首页> 中国专利> 口服的免疫原性细菌肠毒素在转基因植物中的表达

口服的免疫原性细菌肠毒素在转基因植物中的表达

摘要

本发明提供了突变型的埃希氏属大肠杆菌热变毒素(LT)和霍乱弧菌毒素(CT)多肽以及编码它们的多聚核苷酸。在植物中能很容易产生突变型的LT和CT多肽,并且可用于治疗或预防由埃希氏属大肠杆菌和霍乱弧菌引发的疾病。这种多肽作为佐剂也是有益的。

著录项

  • 公开/公告号CN1331558A

    专利类型发明专利

  • 公开/公告日2002-01-16

    原文格式PDF

  • 申请/专利权人 博伊斯·汤普生植物研究所;

    申请/专利号CN99814963.2

  • 发明设计人 休·S·梅森;查尔斯·J·特森;

    申请日1999-12-22

  • 分类号A01H1/00;A01H1/06;A61K39/106;A61K39/108;C07H21/04;C07K14/28;C07K14/415;C12N5/14;C12N15/00;

  • 代理机构北京市专利事务所;

  • 代理人王燕秋

  • 地址 美国纽约伊萨卡市

  • 入库时间 2023-12-17 14:10:59

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2013-02-27

    未缴年费专利权终止 IPC(主分类):C12N15/00 授权公告日:20050302 终止日期:20111222 申请日:19991222

    专利权的终止

  • 2005-03-02

    授权

    授权

  • 2002-03-13

    实质审查的生效

    实质审查的生效

  • 2002-01-16

    公开

    公开

说明书

有关申请

本申请要求引用、整体合并的美国申请60/113,507的权利。

技术领域

本发明涉及植物的基因工程技术和植物的转化技术,它们是应用重组DNA技术,生产适合食用的疫苗。特别是,此项发明涉及到在转基因植物中生产口服疫苗和佐剂的情况,转基因植物应用的是编码埃希氏大肠杆菌热易变性毒素亚单位LT-A和LT-B、霍乱毒素亚单位CT-A和CT-B以及它们的突变体的多聚核苷酸。

本发明的背景

给人和动物服用疫苗诱导抵抗病毒、细菌和其它类型病原性生物的免疫应答。在世界上的经济发达国家中,疫苗已经使的许多种疾病在控制之下。然而,诸如脊髓灰质炎、麻疹、流行性腮腺炎、狂犬病、口蹄疫等疾病的很多疫苗,在较不发达的国家应用起来太昂贵。

由于口服途径简单,所以对发现新的口服疫苗技术有极大的兴趣。恰当地经口传输免疫原能够刺激体液、粘膜和细胞免疫,并且有可能提供给发展中国家或闹市区,是既有成本效果又能安全应用的疫苗。在发展中国家或闹市区大规模的经肠胃外注射免疫接种,既不切实际又极其难以实施。这些疫苗可以基于表达不同病原体抗原决定簇的细菌或病毒载体系统(多价疫苗),也可以基于单独或与其他相关抗原相结合途径传输的纯化抗原。

绝大多数的人类病原体,是通过与粘膜表面相互作用而引起疾病的。通过这种机制起作用的细菌和病毒病原体,首先与粘膜表面接触,它们能够在粘膜表面粘附和克隆,或者由位于覆盖派氏集合淋巴结和其它淋巴滤泡的上皮中的专门吸收细胞(M细胞)所吸收。当抗原传输到滤泡内的免疫细胞时(例如霍乱弧菌),在淋巴滤泡内可能很容易杀伤进入淋巴组织的病原体,从而激发一个潜在的保护性免疫应答。换句话说,能够幸免于局部防御机制的病原微生物,则可能自淋巴滤泡播散,随后引起局部的或全身性疾病(例如:在免疫受损宿主中的沙门氏菌属和脊髓灰质炎病毒)。

分泌型IgA(sIgA)抗体直接对抗感染病原体的特异性毒力决定因素,它在整个的粘膜局部免疫中起着重要的作用。在多数情况下,粘膜的sIgA直接对抗感染病原体的相应的毒力决定因素,通过刺激粘膜sIgA水平的产生,有可能预防粘膜表面的最初感染。这样以来,分泌型IgA通过阻止粘附和/或克隆、中和表面活性毒素或防止入侵宿主细胞,可以防止病原体与粘膜表面的最初相互作用。

肠胃外注射灭活的整个细胞和整个病毒标本,在诱发抵抗病原体的保护性血清IgG和迟发性超敏反应中是有效的,在这些病原体的发病机理中有明显的血清阶段(例如伤寒沙门氏菌,乙型肝炎)。然而,肠胃外疫苗在诱发粘膜的sIgA应答时无效,并且对与粘膜表面相互作用但不入侵粘膜的细菌亦无效(例如:霍乱弧菌)。

如果抗原被提呈到派氏集合淋巴结内的T-淋巴细胞、B-淋巴细胞以及辅助细胞,那么口服免疫制剂就能有效地诱导特异的sIgA应答,在派氏集合淋巴结内,首先启动优先的IgA B-细胞发育。派氏集合淋巴结包含辅助T-(TH)细胞,它能介导B-细胞同型直接从IgM细胞转向IgA细胞。然后,B-细胞迁移至肠系膜淋巴结并且进行分化,进入胸导管及全身循环,随后种植在体内所有的内分泌组织中,包括消化道和呼吸道的固有层。然后成熟的浆细胞产生IgA,与膜结合的分泌成分形成复合体,随后被运输到粘膜表面,在粘膜表面与入侵的病原体相互作用。这种常见的粘膜免疫系统是应用活的口服疫苗和口服免疫制剂保护性对抗病原体的基础,这些病原体可通过首次与粘膜表面相互作用引起感染。

