首页> 中国专利> 静电微激励器,激活这种激励器的方法,及相机模块

静电微激励器,激活这种激励器的方法,及相机模块

摘要

本发明的目的是要提供一种静电激励器,能够易于组装并适合批量生产,且能够实现稳固,平滑且稳定的操作又提高可靠性这两者的要求,并提供激活这种激励器的方法,以及与其一同使用的相机模块。

著录项

  • 公开/公告号CN1405965A

    专利类型发明专利

  • 公开/公告日2003-03-26

    原文格式PDF

  • 申请/专利权人 株式会社东芝;

    申请/专利号CN02142840.9

  • 申请日2002-09-18

  • 分类号H02N1/00;

  • 代理机构中国国际贸易促进委员会专利商标事务所;

  • 代理人李玲

  • 地址 日本东京都

  • 入库时间 2023-12-17 14:40:20

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-11-03

    未缴年费专利权终止 IPC(主分类):H02N1/00 授权公告日:20051207 终止日期:20160918 申请日:20020918

    专利权的终止

  • 2005-12-07

    授权

    授权

  • 2003-06-04

    实质审查的生效

    实质审查的生效

  • 2003-05-28

    实质审查的生效

    实质审查的生效

  • 2003-03-26

    公开

    公开

说明书

相关申请的交叉对比

本申请基于先有的日本专利申请,申请号是No.2001-283533,申请日为2001年9月18日并要求其权益;其整个内容在此结合以资参考。

技术领域

本发明涉及静电微激励器,激活这激励器的方法,及与这种激励器一同使用的相机模块,并特别涉及以静电推动的,易于组装的,并在激励中有改进的平滑性,稳定性和可靠性静电微激励器,激活这种静电微激励器的方法,以及与这种激励器使用的相机模块。

背景技术

近年来,例如对于超小型相机聚焦的调节,对更加降低的尺寸设计,精确操作及降低成本的微型化线性激励器的需求有增无减。解决这种需求的一例是在日本公开专利H08-140367中公开的一种静电激励器。

图27的示意图示出该现有技术静电激励器的结构。

如图27所示,静电激励器101由可移动件102及覆盖在可移动件相对侧的一对静止部件103a和103b组成。静止部件103a和103b有它们各自的连接到电极的两组分支焊片,并有四组连接到电极A到D的分支焊片用于上和下静止部件对。

静止部件103a和103b中连接到电极A到D对应的焊片的分支焊片按可移动件102的分支焊片104相同的间距排布,且静止和可移动件中所有分支焊片宽度都相同。然而在静止件103a和103b中,分别与两个电极相关(即电极A和C)的分支焊片交替地按交错布局放置。此外,上和下静止件103a和103b的分支焊片彼此以1/2相移模式相关,其中上分支垫片对于它们的对应物或下分支焊片偏离它们各自宽度的一半。

向电极A施加高压,在电极A与同电极E相关的分支焊片104之间形成的静电力(库仑力)引起可移动件被上静止部件103a吸引(趋向于与电极A和E相关的分支焊片在相位上对准的位置)。然后,把供以高压的电极切换到电极B,则可移动件102由下静止部件103b吸引(趋向于与电极B和E相关的分支焊片在相位上对准的位置)。这样,按A到B,B到C,C到D等这样的方式电极相继的切换使得可移动件102精微地垂直振动并精微地横向运动(即在图27中向右以一个自由度运动)。

按相反顺序A到D,D到C,C到B等向电极供高压使得可移动件在图27中向左移动。

为了实现这种运动方式,并列的垂直静止部件103a和103b必须处于相位或分支的电极模式的精确控制之下,而可移动件102必须还在相对两侧有精确制造的电极模式。这要求费时且复杂的组装任务,因而导致成本增加,对于这种高精度激励器的批量生产这是某些必须克服的问题。

而且,由于这种静电激励器中的可移动件以相对于逐间距横向运动为大的振幅,在并列的静止部件103a和103b之间振动,故其精微运动不是令人满意的平滑,因而希望对激励器物理和操作机构都加以改进。

发明内容

本发明是为解决上述现有技术中的缺陷而作出的。于是,本发明的一个目的是要提供一种静电激励器,能够易于组装并适合批量生产,且能够实现稳固,平滑且稳定操作又提高可靠性这两者的要求,并提供激活这种激励器的方法,以及与其一同使用的相机模块。

根据本发明的一个实施例,提供了一种静电激励器,包括:第一静止部件,具有由至少三组配置在第一方向的激活电极组成的第一电极,来自每一组的一个激活电极按顺序周期地就位;第二静止部件,面向第一静止部件并具有在第一方向延伸的第二电极;一个可移动件,装设在第一和第二静止部件之间,以及一个切换电路,施加第一电压以引起激活电极与可移动件之间的电位差,并还施加第二电压以引起第二电极与可移动件之间的电位差,第一电压被这样施加,它在第一方向从一组激活电极向另一组顺序地切换被施加电压的目标,在第一电压被施加的同时第二电压间歇地被施加,从而使可移动件在第一方向前进。

根据本发明另一实施例,提供了一种静电激励器,包括:第一静止部件,具有由至少三组配置在第一方向的激活电极组成的第一电极,来自每一组的一个激活电极按顺序周期地就位;第二静止部件,面向第一静止部件并具有在第一方向延伸的第二电极,及在第一方向延伸并几乎平行于第二电极的第三电极;第一可移动件,装设在第一和第二静止部件之间,第二可移动件,装设在第一和第二静止部件之间,以及一个切换电路,施加第一电压以引起激活电极与第一可移动件之间的电位差,并还施加第二电压以引起第二电极与第一可移动件之间的电位差,第一电压被这样施加,它在第一方向从一组激活电极向另一组顺序地切换被施加电压的目标,在第一电压被施加的同时第二电压间歇地被施加,从而使第一可移动件在第一方向前进,且该切换电路施加第一电压以引起激活电极与第二可移动件之间的电位差,并还施加第二电压以引起第三电极与第二可移动件之间的电位差,第一电压被这样施加,它在第一方向从一组激活电极向另一组顺序地切换被施加电压的目标,在第一电压被施加的同时第二电压间歇地被施加,从而使第二可移动件在第二方向前进。

