的Ru/SiO2/Si衬底上形成Bi-Ti-Si-O薄膜,接下来在700℃的条件下退火10分钟,形成具有350厚度的完成的Bi-Ti-Si-O薄膜。然后,另一个Ru电极形成在Bi-Ti-Si-O薄膜上,完成电容器的制备。

从电容器的测量电容来计算介电常数。结果显示在图8中。其它材料的介电常数也显示在图8中作为比较。参见图8,实施例8中形成的Bi-Ti-Si-O薄膜具有198的介电常数,这远远高于其它材料,例如,SrTiO3的介电常数是100。

实施例9:电容器的制备

22.5毫升Bi(MMP)3(0.4摩尔/升)的乙基环己烷(ECH)溶液,37.5毫升Ti(MMP)4(0.4摩尔/升)的乙基环己烷(ECH)溶液,以及3.6毫升原硅酸四乙酯(TEOS)混合得到Bi-Ti-Si-O薄膜的前体混合物,其中Bi(MMP)3浓度是0.045摩尔/升,Ti(MMP)4浓度是0.075摩尔/升,以及TEOS浓度是0.08摩尔/升。

这种前体混合物在230℃下经直接液体注射加入汽化器,通过闪蒸蒸发,然后送入反应器,通过原子沉积,在温度400℃的Ru/SiO2/Si衬底上形成Bi-Ti-Si-O薄膜,接下来在600℃的条件下退火10分钟,形成具有350厚度的完成的Bi-Ti-Si-O薄膜。

然后,在Bi-Ti-Si-O薄膜上形成Ru电极,接着在600℃下在35mtorr真空的情况下退火10分钟,以便防止Ru发生氧化。然后,为了减少漏电流,在400℃的条件下在空气中进行30分钟的退火以完成电容器的制备。

实施例9中形成的Bi-Ti-Si-O薄膜在退火前后的表面拓扑情况通过AFM进行观察。结果显示在图9A和图9B中。图9A显示了Bi-Ti-Si-O薄膜在400℃被沉积之后的表面拓扑图,以及图9B显示了Bi-Ti-Si-O薄膜在真空中于600℃条件下进行了10分钟退火以及在空气中400℃条件下进行30分钟退火之后的表面拓扑图。

如图9A所示,薄膜在沉积之后立即具有了非常平滑的表面,其上仅仅有一些大约4的小表面粗糙,这是通过RMS测量的。如图9B所示,甚至在退火之后,薄膜的表面粗糙也是小约12。

实施例9中制得的电容器的电特性被测量。结果显示在图10A和图10B中。

图10A是与电压相对的电流强度的曲线。从图10A中明显的看出,电容器在对于动态随机存取存储器(DRAM)所需级别的电压范围正负1伏之间时具有的电流强度为10-7A/cm2。图10B显示了氧化物厚度(Tox)在沉积之后和退火之后的变化。如图10B所示,氧化物厚度Tox在沉积之后是20。氧化物厚度Tox在退火之后是7,这是适合16G或者更大的DRAM的需要的。这里,“Tox”是SiO2的厚度,其可以用下面一般的公式来表达:

Tox={(SiO2的介电常数)(电容器中上部电极的面积)}/{电容器的电容}

越小的Tox的值表示越优良性质的介电层。

实施例8中制得的Bi-Ti-Si-O薄膜的介电常数被测量。结果,Bi-Ti-Si-O薄膜的介电常数在沉积之后是96,在退火之后是230。

本发明的铋钛硅氧化物具有良好的电性质并且是热稳定和化学稳定的。由铋钛硅氧化物形成的薄膜可以有效的用作半导体设备中电容器的介电薄膜或者晶体管的门极介电薄膜。使用具有上述的铋钛硅氧化物薄膜的本发明的电容器和/或晶体管,可以制备具有良好的电性质的各种电子设备。

尽管本发明参照优选实施例进行了详细的说明和描述,在本技术领域中的技术人员会理解,可以对本发明的形式和细节进行各种改变,而不背离权利要求书中所限定的本发明的精神和保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号