肠道细菌性疾病如霍乱、痢疾与埃希氏大肠杆菌有关的腹泻和伤寒热是发病和死亡的主要原因,尤其是在发展中国家,那里的卫生条件决不合适。在这几年中,已经研制和测试了针对这些病原体的几型疫苗,这些疫苗中有杀死整个细胞的、有对抗毒素亚单位的、也有使细菌毒力减毒的,它们有的是通过非肠道途径、有的是通过口服给予。由于细菌性腹泻性疾病引起的绝大多数的发病和死亡来自于霍乱弧菌和与霍乱有关的肠毒素病原体的感染(即产生霍乱样肠毒素的埃希氏大肠杆菌)。

埃希氏大肠杆菌株引起腹泻性疾病的机制有多种,其中包括产生一种或多种肠毒素。这些毒素中有一种称为热易变性肠毒素(LT)者,它在免疫学上和生理生化学上均与霍乱肠毒素有关。Spangler,Microbio1.Rev.56:622-647(1992)。

通过化学或发酵的基本加工过程制备合成肽的生产和纯化,所需的费用昂贵,这可能阻碍了它们作为口服疫苗的大规模应用。另一方面,在转基因植物中免疫原性蛋白的产生提供了一种经济可供选择的方法。已经努力尝试生产表达埃希氏大肠杆菌和突变型链球菌的细菌抗原的转基因植物。例如,Curtiss等(WO90/0248)证明了LT-B基因的向日葵的转化。而且也有在烟草和马铃薯植物中LT-B的表达,并且组装入GI-结合性五聚体中的报道,Haq等,Science.268:714-716(1995)。另外,Amtzen等(WO96/12801)公开了LT-A和LT-B独立和协调表达的载体,它们可以任意选择的包含一个SEKDEL微粒体滞留信号。用这些基因转化的烟草和马铃薯已经有了介绍,给小鼠和小鸡喂食转基因植物的提取物或原料块,并且显示针对LT的血清和粘膜免疫应答。用编码天然的LT-B亚单位的一个植物优选化的合成基因转化马铃薯,该天然LT-B亚单位带有一个21残基细菌信号肽。观察到食用转基因马铃薯片的小鼠,尽管没有完全保护任何东西,但血清和粘膜的抗LT-B水平升高。Mason等Vaccine.16:1336-1343,(1998)。

已经表明,在蛋白质的羧基端包含KDEL氨基酸序列者,能够通过植物ER滞留机制来加强对此种蛋白质的识别(见,如Munro等Cell.48:988-997,(1987))。然而,这种改变可能会因为其它因素而成问题,例如,在转化细胞中的蛋白质构象或蛋白质折叠,可能会干扰这种羧基末端信号到植物ER滞留机构的有效性。植物中产生的重组蛋白质中的关键生物特征的滞留,尤其是配体结合和抗原决定族的提呈,对在转基因植物中,可食用疫苗的成功产生是相当重要的。幸运的是,可能需要相对少量的蛋白质,原因在于它们的作用可通过免疫系统放大。

从转基因植物中获得的口服疫苗,有可能是针对包括人在内的动物肠毒素,提供一种既有效又便宜的诱发免疫应答的途径,包括分泌型免疫应答。从前应用天然的LT-A、LT-B或它们的CT及其相似的副本转化的转基因植物系统,清楚地表明植物的发育受到阻碍。例如,在烟草植物中已经表达的CT-A,可反复引起自发性的叶片病变,诱发与蛋白和高水平的水杨酸有关的致病机制。Beffa等,EMBO J.14:5753(1995)。因此,在ADP-核糖基异三GTP-结合蛋白中,CT-A和LT-A的酶活性,在植物细胞中是有活性的,并且可引起毒性症状。需要存在被证实的技术,即能够生产出健康的转基因植物,并且能够种植种子,此种子能够诱导所希望的的免疫应答,并且对植物没有明显的副作用。这种植物表达的蛋白,应该真正地减少毒性,而保证它们的免疫原性和/或辅佐性。本项发明直接应用新方法达到了这些目的。

发明的概况

本发明的一个目的,是提供埃希氏大肠杆菌热易变性突变菌和霍乱弧菌毒素多肽,以及编码这些多肽的多聚核苷酸。本发明的更进一步的目的是在植物细胞中,提供突变的LT和CT多肽,以便能够用植物细胞来治疗或预防埃希氏大肠杆菌和霍乱弧菌引起的疾病。本发明的另一个目的是提供与佐剂一样有用的多肽。通过下面所描述的一个或多个的实施例,来体现本发明的这些和其它的目的。

本发明的一个实施例是提供了一种多聚核苷酸,包括编码一个突变型埃希氏大肠杆菌热易变毒素(LT)A亚单位(LT-A)或突变型霍乱毒素(CT)A亚单位(CT-A)的一个核酸序列。与野生型的LT-A或CT-A多肽相比,突变型的LT-A或CT-A多肽的酶活性降低了,并且至少有一个多聚核苷酸的密码子改变一个植物优选化的密码子。

在本发明中的另一个实施例是,多聚核苷酸进一步包含有一个编码LTB亚单位(LT-B)或CTB亚单位(CT-B)的核酸序列。

本发明中的又一个实施例是,包含有编码LT-B或CT-B的一个核酸序列的多聚核苷酸中,至少包含一个可转变的密码子。可转变密码子是一个植物优选化的密码子。

本发明还有另一个实施例是,包含有编码LT-B的一个核酸序列的多聚核苷酸,见SEQ ID NO:46。

本发明另外一个实施例中,包含有编码CT-B的一个核酸序列的多聚核苷酸,见SEQ ID NO:48。

本发明另一个实施例是,包含有一个编码LT-B或CT-B的核酸序列的多聚核苷酸,与一个启动子可操作的相连。

本发明的另一个实施例是,有一个包含有编码LT-B或CT-B的核酸序列的核苷酸,它进一步包含一个烟草蚀刻病毒(TEV)-5′端未翻译区域,和/或一个微粒体滞留信号序列,如一个C-末端的SEKDEL序列(SEQ ID NO:59)。

在本发明的另一个实施例中,提供了一个编码LT-A或CT-A的多聚核苷酸,其中的LT-A或CT-A多肽,与野生型LT-A或CT-A相比,已减少了ADP-核糖基活性。