根据本发明另一实施例,提供了激活静电激励器的一种方法,该静电激励器包括:第一静止部件,具有由三组配置在第一方向的激活电极组成的第一电极,来自每一组的一个激活电极按顺序周期地就位;第二静止部件,面向第一静止部件并具有在第一方向延伸的第二电极;及一个可移动件,装设在第一和第二静止部件之间,该方法包括:施加第一电压以引起激活电极与可移动件之间的电位差,施加第二电压以引起第二电极与可移动件之间的电位差,第一电压被这样施加,它在第一方向从一组激活电极向另一组顺序地切换被施加电压的目标,在第一电压被施加的同时第二电压间歇地被施加,从而使可移动件在第一方向前进。

根据本发明另一实施例,提供了一种相机模块,包括:一个成象装置;一个静电激励器,该静电激励器包括:第一静止部件,具有由至少三组配置在第一方向的激活电极组成的第一电极,来自每一组的一个激活电极按顺序周期地就位;第二静止部件,面向第一静止部件并具有在第一方向延伸的第二电极;一个可移动件,装设在第一和第二静止部件之间,以及一个切换电路,施加第一电压以引起激活电极与可移动件之间的电位差,并还施加第二电压以引起第二电极和可移动件之间的电位差,第一电压被这样施加,它在第一方向从一组激活电极向另一组顺序地切换被施加电压的目标,在第一电压被施加的同时第二电压间歇地被施加,从而使可移动件在第一方向前进;以及一个透镜,安装在静电激励器的可移动件上并向成象装置输入光学信息。

根据本发明另一实施例,提供了一种相机模块,包括:一个成象装置;一个静电激励器,该静电激励器包括:第一静止部件,具有由至少三组配置在第一方向的激活电极组成的第一电极,来自每一个组的一个激活电极按顺序周期地就位;第二静止部件面向第一静止部件并具有在第一方向延伸的第二电极,及在第一方向延伸并几乎平行于第二电极的第三电极;第一可移动件,装设在第一和第二静止部件之间,第二可移动件,装设在第一和第二静止部件之间,以及一个切换电路,施加第一电压以引起激活电极与第一可移动件之间的电位差,并还施加第二电压以引起第二电极与第一可移动件之间的电位差,第一电压被这样施加,它在第一方向从一组激活电极向另一组顺序地切换被施加电压的目标,在第一电压被施加的同时第二电压间歇地被施加,从而使第一可移动件在第一方向前进,以及该切换电路施加第一电压以引起激活电极与第二可移动件之间的电位差,并还施加第二电压以引起第三电极与第二可移动件之间的电位差,第一电压被这样施加,它在第一方向从一组激活电极向另一组顺序地切换被施加电压的目标,在第一电压被施加的同时第二电压间歇地被施加,从而使第二可移动件在第一方向前进;以及一个透镜,安装在静电激励器的第一可移动件上并向成象装置输入光学信息;以及一个透镜,安装在静电激励器的第二可移动件上并向成象装置输入光学信息。

根据本发明适当地设置,一种可移动件,在附加在并几乎适配到具有与第一电极连接的分支焊片的表面的同时,被允许移动,从而抑制了在强烈吸引力下的垂直振动,以至实现了所需的稳定,平滑及可靠的操作。

附图说明

从以下给出的详细说明并从本发明实施例的附图将可更为充分地理解本发明。然而,附图不是要把本发明限制在特定的实施例,而仅是为了说明和理解。

在附图中:

图1是表示根据本发明的静电激励器一个实施例的示意图;

图2是一平面图,表示连接到第一静止部件中的电极A到D的分支焊片的布局;

图3是一时序图,表示由本发明实施例的静电激励器中的切换电路施加到电极的电压波形;

图4描绘了一变化的时序图,表示由本发明实施例的静电激励器中的切换电路施加到电极的电压波形;

图5是表示按图3所示的定时被激活的静电激励器的运动所得结果的测量;

图6是一剖视图,表示根据本发明的实施例静电激励器的机械结构;

图7是表示一示例性静电激励器的示意图,其中垂直并列的静止部件和有止动器,且可移动件形成相对于止动器的摩擦运动;

图8是表示一示例性静电激励器的示意图,其中止动器分别置于可运动件中,阻挡接触;

图9是表示作用在可移动件的吸引力与施加150V电压的电极的距离之间的关系的曲线图;

图10是表示施加的电压与吸引力的关系的曲线图,吸引力是在分支焊片与可移动件之间,以及下电极与带有止动器高度S为3.5微米的可移动件之间形成的;

图11是表示施加的电压与吸引力的关系的曲线图,吸引力是在分支焊片电极与可移动件之间,以及下电极与带有止动器高度S为4微米的可移动件之间形成的;

图12是表示施加的电压与吸引力的关系的曲线图,吸引力是在分支焊片与可移动件之间,以及下电极与可移动件之间形成的;

图13是表示下电极E的平面模式的图示;

图14A和14B是表示本发明实施例的第四示例性静电激励器的操作原理的图示;

图15是表示激活激励器的电压信号的时序图;

图16是表示电压施加的模式的时序图,其中分支焊片与可移动件之间的电压被反向,以便从防护膜驱散残余的极化;

图17是表示电压施加的模式的时序图,其中分支焊片与可移动件之间的电压根据本发明的实施例的方式被反向,以便从防护膜驱散残余的极化;

图18是表示用于相机模块中透镜机构的本发明第五示例性静电激励器应用的图示;

图19A到19C是表示用于相机模块中透镜机构的本发明第五示例性静电激励器应用的图示,其中图19A是沿纵轴所取的激励器的剖视图,图19B是其X-X剖视图,而图19C是其Y-Y剖视图;

图20是表示装有本发明实施例的静电激励器的小型相机模块部分的图示;

图21到23是表示可用于本发明实施例的定时的其它例子的时序图;

图24是表示根据本发明实施例的静电激励器基本结构的示意图;

图25是表示由切换电路施加到电极的电压波形的时序图;

图26是表示从监视图24所示静电激励器中可移动件运动所得的测量的曲线图;及

图27是表示现有技术静电激励器结构的图示。

具体实施方式

在本发明的详细实施例之前,首先说明静电激励器的基本原理。

图24是一示意图,表示用于理解本发明的基本静电激励器结构。

该静电激励器由彼此相对的第一和第二静止部件2a和2b,及位于它们之间并可沿箭头SL标记的方向滑动的可移动件组成。

第一静止部件2a有四组分支焊片分别连接到电极A到D,而第二静止部件2b有在其表面均匀分布的电极E。从图中描绘可见,与电极A到D相关的四组分支焊片按条形布局排布,其中来自每一组的分支焊片一个接一个按A到D固定的顺序,例如沿可移动件3前进的方向,依次就位。预定的电压电平从电源142通过切换电路140同时施加到每一组的所有分支焊片。

图25是一时序图,表示通过切换电路140向与每一电极相关的分支焊片施加的电压波形。

起初,如图25(f)所示,连接到可移动件3的电极F保持其电位在一低电平L,同时对电极A和B提供如图25(a)和25(b)所示的电压。电极A和B与可移动件3之间的静电力引起可移动件3被吸引向分别连接到那些电极并几乎适配在第一静止部件2a上的分支焊片A和B。然后如图25(e)所示,切换电路140将其连接从电极A和B切换到电极E,使得向电极E施加电压,而可移动件3离开分支焊片A和B,或它被第二静止部件2b吸引并趋向该部件。

此后,切换电路140切换其连接从电极E向电极B和C,使得如图25(b)和25(c)所示,向连接到这些电极的分支焊片B和C施加电压,且分支焊片B和C与可移动件3之间的静电力引起可移动件3被第一静止部件2a吸引。然后切换电路140将其连接从分支焊片B和C切换到电极E,使得如图25(c)所示向电极E施加电压,而结果是可移动件3离开分支焊片B和C,或它被吸引向第二静止部件2b。

然后,切换电路140将其连接从电极E切换到电极C和D,使得如图25(c)和25(d)所示向电极C和D施加电压,且电极C和D与可移动件3之间的静电力使得可移动件3被第一静止部件2a吸引。接下来,切换电路140将其连接从分支焊片C和D切换到电极E,使得如图25(e)所示向电极E施加电压,可移动件3离开电极E,或它被吸引向第二静止部件2b。

此外,切换电路140将其连接从电极E切换到电极D和A,使得如图25(d)和25(a)所示向电极D和A施加电压,电极D和A与可移动件3之间合成的静电力引起可移动件3被第一静止部件2a吸引。接下来,切换电路140将其连接从分支焊片D和A切换到电极E,以便如图25(e)所示向电极E施加电压,且可移动件3离开分支焊片D和A,或它被吸引向第二静止部件2b。

重复上述操作顺序能够使可移动件3在第一静止部件2a中精微地垂直振动并精微地沿分支焊片延伸横向移动。

在图24中的静电激励器中,如所述静止部件2b简单地装有允许线性运动的均匀分布的电极E。这样,无需对分支-电极模式的精确相位控制,这与现有技术的静电激励器不同,该激励器如图27中所示具有在垂直并列静止部件103a和103b中按条形布局的电极。不需要如现有技术实施例中那样对静止部件2a与2b对之间的位置关系进行调节,且这导致了组装的时间和劳务的节省,并因而造成成本下降,从而大大提高批量生产率。

此外,在图24的静电激励器中,由于电压交替施加到第一和第二静止部件2a和2b,可移动件3在垂直振动的同时横向运动。

图26是表示从监视图24所示静电激励器中可移动件运动所得的测量的曲线图。水平轴线表示时间的经过,左侧的垂直轴线表示施加到电极的电压,而右侧垂直轴线表示可移动件3的位移。在曲线图的下半部分绘制的矩形示出施加到电极的电压的波形,而在曲线图上半部分中的矩形示出可移动件3的垂直位移,曲线图中从左下到右上延伸的线还表示出可移动件3在其前进方向(横向)的位移。

图26中,横向位移是按对垂直位移1/10的缩小比例尺绘制的。换言之,横向位移实际上十倍于沿垂直轴线相同刻度线标志的垂直位移。

在图26中可见,每当被施加电压的目标从一个电极或电极对切换到另一电极,可移动件3就上下运动,同时前进(在横向)少量。这种垂直移动的幅度取决于可移动件3与并列静止部件2a和2b之间的距离,并比等于可移动件的单间距的横向位移大得多。可移动件3,虽然有相当大幅度的振动,但横向移动是一点一点的。此外,垂直振动的幅度,虽然定义为可移动件3与两个静止部件2a和2b之间的距离,但可能因制造误差而有变化。

由于在可移动件3与静止部件2a和2b之间形成的库仑力反比于这些部件之间的距离的平方,这些组件之间的距离的连续改变总可以影响它们之间的吸引力,且吸引移动力和可移动件的位移变得不稳定。

本发明人曾试图改进现有技术中的这些缺陷,且它们已经成功地提高了操作的平滑性和稳定性,实现了技术上精细的静电激励器。

现将更为详细说明本发明的实施例。

(第一实施例)

图1是表示根据本发明的静电激励器一个示例性实施例结构的示意图。如图24和25中所使用的相同的标号在图1中标记对应的组件。

该示例性静电激励器由彼此相对的第一和第二静止部件2a和2b,及位于它们之间并可在箭头24指示的方向移动的可移动件3组成。

第一和第二静止部件2a和2b形状可以是板状,或另外可以是半圆柱形。当第一和第二静止部件2a和2b具有板状形状时,可移动部件3因而可成形为实体的或中空的块状,具有相对的几乎平坦的面向静止部件的表面,或当第一和第二静止部件2a和2b具有半圆柱形时,可移动部件3可对应地成形为实体或中空的圆柱形。

图2是一平面图,表示分别连接到电极A到D的第一静止部件2a中分支焊片组的布局。

在图2中可见,第一静止部件2a有四组与由对应的字母符号指示的电极相关的分支焊片A到D,同时第二静止部件2b具有在一表面均匀分布的电极E。分支焊片A到D的四组按图2中描绘的排布,作为条形布局的“激活电极”,其中来自每一组的一个分支焊片依次一个接一个按固定顺序沿可移动件3的前进方向就位。预定的电压电平从电源42通过切换电路40同时施加到每一组的所有分支焊片。