在本发明的一个实施例中,提供了一个编码一种突变型LT-A或CT-A多肽的一个多聚核苷酸,突变型的LT-A或CT-A多肽与野生型的LT-A或CT-A相比,其酶活性已下降。至少有一个多聚核苷酸的密码子,被转变成一个植物优选化的密码子。这个多聚核苷酸编码一个单氨基酸突变型的LT-A或CT-A多肽,或一个双氨基酸突变型LT-A或CT-A多肽。

本发明的另一个实施例是,提供了一个编码突变型LT-A和CT-A多肽的多聚核苷酸;与野生型的LT-A和CT-A多肽相比,突变型LT-A和CT-A多肽已经降低了酶活性。至少这个多聚核苷酸的一个密码子被变成了优先选用植物的密码子。从由氨基酸61、63、72、106和192组成的团体中选择的一个氨基酸上的突变构成了突变型LT-A和CT-A多肽,这个多聚核苷酸编码这个突变型LT-A和CT-A多肽。

本发明的另一个实施例是,提供了一个编码突变型LT-A和CT-A多肽的多聚核苷酸,与野生型的LT-A和CT-A多肽相比,突变型LT-A和CT-A多肽已经降低了酶活性。该多聚核苷酸的至少一个密码子被变成了优先选用植物的密码子。突变选自包括由一个氨基酸替换、一个氨基酸添加、一个氨基酸删除和一个氨基酸切断所的组。

本发明的还有一个实施例,是突变防止一个A亚基分裂成A1和A2片段。

本发明的另一个实施例是,多聚核苷酸序列列表,是选自序列列表SEQ ID NO:43,SEQ ID NO:44和SEQ ID NO:45。

本发明的另一个更深的实施例是,多聚核苷酸与一个植物的启动子可操作连接。

本发明的另一个实施例是,这个多聚核苷酸进一步由一个烟草花叶病毒(TMV)-5′未翻译区和/或土壤杆菌的至少一个侧翼T-DNA右侧边界区所构成。

还有另一个本发明的实施例是,提供了一种表达载体。该表达载体包含编码一个突变型LT-A或CT-A多肽的多聚核苷酸,与野生型的LT-A或CT-A多肽相比,突变型LT-A或CT-A多肽已经降低了酶活性,并且该多聚核苷酸的至少一个密码子改变为植物优选化的密码子。这个表达载体可能进一步包含一个可供选择的标记物,即一个大肠埃希氏菌复制端和/或一个根癌土壤杆菌复制端。本发明的另一个实施例是,提供了用这个表达载体转化的一个大肠埃希氏菌细胞或一个根癌土壤杆菌细胞,这个根癌土壤杆菌细胞可能进一步包含一个辅助Ti质粒。

本发明的另一个实施例是,提供了一种转基因植物细胞;这个转基因植物细胞包含一个编码一个突变型LT-A或CT-A多肽的多聚核苷酸,与野生型的LT-A或CT-A多肽相比,这个突变型LT-A或CT-A多肽已经降低了酶活性;并且这个多聚核苷酸至少有一个密码子被变成了优先选用植物的密码子。

本发明的还有一个实施例,即提供了一个转基因植物的种子;这个植物种子包含一个编码一个突变型LT-A或一个突变型CT-A的多聚核苷酸,其中,突变型LT-A或CT-A多肽与野生型的LT-A或CT-A多肽相比已经降低了酶活性。

本发明的另一个实施例是,提供了一个转基因真核细胞。这个细胞包含一个编码一个突变型LT-A或一个突变型CT-A的多聚核苷酸,与野生型的LT-A或CT-A多肽相比,其中突变型LT-A或突变型CT-A的多肽已经降低了酶活性。这个细胞可能是一个昆虫细胞或是一个植物细胞。如果这个细胞是一个植物细胞,这个多聚核苷酸就可能被整合入这个植物细胞的细胞核基因组内。另外,这个多聚核苷酸至少有一个密码子能够被变成优先选用植物的密码子。能够从由烟草、马铃薯、西红柿、胡萝卜和香蕉组成的植物细胞的团体中选择这种植物细胞。

本发明的另一个实施例是,该植物细胞包含一个多聚核苷酸,它进一步包含一个编码一个LT-B亚基或一个CT-B亚基的核酸序列。这个多聚核苷酸包含一个编码LT-B或CT-B核酸序列,可包含至少一个改变的密码子,这个改变的密码子是一个优先选用植物的密码子。在SEQ ID NO:46和SEQ ID NO:48中证明有一个包含编码LT-B的一个核酸序列的多聚核苷酸。这个多聚核苷酸可包含一个启动子、一个烟草花叶病毒(TEV)-5′未翻译区、和/或一个微粒体潴留信号序列,例如一个C-末端的SEKDEL(SEQID NO:59)序列。

本发明的另一个实施例是,一个植物细胞可包含一个多聚核苷酸,是其中LT-A或CT-A多肽编码相应的多聚核苷酸,与野生型的LT-A或CT-A相比,这种LT-A或CT-A多肽已经降低了ADP-核糖基化作用活性。

本发明的另一个实施例是,一种植物细胞包含一个多聚核苷酸,这个多聚核苷酸编码一个LT-A或CT-A多肽的一个氨基酸突变或一个LT-A或CT-A多肽的一个成对氨基酸突变。

本发明的还有另一个实施例是,这个植物细胞包含一个编码一个突变型LT-A或CT-A多肽的多聚核苷酸。这个多肽包含一个氨基酸上的一个突变,这个氨基酸是选自包括氨基酸61、63、72、106和192的组。这个突变可选自包括一个氨基酸替换、一个氨基酸添加、一个氨基酸删除和一个氨基酸切断所的组中。