如同2中所示,供电电压向分支焊片的施加按固定顺序从一个切换到另一个,并由于分支焊片用来在规定的方向推进可移动件,那些分支焊片A到D以下将称为“激活电极”。装设在第二静止部件2b中的均匀分布的电极E以下也将称为“下电极”。如果离散的电极元件均匀分布且为相同类型,则下电极可以是离散的。

图2中的标号10标记规定可移动件3与激活电极之间固定间隙的一止动器。这将在以下详述。

图3是一时序图,表示根据本发明的静电激励器中通过切换电路40施加到电极的电压波形。

定时可被分析并简单地表述为“在电压施加到下电极时,同时向激活电极通过电压”。按时序图所示的定时施加电压允许可移动件3横向推进,同时被吸引并几乎适配到第一静止部件2a。

关于图3中示例表示的定时,起初连接到可移动件3的电极F保持其电位在如图3(f)所示的低电平,同时对激活电极A和B提供如图3(a)和3(b)所示的电压。这样,激活电极A和B与可移动件3之间的静电力引起可移动件3被激活电极A和B吸引,并几乎适配到第一静止部件2a上。

然后,与激活电极A转换为低电平的定时的同时,下电极E将其电位转换为高电平。在这阶段,施加到激活电极B的电压保持在高电平。这样,继续被吸引并几乎适配到其“激活电极”已被激活的第一静止部件2a的可移动件3,还被下电极E吸引并被迫使不充分地脱离第一静止部件2a。可移动件3蠕动地横向悬浮趋向激活电极B。这阶段的激活电极B是作为“辅助电极”,干扰下电极E以其吸引力俘获可移动件3。

此后,在激活电极B保持其电压为高电平的同时,对激活电极C提供高电平电压,且下电极E其电位已经转换为低电平。结果是,可移动件由静止部件2a吸引同时横向蠕动趋向激活电极C。

接下来,在激活电极C保持其电位为高电平的同时,激活电极B已转换其电位为低电平,且对下电极E提供高电平电压。结果是,可移动件3,在继续被吸引并几乎适配到激活电极的同时,还被下电极E吸引并迫使其不充分地脱离第一静止部件2a,以至它蠕动地悬浮而趋向激活电极C。这样,激活电极C类似地用作为“辅助电极”。

在按类似的过程对激活电极C,D和A顺序地施加电压之后,就完成了一个循环。对于后继的激活电极A到D序列重复类似的循环,因而可移动件3在由吸引力继续保持几乎适配到第一静止部件2a的同时,能够横向移动。

这样,与电压施加到下电极E同时,对任何激活电极A到D提供电压以便作为“辅助电极”,且这有效地抑制了可移动件3的垂直振动,并允许几乎适配到激活电极的可移动件平滑地前进。

图4是根据本发明实施例的静电激励器的时序图,示出施加到电极的电压波形。在这一改进中,对相邻的电极,诸如电极A和B,提供在图形初始段所描绘的ON/OFF模式的电压,其中一个电极导通然后立即关断,且这一相继的过程重复四次。电极E的电压电平根据相继的ON/OFF被切换。这一ON/OFF模式之后是下一组相邻电极,诸如B和C,并在相继的过程重复四次之后,该相同的ON/OFF模式之后是另外的下一组相邻的电极,诸如电极C和D。这另外的一组由相继的电极对D和A跟随等等。

以上述方式重复导通和关断相邻电极能够保证可移动件前进。在单一的ON/OFF模式中,一个电极被导通并立即被关断四次,但是相继的过程次数不应当有限制;就是说,导通和关断的频率能够按每一应用中所需而决定,且模式重复频度可以多于或少于四次。

图5是一曲线图,表示当电极激励器按图4所描绘的定时被激活时,从监视可移动件所得测量结果。水平轴线表示时间,左侧的垂直轴线表示施加到电极的电压,而右侧垂直轴线表示可移动件3的位移。曲线图下半部中绘制的矩形表示施加到电极的电压波形P,而曲线图上半部表示可移动件3的垂直位移V,图中从左下到右上延伸的线还表示可移动件3在其前进方向的横向位移H。

图5中,横向位移按对垂直位移1/10的缩小比例绘制。换言之,横向位移实际上十倍于沿垂直轴线相同刻度线标记的垂直位移。

在图5中可看出,可移动件3在最初定时被吸引向激活电极之后,横向移动,同时继续被保持在几乎适配到激活电极。交替地向激活电极与下电极施加电压,可移动件3横向移动同时垂直振动。

反之,在本发明的实施例中,电压同时施加到下电极和激活电极。这样,如图5所示,可移动件3被允许在横向平滑地移动同时继续被吸引并几乎适配到激活电极。结果是,能够抑制不希望有的垂直振动,并能够获得类似于在降低可移动件3与静止部件2a之间的间隙的状态下所获得的附加效果;就是说,用于可移动件的吸引和位移的运动力被有利地加强。这样,由于激活电极A到D和可移动件3之间的间隙能够保持为最小,足够的和稳定的吸引力或库仑力作用到可移动件3。

在图5中所示的实施例中,相邻的电极之一相继地并充分地导通并然后关断四次。应当注意,第一次导通和关断引起可移动件3横向移动,且被重复三次的其余的ON/OFF动作几乎不引起可移动件3的横向位移。这是由于最初的导通和关断相邻的电极(例如电极A和B)迫使可移动件落入被激活的电极的平衡区。反之,即使在最初导通和关断之后,当某些扰动诸如可移动件3上的摩擦力作用而保持可移动件3离开平衡区时,第二或甚至后继的导通和关断能够引起可移动件到达平衡区。

(第二实施例)

现在将在改进了调节施加到激活电极和下电极电压的平衡特特性场合下,说明静电激励器的第二实施例。

本发明人查看了静电激励器的第一实施例并获得了关于静止部件2a和可移动件3之间的间隙及施加到电极的电压的某些定量观察。

为了充分理解本实施例将对机械结构的概貌进行说明。

图6是一剖视图,表示本发明实施例的静电激励器的机械结构。激活电极A到D和下电极E将它们的各自的工作表面分别以防护膜4覆盖。防护膜4是诸如包括氧化硅和氮化硅等无机合成物,及包括聚酰亚胺的有机合成物的绝缘材料。