本发明的另一个实施例是,该植物细胞包含一个编码一个突变型防止A亚单位分裂成A1和A2片段的多肽的多聚核苷酸。

本发明的另一个实施例是,该植物细胞包括一个在SEQ ID NO:43、SEQ ID NO:44、和SEQ ID NO:45中的多聚核苷酸。

本发明的还有另一个实施例是,植物细胞含有一个可以与一个植物启动子操作连接的多聚核苷酸。

本发明的另一个实施例是,提供了一种免疫原性的成分。这种免疫原性的成分包含一个植物细胞。这个植物细胞又包含编码突变型LT-A或突变型CT-A的一个多聚核苷酸,其中的突变型LT-A或突变型CT-A多肽与野生型的LT-A或CT-A多肽相比,其酶活性已经降低。这种植物细胞可能存在于包括水果、叶子、块茎、植物器官、种子的原生质体和植物的愈伤组织组成的团体中选择的植物组织中。这种免疫原性的成分可有这种植物细胞的水果汁或提取物。这种免疫原性的成分可进一步含有辅佐剂。

本发明的另一个实施例是,提供了一个激发动物或人免疫应答的方法,这其中包括给人或动物服用免疫原性成分的步骤。这种免疫原性成分可以口服,例如食用转基因植物的细胞。

本发明的另一个实施例是,提供了一个通过服用一种本发明中的多肽,激发免疫应答的方法,该多肽是从植物细胞中提纯的。

本发明中还有另一个实施例是,多肽的服用,是通过一组包括肌肉内、口服、皮内、腹膜内、皮下和鼻腔内给药的方法中选择出来的。也可服用佐剂。

本发明的另一个实施例是,通过服用本发明中的多肽激发免疫应答。这种免疫应答是从一组包括体液的、粘膜的、细胞的、体液和粘膜的体液和细胞的、粘膜和细胞的以及体液粘膜细胞的免疫应答中选择出来的。

本发明的另一个实施例是,提供了一种表达突变型LT-A或CT-A多肽的转基因植物。植物的生长速度与不产生LT-A或CT-A多肽的植物相同或相似。此外,该植物可能比产生野生型LT-A或CT-A多肽的植物的生长速度快。

本发明的另一个实施例是,转基因植物中包括突变型LT-A或CT-A多肽,降低酶的活性,例如,降低ADP-核糖基化作用的活性。本发明的另一个实施例,转基因植物可进一步表达LT-B或者CT-B多肽。

本发明的另一个实施例是,转基因植物是由本发明中的表达载体所转化的。

本发明的另一个实施例是,提供了一种包含有突变型LT-A或CT-A多肽的佐剂。与野生型的LT-A或CT-A多肽相比,该突变型LT-A或CT-A多肽,可降低酶的活性,例如,降低ADP-核糖基化作用的活性。而佐剂中进一步包含有LT-B或者CT-B多肽。

本发明的另一个实施例是,真核细胞可表达多肽佐剂,该真核细胞是被包含有编码突变型LT-A或者突变型CT-A的多聚核苷酸所转化的。该多聚核苷酸中至少有一个密码子被一个植物优选化的密码子所改变,该细胞可以是一种植物细胞。

本发明还有另一个实施例是,佐剂是口服应用的。该佐剂可以与免疫原性成分分开服用,或者也可以与免疫原性成分同时服用。

本发明的另一个实施例是,编码突变型LT-A或CT-A多肽的多聚核苷酸,被一个编码抗原的多聚核苷酸所融合。该抗原可是从一组包括一种移生性抗原、一种病毒性抗原、一个病毒性抗原的抗原决定簇和一个移生性抗原的抗原决定簇中选择出来的。这种融合的多聚核苷酸可在一种真核细胞中得以表达,例如一种植物细胞。

正如此处所应用的,“抗原”是一个大分子的物质,有能力在人或动物中激发免疫应答。

“抗原决定簇”是抗原的一个部分,包括与抗体相结合的特定部位。

“移生性抗原”或者“病毒性抗原”是一种致病微生物的抗原,该致病微生物与这种微生物移生或侵入它的宿主的能力有关。

“多聚核苷酸”、“核酸”等是编码多肽的多聚核苷酸。多聚核苷酸或者核酸均可能包含有内含子、标记基因、信号序列、调节元件,如启动子、增强子和终止序列等。

“表达载体”是一种质粒,例如pBR322、pUC或ColEl;或一种病毒如腺病毒、Sindbis病毒、猿病毒40,α病毒载体以及细胞巨化病毒和逆转录病毒的载体,例如小鼠肉瘤病毒、鼠乳腺癌病毒、莫洛尼鼠白血病病毒和劳斯肉瘤病毒。也可应用细菌性载体,例如沙门氏菌属、小肠结肠子尔赞氏菌、志贺氏痢疾杆菌属、霍乱弧菌、分支杆菌株BCG、李斯特单细胞基因株。微染色体,例如MC和MCI,抗菌素、病毒颗粒、病毒样颗粒,装配型质粒(质粒)和复制子也能够被用作表达载体。更可取地是,一个表达质粒有转化真核细胞的能力,该真核细胞包括诸如植物组织的细胞等。

“食物”和“食用性植物”等是指可以作为营养来源或作为膳食补充,而被动物或人类直接摄取的任何植物,食用性植物包括适于被哺乳动物(包括人类)或其它动物摄取的植物或从植物中获取的任何物质,该术语指包括可以直接喂养动物的未加工植物,也包括动物和人类食用的加工植物。

“免疫应答”包括宿主对抗原发生的反应。体液免疫表现为针对抗原发生反应而产生抗体,细胞免疫应答包括产生T辅助细胞(CD4+)和细胞毒T细胞(CD8+)等。粘膜免疫应答(或分泌性免疫应答)产生分泌性抗体(sIgA)。一个免疫应答可以包括上述一种或多种反应。

“免疫原”是指可以诱发免疫应答的抗原。食用真核生物表达的抗原,更适于诱发人类或动物产生免疫应答。“免疫化合物”含有一种或多种免疫原,并随机地与载体、佐剂等联合在一起。

“融合蛋白”是这样一种蛋白质,它包含至少2、3、4、5、10或更多相同或不同的氨基酸序列,这些氨基酸序列与多肽相连,并不天然地表达为某单一的蛋白。融合蛋白可以通过已知的基因工程技术获得。

有关附图的简单描述

图1描述了编码LT-A的经植物优选化的核苷序列。划线者表示从野生型(即植物固有的密码子)改变的密码子。含一个NcoI限制性内切酶位点的GTG密码子含有一个启始因子蛋氨酸密码子。位于244位的密码子转变为AAG,形成sLTA-K63突变型。

图2显示了用于组装适于在植物中的表达的LT-A基因的正反寡聚物。

图3根据本发明的原则构建的各种质粒的表达盒。在土壤杆菌介导的转化中,左侧边界(LB)与右侧边界(RB)之间的DNA被稳定地整合入植物细胞核基因组。Npt2的表达盒可以对卡那霉素基质上的转化植物细胞进行选择。5’NOS:土壤杆菌的蓝曙红合成酶启动子;NPT2:新霉素磷酸转移酶的编码序列;3’Ag7:3’土壤杆菌基因7的侧区;5’35S:含重复增强子的花椰菜花叶病毒35S启动子;sLTA,植物优选化合成的LT-A编码序列;3’PIN2:pin2西红柿蛋白酶抑制剂II基因的3’侧区;sLT-B:植物优选化合成的LT-B编码序列;5’E8:西红柿E8基因的启动子;3’VSP:大豆vspb植物生长储存蛋白P基因的3’侧区;TEV5’UTR:烟草病毒RNA5’端非翻译区域;TMV5’UTR:烟草花叶病毒RNA5’端非翻译区域。选择性限制性内切酶位点已标注。

图4A表示了植物优选化的CT-A核苷序列及其编码的氨基酸序列。野生型CT-A有二个隐藏的poly-A信号序列,一个隐藏的5’内含子片段识别序列,以及14“CG”’潜在的甲基化位点。植物优选化序列没有隐藏的信号序列和CG序列。图4B表示了一植物优选化的CT-A-K63突变核苷序列及其编码的氨基酸序列。图4C表示了一植物优选化的CT-A-R73突变核苷序列及其编码的氨基酸序列。图4D表示了一植物优选化的CT-A-G192突变核苷序列及其编码的氨基酸序列。

图5表示了一种用于构建Pth110及相应的原始细菌LT-B基因(N)的植物优选化的LT-B基因(S)。S序列中用粗体表示的核苷发生了改变,其氨基酸序列标示于N序列下方。原始基因中使AUUUA不稳定的mRNA的编码序列用下划线表示。原始基因中假定的多腺苷酸化信号用双下划线表示。成熟的LT-B蛋白(Ala)的第一位氨基酸用粗体下划线表示。前端的21个残基组成细菌的信号肽,用斜体表示。为了在5’端制造一个NcoI限制性内切酶位点,编码Asn的第二密码子AAT变为编码Val的GTG。选择性内切酶位点已标注。

图6表示了一个编码CT-B的核苷序列,其在植物中的表达得到优化。在野生型中发现了一个RNA聚合酶II终止序列和9个CG潜在甲基化位点。在植物优选化基因中没有隐藏的信号序列或CG序列。

图7表示pNV110的质粒图

图8表示pHB117的质粒图

图9表示了用二种不同的抗体对SLT103西红柿水果进行的Western印迹杂交分析,这二种抗体是:对LT-A具有特异性的小鼠单克隆和针对LT全毒素产生的山羊多克隆抗血清。

图10表示pQEK63的质粒图

图11表示pHB306的质粒图

图12表示pvspSP-LTB的质粒图

图13表示pTHαS110的质粒图

图14表示pSLT407的质粒图

图15表示的质粒含有能联合表达LT-A-R72和LT-B的二顺反子盒,LT-B多核苷上游有一个IRES序列。

对本发明的详细描述免疫原性多肽

热易变毒素(LT)是一种A-B型ADP-核糖基化毒素,含有5个相同的11.6kDa B(结合)亚单位组成一环形的五聚体,以及一个27kDa的A(酶活性)亚单位,并裂解为LT-A1和LT-A2。Sixma等,Nature.351:371-377(1991).其组成的LT毒素称为LT全毒素。B亚单位(LT-B)介导毒素与肠粘膜细胞表面的神经节苷酯GM1结合,口服LT-B可以诱导人类和动物的血清IgG与粘膜IgA反应,并能用作佐剂。LT-A1片段被细胞吞噬,引起氯化物分泌及随后的肠细胞水分丢失。LT-A1具有介导ADP-核糖转化为异三聚体GTP-结合蛋白的酶活性,从而持续产生cAMP导致过度的氯化物分泌。正是这种ADP-核糖转化酶活性导致了它们及其相关毒素分子的毒性。埃希氏大肠杆菌(ETEC)或其它微生物包括转基因生物,能表达LT-A和LT-B或其突变基因,它们可以产生LT及其突变体。

编码LT-A亚单位的核苷序列已有报道。Yamamoto等,J Biol.Chem.259:5037-5044(1984).其推导出的LT-A氨基酸序列含258个残基,包括一个含18个残基的信号肽。同样,编码LT-B亚单位的核苷序列也有报道。Yamamoto等,J Bacteriol.155:728-733(1983).该蛋白最初合成时是含124残基的蛋白,后来失去其信号肽,成为成熟的含103残基的蛋白。

霍乱毒素(CT)和LT相似,包含一个A亚单位和5个相同的B亚单位,组成的霍乱毒素被成为CT全毒素。为了具有酶活性,CT-A亚单位必须被切割以产生A1和A2片段。天然的CT-B亚单位在动物和人类中能诱导免疫应答,可以用做佐剂。Bergquist等,Infect.Immun.65:2676-2684(1997).霍乱弧菌和其它微生物(包括转基因生物)能表达CT-A(ctxA)和CT-B(ctxB)基因,它们可以产生CT及其突变物(Mekalanos等Nature.306:551-7(1983))。