装设止动器10以避免防护膜4与可移动件3直接接触。例如,如图7A和7B所示,上件和下件2a和2b在它们的表面分别有止动器10允许可移动件3在止动器10上摩擦行动,并这样可移动件3能够保持离开防护膜4。另外,如图8A和8B所示,诸如止动器10这种接触解除元件可以放置在可移动件3上。

再转向图6进行讨论,其中给出止动器的高度和间隙的宽度。止动器的高度S可接近4.5微米。可移动件3能够穿过的幅度值V可以是4.0微米。

而且,图6描绘了可移动件3被吸引并几乎适配到激活电极A到D,而这种情形把电极之间距离,即可移动件3与激活电极A到D之间的距最小化。电极间距离(最小)G1可以接近4.0微米。激活电极A到D的高度可接近0.5微米。在这种环境下,另一电极间距离,即可移动件3与下电极E之间的距离被最大化。这种电极间距离(最大)G2可以是8.0微米。

考虑纵向尺寸,当作为一种基准,可移动件3的凸起3a被配备为使它们各自的中心位于激活电极A中时,能够通过固定每一凸起3a与激活电极B之间的重叠量大约为6.0微米,确定凸起3a的长度和激活电极A到D序列的间距。

图9是曲线图,表示对可移动件3的吸引力与电极间距离之间的关系。在这一图中,水平轴线表示可移动件3与激活电极A到D之间的电极间的距离,而垂直轴线表示对可移动件3的吸引力。而且在图9中,电极间的距离(最大)G2固定在8微米,而止动器的高度S是变化的,且吸引力在与变化的可移动件3与激活电极A到D之间的距离关系中被监视。

这种情形下,如图6中所描绘,假设可移动件3保持被吸引并几乎适配到激活电极A到D。这样,在水平轴线上表示出的可移动件3与激活电极A到D之间的距离被视为电极间的距离(最小)G1。该值等于止动器的高度S减去电极A到D的每个的厚度。

可移动件3和激活电极A到D之间,及可移动件3与下电极E之间产生的力能够按以下公式表示: >>F>=>ϵ> >SV>2> >>2>d>>2> > >

其中ε是介电常数(8.85×10-12F/m在真空条件下),S是每一激活电极的面积,V是施加的电压,d是电极间的距离(间隙)。

当可移动件3与电极A到E之间的距离在操作过程中变化时,引起跨各电极输出中的波动。电极间距离的值(最大)G2影响输出波动的最小值,并如果G2上升,则输出波动(最小)降低。这样,假设电极间距离(最大)G2被固定,而止动器的高度S变化的情形下,图9描绘了可移动件3与吸引力的关系。

图9中,当电极间距离(最小)G1小于3.5微米时,从激活电极A到D对可移动件3的吸引力高于从下电极E到可移动件3的吸引力,并如果电极间距离G1上升到3.5微米以上,则上述关系相反,即来自下电极E的吸引力较大。

当可移动件3被激活,同时继续保持被激活电极A到D吸引时,电极间距离(最小)G1必须低于3.4微米。这意味着止动器高度S的上限大约为4.0微米。

考虑到吸引力作用到可移动件3,希望止动器的高度S降低。然而实际上,当止动器的高度S降低时,应当有可能发生可移动件3与防护膜4的接触引起畸变和故障。电极间距离(最小)G1的降低引起电场强度的增加,因而,防护膜的放电击穿更可能引起畸变和故障。当防护膜4被损坏时,很可能受到放电击穿,因而损坏和放电击穿,当它们彼此互为原因时,加剧了畸变和故障的潜在危险。就在各种应用中任何实际使用的可靠性而言,这是很重要的事情。

因而,关键是要按对于静电激励器的任何使用和应用规范中所需,适当确定结构参数和激活条件,使得静电激励器能够尽可能达到最大的吸引力同时保证其工作的可靠性。

参见图10到12,以下将解释该过程的例子。

图10是一曲线图,表示在止动器S的高度为3.5微米的条件下,施加的电压对作用在激活电极和可移动件之间,以及下电极与可移动件之间的吸引力的关系。在图10中,使用如图6中示例的尺寸参数,且止动器的高度S为3.5微米。这样,电极间距离(最小)G1为3.0微米。

使用止动器的这一高度并使用从100V到200V的范围内施加的电压,从激活电极A至D到可移动件3的吸引力总是高于从下电极E到可移动件3的吸引力。当然,可移动件3在继续被吸引向激活电极A到D的同时被激活。当激励器的可靠性及加工组件的精密度允许止动器的这一高度S时,不会引起因高度所发生的问题。例如,一旦确定,在基于加工止动器10的精密度而假设的变化的高度范围内,可移动件不会与防护膜4接触,就能够使用该范围内的高度。

图11是一曲线图,表示施加的电压对作用在激活电极和可移动件之间,以及下电极与可移动件之间的吸引力的关系。在图示的情形下,使用4.0微米的止动器高度S,吸引力匹配在激活电极和可移动件,及下电极与可移动件之间,而这使得可移动件不稳定。

特别是在这些条件下,可移动件3不总是被吸引向激活电极A到D,有时它可能被吸引并几乎适配到下电极E,而表现出垂直振动。

图12是一曲线图,表示在4.5微米振动器的高度S的条件下,施加的电压对作用在激活电极和可移动件之间,以及下电极与可移动件之间的吸引力的关系。在图中,使用4.5微米振动器的高度S,显然激活电极与可移动件之间及下电极与可移动件之间的关系被切换并反向。

如果给出有定时协助的工作波形,似乎根据给出的定时可移动件3依赖于被指令的电压电平垂直振动。但这并不能提高稳定和充分的激活性能。

另一方面,就组件加工的精密度和装置的可靠性来看,有时希望预定振动器的高度S高于图11和12中通常的情形。因而,在本发明的实施例中,施加到下电极E的电压被调节以便有稳定的操作。

这种稳定化的方式将在以下参照图12讨论。

现在假设施加到激活电极A到D的电压事先确定为150V。在该条件下,下电极E可被调节,以保持来自下电极E的吸引力小于来自激活电极A到D的吸引力。

具体来说,首先要作的是获得在施加150V时激活电极与可移动件之间的吸引力的值。在图12中它大约为12.5mN。然后,必须知道用于在下电极形成与吸引力相同水平的力所需的电压电平。在图12中,看到这大约为130V。如果该已知的电压或较小的电压被施加到下电极E,则来自激活电极A到D的吸引力总是较高,而可移动件3能够被激活,同时继续保持被吸引并几乎适配到激活电极A到D。