LT和CT内毒素在结构、功能和免疫原性方面彼此相关,相应的抗体与二种毒素均起作用(Spangler 1992).LT和CT是强大的粘膜免疫原,具有强大的粘膜佐剂特性。Clement等Vaccine 6:269-277(1988),Holmgren等Vaccine.11:1179-1184(1993).因此,同时存在少量LT或CT可以增强对其它抗原的免疫应答。

与野生型亚单位相比,LT或CT A亚单位的突变可以降低或消除其酶活性,包括ADP-核糖基化作用活性。一般认为A亚单位活性的降低,与转基因植物突变多肽表达使毒性降低或消除有关,这不需要特殊的理论支持。因此,LT-A和CT-A亚单位发生突变的LT和CT多肽,在植物中的表达要大于天然亚单位。此外,与野生型全毒素及野生型亚单位相比,具有该突变的LT和CT全毒素及其亚单位,在植物中更易表达,积累的浓度更高,因此,根据本发明,转基因植物可以增强免疫原性和免疫辅佐性。所以,发明包含了在LT-A、CT-A、LT或CT多肽产生一个或多个突变,即氨基酸的替代、增加、缺失、切断及组合。更优越的是,与野生型多肽相比,突变降低或消除了多肽的酶活性。比之又优越的是,与野生型多肽相比,突变减小或消除了多肽的ADP-核糖基化作用活性。此处,“减小”指ADP-核糖基化作用活性降低至少50%,最好是降低60%、70%、80%、90%甚至100%;“消除”指样品中可测到的ADP-核糖基化作用活性不超过5%。发明中多肽的ADP-核糖基化作用活性可以通过下列方法测定,如Collier和Kandel用小麦细菌提取物的过程,该提取物在延长因子2中富集。J.Biol.Chem.246:1496-1530(1971).

LT-A亚单位的突变导致酶活性降低或消失,进而使植物的毒性降低,该突变已经被确认。Di Tommaso等Infec.Immun.64:974-979(1996).Fontana等Infect.Immun.63:2365-2360(1995);Pizza等J.Exp.Med.180:2147-2153(1994)。LT-A亚单位活性部位的一个氨基酸被替代(即S63K或LT-K63)可以使LT的酶活性(及毒性)降低106倍,但保留了免疫辅佐性。LT-K63突变在小鼠H.pylorih抗原疫苗中被作为佐剂。Ghiara等Infec.Immun.65:4996-5002(1997).同样,在LT-A剪切位点内的一个氨基酸(即R192G或LTG192)被替代后,可以消除LT的ADP-核糖基转移酶的活性,而保留其免疫辅佐性。Dickinson & Clement,Infec.Immun 63:1617-1623(1995).LT-R72是设计的另一LT突变,它是在LT-A的活性位点发生一个氨基酸替代,使酶活性可测得地降低,而保留了粘膜辅佐活性。Giuliani等J.Exp.Med.187:1123-1132(1998);Rappuoli,LTK63 and LTR72:免疫原和粘膜佐剂,WHO/NIH关于粘膜用疫苗的评价的研讨会议,NIH,Bethesda,MD,1998年2月9日。CT毒素分子(CT-K63和CT-S106)的二个突变,降低了ADP-核糖基化作用的活性。Douce等Infec.Immun.65:2821-2828(1997).CT-A活性位点(S63到K)的单个氨基酸替换,即CTK63,可降低CT的酶活性(以及毒性),而保留了其免疫活性(Fontana等1995)。同样,CT的A亚单位(S61F)的一个突变,可激发小鼠的免疫应答。Yamamoto,Proc.Natl.Acad.Sci.USA.94:5267-5272(1997).

本发明中,CT-A或LT-A多肽最好包含了61、63、72、106或192氨基酸的一个突变,然而任何降低或消除CT-A或LT-A多肽酶活性(尤其是ADP-核糖基化的活性)的突变,都是本发明的考虑。此外,防止A亚单位被剪切为片段的任何突变,也是本发明考虑的。与野生LT-A序列相比,本发明的一个多肽包括一个单突变、双突变或者多突变(一个氨基酸的添加、缺失或替换,或一个氨基酸的切断)。例如:图4B表示了一植物优选化的CT-A-K63突变核苷序列及其编码的氨基酸序列(SEQ ID NO:43)。图4C表示了一植物优选化CT-A-R73突变核苷序列及其编码的氨基酸序列(SEQID NO:44)。图4D表示了一植物优选化的CT-A-G192突变核苷序列及其编码的氨基酸序列(SEQ ID NO:45)。

埃希氏大肠杆菌和霍乱弧菌的各种菌株和分离菌出现,其中任何菌株和分离菌的LT或CT多肽都可以用于本发明。发明的LT-A和CT-A多肽可以是全长的多肽、多肽的片段、或是截短的LT-A或CT-A多肽片段,如:LT-A或CT-A多肽的一个片段,可以包括LT-A或CT-A多肽的6、10、25、50、75、100、150、200、250、300或350氨基酸。

此发明的LT-A或CT-A多肽可以用截短的LT-B或CT-B多肽合成,也可以由LT-B或CT-B多肽片段合成,或由全长的LT-B或CT-B多肽合成。如:LT-B或CT-B多肽的一个片段可以包括LT-B或CT-B多肽的6、10、25、50、75、100、125或150氨基酸。LT-A和LT-B或CT-B可以来自相同或不同的菌株。此外,该发明中,从相同或不同菌株得到的一个或更多的LT-A、LT-B、CT-A或CT-B(如2、3、4、5、10、25或50)多肽可以被结合起来。

本发明的多肽含有至少一个抗原决定簇,可以被抗LT或抗CT抗体识别。多肽中的抗原决定簇可以通过多种方法确定,例如:该发明的一个多肽可以用单克隆抗体免疫亲和纯化法进行分离,然后对分离的多肽序列进行筛查。共同涵盖整个多肽序列的一系列短肽,可以通过蛋白裂解制备。例如,从50-mer多肽片段开始,可以用抗LT或抗CT的酶联免疫法(ELISA)检测每一个片段上的抗原决定簇,逐渐地,可以从已经确定的50-mer检测更小的片段和重叠的片段,从而描绘出感兴趣的抗原决定簇。