在本实施例中,调节施加到激活电极A到D的电压与施加到下电极E的电压之间的关系,以保持来自激活电极的吸引力总是较高这种所需的状态,使得稳定的吸引力作用到可移动件而没有该部件的垂直振动。

(第三实施例)

以下将说明本发明的第三实施例,这是一个静电激励器,具有激励电极相对于下电极良好平衡的电极面积。

本实施例中,不是象对于第二实施例所述那样调节施加到每一电极的电压,而是调节上和下电极彼此相对的面积,以保持那些电极之间的吸引力的良好平衡状态。

例如,激活电极A到D如图2所述那样按重复的条带配置,而电压施加到一(多)组特定的电极。对此的响应是,下电极E形成吸引力。

至于图3所示的操作顺序,相同的分支电极A,B,C或D只有一组与向下电极E施加电压的同时被施加电压。这样,在同一组中所有激活电极对于可移动件3的面对面的面积将被调节,使得与下电极E对可移动件3的面对面的面积具有所需的平衡。

在可替代的一种简化方式中,同组的激活电极对于可移动件3的面对面的面积可能大于下电极E对可移动件3面对面的面积。一个面对面的面积对另一面对面的面积的比率,取决于施加的电压和止动器高度S,按需要可被确定。

要点在于,可移动件3应当被激活同时保持继续被吸引并几乎适配到激活电极A到D。

图13是一示意图,表示下电极E的平面模式。下电极E成形为三个平行的条带,分别在可移动件3的前进方向延伸。每一条带的宽度W可变化以便调节下电极E的总面积。

这样,除了止动器的高度S和施加到电极A到E的电压这些参数之外,下电极E条带的宽度W应当有变化,使得激活电极总是施加较大的吸引力。因而,稳定的吸引力作用到可移动件3上使其移动而没有垂直振动。

(第四实施例)

现在将说明第四实施例,该实施例是一能够在某种程度上防止防护膜4的电介质极化的不良作用的静电激励器。

图14A到14B示出根据本发明实施例的示例性静电激励器的操作原理。

图15是用来激活激励器的电压信号的时序图。

在图14A到14B中可见,有三组激活电极A到C,而下电极D位于它们对面。然而激活电极组的数目不限于三个,而是可以有四组激活电极,或可以有五组或更多的激活电极。

例如,本实施例中,向激活电极A到C施加反向极性电压,抑制了在防护膜4中电介质极化的影响。

在图15的时序图中,图15(a),15(b),和15(c)分别表示施加到分支电极A,B和C的电压信号。图15(d)表示施加到与静止部件连接的电极D的电压信号,而图15(e)表示施加到与可移动件连接的电极E的电压的变化电平。

图15(e)中施加到电极E的电压为接地电位。图15(d)中施加到电极D的电压在高H和低L之间切换,且后者是接地电位。图15(a)中施加到电极A,B,和C的电压信号也是在高H和低L之间切换,其中前者为正电位而后者为负电位,它们的平均电平是接地电位。

这样,当施加到电极A,B和C的信号转为高H时,可移动件3被吸引向电极A,B和C在高处,并当施加到它们的信号转为低L时,可移动件3被排斥离开这些电极。在中间电平的电位的电极A,B和C不影响可移动件3。

例如如图14A中所示,当正电平电压施加到电极B时,静电力(库仑力)影响可移动件3,且它被吸引向静止部件2a。为了说明的方便,图14A和14B描绘了只是施加到电极B组的电压,但如图15中的时序图所示,电压可同时施加到其余的电极A或C。

当如图14A所描绘的正电平的电压施加到电极B时,激活电极B的表面的防护膜4引起电介质极化5,且宏观上电极B对可移动件3的行为好象它在其表面处于正电位的情形。

甚至在正电压施加到电极B被中断之后,在防护膜4中有时还存留有电介质极化5。这引起可移动件3继续滞留于被吸引接近电极B。因此,在后继的定时,可移动件3有时失去促使其平滑移动到相邻电极C的推进力。

这是来自由防护膜4中电介质极化引起的电偏移的结果。虽然电介质极化5使残余电位减小,但电极之间的库仑力与距离的平方成反比,因而在一旦可移动件3被吸引向电极B,且电极间距离接近其最小值的情形下,防护膜4中的残余电位即使很低,但还是对可移动件3造成可观的影响。由于这种不良的影响在本实施例的改进中被降低,操作顺序顾及到可移动件3所需的运动。

本实施例中,在操作顺序从可移动件3被电极B吸引的状态转变为可运动件向电极C运动的状态期间,在电极B和E之间提供一电位差,使得电极B比与可移动件3连接的电极E有较低的电位(当可运动件3处于零电位时,电极B呈现负电位)。其结果是可移动件3易于离开防护膜4,而能够获得激励器平滑的操作。

宏观上,在与静止部件2a连接的电极B和与可移动件3连接的电极E的情形下,通过以下的说明能够很好地理解这一点:由于电介质极化5所至,驻留在防护膜4中的电荷偏移所引起的电场,及由于电极B与E之间的电位差(B的电位低于E的电位)引起的电场,方向彼此相反并彼此抵消。微观上,这可以被看作这样的现象,即由于电介质极化5所至,防护膜4中驻留的电荷的偏移被由添加到电极B的电位(低于电极E的电位)引起的电场减弱到零。

在上述实施例中,可移动件3中的电位可能是没有被接地而被电浮动。另外,虚电极可能位于接近可移动件3并被接地,使得静电力对可移动件3有明显作用。在图4(a)和4(b)所示的实施例中,防护膜4置于静止部件2a上,且按另一方式,它可以装设在可移动件3中,或另外防护膜4可以装设在静止部件2a又装设在可移动件3中。

使施加到激活电极的电压极性反向并不是消除防护膜4中的残余极化的唯一方式。通过切换激活电极与可移动件3之间的电压相关状态以驱散残余极化,能够获得使施加到防护膜4的电场极性反向的类似结果。

图16和17是时序图,表示通过切换激活电极与可移动件之间的电压相关状态,有效驱散膜4中残余极化所施加的电压模式。图16表示在示例性实施例中的定时,而图17表示根据本发明实施例的定时。