令人满意的是,本发明中的多肽可以通过重组来制取。利用这一领域中很普遍的技术,我们能够将一个编码多肽的多聚核苷酸,导入一个能在一定表达系统中表达的表达载体中。对于这一技术来说,有许多细菌的、酵母的、植物的、哺乳动物的和昆虫的表达系统,都是可以应用的。本发明中的多肽,可以应用这一领域中最常用的方法,如免疫亲合纯化法,从真核细胞如植物细胞中分离、纯化出来。此外,编码本发明中多肽的多聚核苷酸,能在细胞外翻译体系中进行翻译。

如果需要,本发明中的多肽,可以被制成一个融合蛋白,即也能包含其它的氨基酸序列,如联接氨基酸或者信号序列,还有在蛋白质纯化中很有用的配体,例如谷胱甘肽—S—转移酶、组氨酸标记物和葡萄球菌A蛋白。此外,一个或多个抗原如LT—B、CT—B、移生性抗原、病毒性抗原,以及它们的抗原决定簇,和其它能够引起人或动物的分泌性免疫反应的成分,都可能在一个融合蛋白中呈现出来。在一个融合蛋白中,可呈现不止一个的CT或LT多肽。若有必要,在一个融合蛋白中,可以包含有来自不同LT或CT株或分离株的、LT或者CT多肽的重组体。LT与CT多聚核苷酸

本发明中的多聚核苷酸,包含小于一个整细菌的基因组,而且可以是单链DNA,也可以是双链DNA。有一点很有利的是,多聚核苷酸可以从其它成分,如蛋白质中纯化出来。多聚核苷酸编码上述的CT和LT多肽。本发明中的多聚核苷酸,可以从如培养的大肠杆菌或霍乱弧菌等的基因组文库中,分离出来。例如PCR的扩增方法,可以用编码多肽的细菌的基因组RNA或cDNA,来扩增多聚核苷酸。多聚核苷酸也可以在实验室中合成,比如使用自动合成仪。

多聚核苷酸可以包括编码能自然生成的CT和LT多肽的序列,或编码CT和LT的“已变”序列,即不会在自然状态下产生的序列。若需要的话,可以将多聚核苷酸克隆到一个表达载体上,然后转入诸如细菌、酵母、昆虫、植物或哺乳动物的细胞中,这样,本发明中的多肽就能够在培养的细胞中表达,并被分离出来。多聚核苷酸还可以被包含在一个质粒中,如pBR322,PUC,或ColE1,或一个腺病毒载体中,如腺病毒2型载体和5型载体。此外,也可以使用其它的载体,包括但不仅限于辛德比斯病毒、猴病毒40、甲病毒载体、巨细胞病毒和逆转录病毒载体,如鼠肉瘤病毒、小鼠乳腺瘤病毒、Moloney鼠白血病病毒和Rous肉瘤病毒;沙门氏菌、小肠耶尔森式菌、志贺式菌、霍乱弧菌、微型染色体株BCG、单细胞李斯特菌和土壤杆菌等细菌载体可以使用。微型染色体,如MC和MCI、噬菌体、病毒颗粒、病毒样颗粒、装配型质粒(引入了γ噬菌体cos位点的质粒)和复制子(在细胞内能够在自我调控下复制的遗传因子)也能被使用。

利用传统技术的定点诱变,可以造成LT或CT多聚核苷酸的一个或多个突变。一个包括单突变、双突变或更多突变位点的突变多聚核苷酸文库,也能用随机诱变的技术得到。诱变技术通常描述在如分子生物现行协议,Ausubel,F.等eds.,John Wiley(1998)中,随机诱变(也指“DNA移动”)是Stemmer等的;U.S Pat.No.5,605,793,5,811,238,5,830,721,5,834,252和5,837,458的主题。一个LT-A或CT-A的突变的多聚核苷酸,也能够在实验室中合成。

较理想的是,本发明中的CT或LT的多聚核苷酸,可以被设计成为能应用植物优选化的密码子,系统地替换掉细菌的密码子。比如,LT或CT的编码序列,或其一部分的密码子,能应用它的使用率加以分析。然后,可以拿它与特定植物中的“富产”蛋白的密码子使用的频率相比较。例如见WO96/12801。在植物中使用频率低或根本不被使用的密码子,可以通过诸如定点诱变或实验室合成的技术来修饰。修饰的密码子是“已变的”,以使其可以符合在植物中大量表达的蛋白的基因所采用的密码子。

这样一个至少将一个密码子改变为植物优选化密码子的多聚核苷酸,就会成为包含不同于野生型序列的多聚核苷酸,因为它至少包含一个植物优先选择的密码子。依照本发明中的突变的核苷酸序列,与其所来源的野生型序列应至少有50%的同源性,当然60%、70%、80%或90%更为理想。另外,带有可能的poly-A信号序列的密码子片段,可以被修改成其他携带同一氨基酸信号的密码子。进一步说,隐蔽的信号序列和潜在的甲基化位点,也能够被修改,见例1和WO96/12801。也可见,图-4B为一个植物优选化的CT-A-K63突变核苷酸序列,及其编码的氨基酸序列;图-4C为一个植物最优选化的CT-A-R72突变核苷酸序列,及其编码的氨基酸序列;图-4D为一个植物最优选化的CT-A-G192突变核苷酸序列,及其编码的氨基酸序列;图-4B为一个植物最优选化的CT-A-K63突变核苷酸序列,及其编码的氨基酸序列;图-6所示为一段编码CT-B的核苷酸序列,它已为在植物中表达做了最优选化处理。对植物优选化密码子的替换,以使其符合细菌优选化的密码子,增强CT和/或LT多聚核苷酸的表达量,并且使其编码的多肽,在植物的特定部位,例如在果实或块茎中的表达更容易了。一个具有至少1,2,3,4,5,10,20,5个或更多的,修改为植物优选化密码子的CT或LT多聚核苷酸序列,被称为植物最优选化。最好植物最优选化还包括修改编码可能的信号序列的密码子,内含子剪接位点和甲基化位点。表达载体