参见图16,在起始时间t1,电压首先施加到电极A和B而没有施加到可移动件3。然后在时间t2,电极A和B被关断,而同时电压被施加到下电极。然后,在时间t3,与向电极C和D施加电压的同时,还向可移动件3施加电压。由于在时间t3没有向电极A和B施加电压,施加到电极A和B上的防护膜4的电场与时间t1当电压施加到电极A和B时相比被反向。

电极A和B之间的电压关系从定时t1到定时t3被切换到反向,且施加到防护膜4的电场因而被反向。这样,电场的反向能够使得防护膜4驱散其中的残余极化。

根据本发明的实施例用来驱散残余极性的定时模式示于图17的时序图中。在图17中,在任何时间当对下电极提供电压时,电压提供给激活电极A到D的特定的电极,以避免可移动件3的垂直振动。向可移动件3适当施加的电压还切换激活电极A到D与可移动件3之间的电压关系,且此外,适当地反向施加到防护膜4的电场使其能够驱散其中的残余极化。

在上述图14A到图15中的实施例中,虽然需要三个电平的电压,或正,负,接地电平,但图16和17所示的实施例简单通过两个电平的电压,或正(或负)及接地电平,有利地提供了驱散防护膜4中的残余极性的方式。

(第五实施例)

现在将说明具有多个可移动件的静电激励器的第五实施例。

图18到19C是表示示例性静电激励器在相机模块的透镜机构中的应用。

透镜机构包括一个立方体中空的静止部件20,与沿静止部件20的纵轴可往返移动的两个可移动件30和40。此外,包含透镜机构的相机模块装有CCD装置50,该装置位于静止部件20的一端以检测图象。透镜被描绘为与光轴对准。

静止部件20具有框架21,通过半导体工艺技术在玻璃基片中制模并与静止部件连接的电极22,在框架21内平行于光轴方向C延伸的凸起25,及电极22的电源26。

静止电极22有几组激活电极23和几组下电极24。

激活电极23包括四组激活电极23a到23d,来自每一组的一个电极交替地在方向C就位成一系列。激活电极23a到23d按垂直于方向C的条带配置。激活电极组的数目不限于四个,而是可以有三组,甚至五组或更多组激活电极。

另一方面,有两组下电极24a和24b,它们在平行于光轴的方向C配置成条带。

电源26包括电源电路26a和切换电路26b。电源电路26a有选择地向下电极24a和24b的两组24施加电压,以保持可移动件31和32之一作为备用并禁止其在C方向移动。

切换电路26b交替地向非备用的激活电极23a到23d及下电极23a和23b施加电压,并相继地在激活电极23a到23d之中按顺序切换电压施加目标。

按与上述本发明第一到第四实施例一致的定时进行向电极施加电压。与向下电极24a和24b施加电压的同时,必须对激活电极23a到23d的特定一些电极提供电压,且可移动件31和32被激活,同时保持继续被吸引并几乎适配到激活电极23。

可移动件31包括由可移动件体支撑的一组透镜31L,受来自电极22的电压驱动的激活力影响的被动电极31a,及电极31b。

多个被动电极31a配置为垂直于光轴的方向或方向C的条带。电极31b面向下电极24a并配置为平行于光轴的方向C的条带。

可移动件32包括由可移动件体支撑的一组透镜32L,受来自电极22的电压驱动的激活力影响的被动电极32a,及电极32b。

多个被动电极32a配置为垂直于光轴的或方向C的条带。电极32b面向下电极24b并配置为平行于光轴的方向C的条带。

这样配置的透镜机构按以下所述的方式工作。这里为了简练,图19A中只有可移动件31在由箭头α指定的方向移动的情形。图19A示出可移动件31处于其初始位置。激活可移动件的顺序遵循图3所示的定时。

当切换电路26b向激活电极23a和23b施加电压V时,在激活电极与可移动件31的被动电极31a之间,以及激活电极与可移动件32的被动电极32a之间,形成静电力和吸引力。由来自激活电极23a和23b驱动的吸引力引起第一和第二可移动件31和32趋向静止部件20上的激活电极23。

切换电路26b把激活电极23a处的电压转为低电平,同时向下电极24a和24b提供电压。可移动件31和32,在保持继续被吸引并几乎适配到激活电极的同时,由于在图19A到19C的平面中向下的吸引力而稍微趋向横向运动。

继续对下电极24b通过供电电路26a提供电压使得可移动件32能够停留在其初始位置。这时,确定施加到下电极24b的电压电平为高于用于激活可移动件32的电压电平,这保证了下电极24b能够可靠地保持住可移动件32。

然后通过切换电路26b对激活电极23b和23c提供电压,激活电极23b被转换为低电平,同时对下电极24a提供电压。

遵循图3中所示的定时模式的向电极施加电压允许可移动件31在箭头标记的方向α移动,同时保持被吸引并几乎适配到激活电极23。

由于供电电路26a保持对下电极24b提供电压,可移动件32被可靠地保持在初始位置而不移动。

这样,切换电路26b交替地向电极组23的激活电极23a到23d以及电极组24的下电极24a施加电压,且电压施加的顺序在电极和电极组之中适当地确定。这样,可移动件31能够在方向C前进,并由于供电电路26a继续对下电极24b提供电压,可移动件32能够被保持在固定位置。

当只有可移动件32被移动时,切换电路26b交替地向电极组23的激活电极23a到23d以及下电极24b施加电压,这样,能够达到组件类似的操作,并由于供电电路26a连续地对下电极24b提供电压,可移动件31能够保持在其初始位置。

在任何情形下,当可移动件需要被固定就位时,高于移动可移动件所需的电压应当施加到下电极24a和24b。这样,保证可移动件能够可靠地被固定。

本实施例中,还为了避免当可移动件31被激活时可移动件31的无用的垂直振动,施加到激活电极23a到23d的电压以及施加到下电极24a的电压应当按上述第二实施例适当地被调节。另外,与第三实施例所述同样,激活电极23a到23d对下电极24a的面积比率可适当地变化以获得所需的平衡状态。

静止部件20设有凸起25以便在激活可移动件31和32期间降低“空转”或“跳动”,且这些凸起成一直线与可移动件31及32接触。这样,凸起25是作为可移动件31和32的直线接触支撑物。

根据本发明的实施例,遵循与上述第一到第四实施例一致的操作顺序,可移动件31和32能够在平行于光轴被移动,同时保持继续被吸引并几乎适配到激活电极23。其结果是,能够避免可移动件31和32不希望有的垂直振动,并能够显著降低由可移动件31与32与凸起25接触所引起的摩擦阻力。这样,能够提高激活效率。

如上所述,在与根据本发明实施例的静电激励器结合的透镜机构中,容纳有一列透镜组的多个可移动件31和32能够有选择地被移动,这样能够实现一种具有透镜驱动机构的变焦特性的激励器设计。

静止部件20和可移动件31和32之间引起的摩擦阻力能够显著降低,因而工作效率能够提高。

虽然在上述实施例中,已经说明了包含两个可移动件的情形,但是本发明不限于此,而是具有三个可移动件的激励器能够类似地配置并获得相同的效果。

这样,提供它们各自可移动件专用的下电极,并适当地施加电压,可移动件被选择的一个能够被保持在固定位置,同时只有其余的件能够平行于光轴移动。

本实施例不仅能够用于透镜机构,而且还能够用于多个可移动件要彼此独立被移动的各种机构。

(第六实施例)

选择将说明第六实施例,这是一个小型相机模块,它可以具有第一到第五实施例任何内置的静电激励器。

根据本发明的静电激励器在结合性质上是出色的,因而它适用于小型相机中的聚焦和/或缩放机构。

图20是表示小型相机模块的一示意图,具有内置的本发明实施例的静电激励器。在图20的小型相机中,在基片321上有一成象装置,诸如CMOS,CCD等,且诸如本发明第一到第五实施例的任何静电激励器322位于成象装置的右前部。

如同在结合第四实施例所描述的那样,静电激励器的可移动件可以与透镜集成在一起。DSP(数字信号处理器)的IC安装在基片321上以控制静电激励器的操作。

这种相机模块用作为与便携式电话机,数字相机,便携式PC等兼容的相机单元。

使用任何内置的静电激励器的第一到第五实施例,小型相机模块能够具有可靠与稳定聚焦且变焦的附加特性,且其性能能够提高。

对于一个变焦的光学系统,需要至少两组可移动透镜。在光轴方向降低了尺寸的小型变焦式光学系统中,光学放大率常常是步进式变化的,其中在透镜组彼此分开后,它们在彼此接近的位置移动,然后再分开。根据本发明,按第五实施例所述的静电激励器可用来沿光轴独立移动两组透镜。这种光学系统能够在非常小型的设计中实现,并且能够保证可靠且平滑的操作。

虽然已经参照附图说明了本发明的某些实施例,但并不是说本发明要限制在这些实施例的精确形式内。

例如,静电激励器中装入激活电极组的数目,与以上的说明不同,并不限于如A到D的四个或A到C的三个,而是可以有五个或更多组激活电极。

向电极施加的电压的极性也不应当限于各实施例中所述的情形,但重要的是预定的电压电平可以施加在激活电极与可移动件之间,及下电极与可移动件(多个)之间,以便获得所需的吸引可移动件预定的静电力水平。

据以向电极施加电压的定时也不应当限制为每一实施例中所述的情形,而是电压可简单地施加到激活电极,同时向下电极施加电压即可。

图21到23是时序图,表示能够用于本发明实施例的示例定时。这些都是为装有四组激活电极A到D及下电极E的应用而设计的。

图3和图15所示的时序图基于当不向下电极提供电压时,对相邻的激活电极组(例如A和B,或B与C)提供电压的顺序。

本发明不应当限于上述那些情形,而是该顺序可针对一种操作设计,其中当不向下电极施加电压时只对一组激活电极提供电压。

至于图21所示的顺序,在对电极A在时间t1提供电压之后,在时间t2电极A被转换为低电压电平,同时对电极B和下电极E提供电压。进而,接下来,在时间t3,在电极维持其电压电平不变的同时,下电极E转换为低电压电平。

此后,相继向激活电极A到D按顺序施加电压,可移动件能够被激活,同时保持继续被吸引并几乎适配到激活电极。

而且,这种情形下,如以上结合第二到第三实施例所述,向激活电极与下电极(多个)施加的电压及电极之中面积的比率被适当地调节,以保证抑制可移动件的垂直振动。

在图22所示的顺序中,在时间t1对电极B提供电压之后,电极B维持其电压电平不变,同时在时间t2对下电极E提供电压。接下来,在时间t3电极B和下电极E被转换为低电压电平,同时向电极C施加电压。

此后,相继地向电极按顺序施加电压,可移动件能够被激活,同时保持连续地被吸引并几乎适配到激活电极。

至于图23所示的顺序,在对于激活电极A到D定时中以及对于下电极E的定时中,插入了“时间延迟”。在两个相继的定时单元按顺序分别向激活电极A到D施加电压,并当只在一个单个定时单元向下电极施加电压时,根据每一向其余电极施加电压的每一上升时间,插入时间延迟。这样,将不会同时对激活电极和下电极(多个)提供电压,这些电极也不会同时转为低电平。

这样,即使在向下电极E施加的电压转换期间,对激活电极继续保持提供不变的电压,因而能够有效地抑制由于同时向上和下电极或由于中断电压的施加可能引起的“跳动”或“波动”。

如已经详细说明的那样,根据本发明的实施例,对下电极提供电压的同时向激活电极施加电压,可移动件能够横向前进,同时继续保持被吸引并几乎适配到激活电极。

于是,能够抑制可移动件不希望有的垂直振动,并且这在降低可移动件与静止部件之间的间隙上几乎达到了相同的效果,因而能够便于这些组件之间的施加的力形成。由于激活电极和可移动件之间的间隙总能够保持为最小,因而能够形成强而稳定的吸引力或库仑力。此外,能够获得可靠而稳定工作的高精度的静电激励器,而这对于工业是大有裨益的。

虽然本发明已经借助于为了便于对其理解的实施例而公开,应当认识到,在不背离本发明的原理之下本发明能够以各种方式实施。因而,本发明应当被理解为包含,在不背离如所附权利要求所述的本发明的原理之下,可实施的所有可能的实施例和对所示实施例的修改形式。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号