如果需要,本发明中的LT或CT多聚核苷酸,可以克隆到一个表达载体上,并转入如细菌、酵母、昆虫、植物或哺乳动物的细胞,这样,本发明中的多肽就能够在培养的细胞或植株中表达,并被分离出来了。上述多聚核苷酸也可以被包含在一个质粒、一个病毒、一个细菌载体,微型染色体如MC和MCI、噬菌体、病毒颗粒、病毒样颗粒、装配型质粒(引入了γ噬菌体cos位点的质粒)和复制子(在细胞内能够在自我调控下复制的遗传因子)中,如前述及。

最好,一个包含本发明中多聚核苷酸的表达载体,有一个可操作连接的在植物功能启动子的LT或CT编码序列。优选的植物启动子包括花椰菜花叶病毒35S,patatin,mas,和颗粒状结合淀粉合成酶启动子。其它可以使用的启动子和增强子下面列出。一个特别优选的启动子,是具有双重增强子的花椰菜花叶病毒35S启动子。一段优选的多聚核苷酸序列,包括一段烟草花叶病毒(TMV)5′非翻译区(UTR)(Ω),或启动子与一段多聚核苷酸序列之间的片段。一段烟草花叶病毒TMV的5′非翻译区,使编码序列的翻译更容易了。一段多聚核苷酸,还可包含一段烟草花叶病毒3′非翻译区,或能够进一步令翻译更容易化的片段。Zeyenko等FEBS lett.354:271-273(1994);Leathers等Mol.Cell.Biol.13:5331-5347(1993);Nucl.Aids Res.20:4631-4638。

一段本发明中的LT-A或CT-A多聚核苷酸,还可以被可操作的连到一个在植物中起作用的启动子上,也能够人工连到一个表达载体中的一段编码LT-B或CT-B的多聚核苷酸上。编码LT-B或CT-B亚单位的多聚核苷酸,可以可操作地连接到它自己的启动子,不同于A亚单位的启动子。在本发明的最佳实施例中,多聚核苷酸应具有一段烟草蚀刻病毒(TEV)的5′非翻译区,这一片段在LT-B或CT-B多聚核苷酸启动子,与LT-B或CT-B的增加翻译效率的多聚核苷酸序列之间。此外,这段多聚核苷酸,还能够带有一段烟草蚀刻病毒的多聚腺苷酸(A)尾。Gallie等,Gene.165:233-238(1995);Carrington等J.Virol.64:1590-1597(1990)。并且,一段本发明中的多聚核苷酸,能够编码一段微粒体保留信号序列,例如SEKDEL(SEQ ID NO:59),为的是延长所表达的多肽在细胞内的保留时间,比方说全毒素的进一步装配。见WO96/12801。

一些可用来表达结构基因的、典型的、在植物中起作用的启动子如下:;U.S Pat.No.5,352,605和;U.S Pat.No.5,530,196-CaMV 35S和196S启动子;U.S Pat.No.5,436,393-patatin启动子;U.SPat.No.5,436,393-B33来源于茄属植物tuberosum的一个patatin基因的启动子序列,并且引起块茎特异性表达序列,融合到B33启动子;WO 94/24298-西红柿E8启动子;U.S Pat.No.5,556,653-西红柿果实启动子;U.S Pat.No.5,614,399和5,510,474-植物泛化蛋白启动子系统;U.S Pat.No.5,824,865脱落酸应答基因表达的-5′顺式调节因子;U.S Pat.No.5,824,857-badnavirus、rice tungrobacilliform virus(RTBV);U.S Pat.No.5,789,214-化学诱导的启动子片段,来自烟草PR-la基因编码区附近的5′侧区;U.S Pat.No.5,783,394-raspberry drul启动子;WO98/31812草莓启动子和基因;U.S Pat.No.5,773,697-napin启动子、phaseolin启动子和DC3启动子;U.S Pat.No.5,723,765-LEA启动子;U.S Pat.No.5,723,757-5′转录调节下沉器官特异性表达的区域;U.S Pat.No.5,723,751-与共同基序序列,尤其是作为顺式因素启动子的Iwt和PA基序相关的G-盒,它调节异质性基因,在转基因植物中的表达;U.SPat.No.5,633,440-P119启动子及其应用;U.S Pat.No.5,608,144-2组植物启动子序列;U.S Pat.No.5,608,143-来自玉米、矮牵牛花和烟草几种基因衍生来的核酸启动子片段;U.S Pat.No.5,391,725-豌豆植物,pisum sativum中来自叶绿体GS2谷氨酰胺合成酶核酸基因的,和来自细胞质GS3谷氨酰胺合成酶两个核酸基因的启动子序列;U.S Pat.No.5,378,619-来自flagwort镶嵌病毒(FMV)的全长转录启动子;U.S Pat.No.5,689,040-异柠檬酸裂合酶启动子;U.SPat.No.5,633,438-小苞子特异性调节因素;U.S Pat.No.5,595,896-异质性基因在转基因植物中的表达,和应用植物天门冬酰胺合成酶启动子的植物细胞;U.S Pat.No.4,771,002-驱动一个1450碱基TR转录产物,在章鱼肉碱型花冠菌瘿肿瘤中表达的启动子区域;U.SPat.No.4,962,028-来自1,5二磷酸核酮糖羧化酶小亚单位基因的启动子序列;U.S Pat.No.5,491,288-阿布属组蛋白H4启动子;U.SPat.No.5,767,363-种子特异性植物启动子;U.S Pat.No.5,023,179-2lbp启动子因素,它能将其在根部表达的能力赋予一个通常只在绿色组织中发挥作用的rbcS-3A启动子;U.S Pat.No.5,792,925-与植物尤其是根中有关的DNA序列组织优先转录的启动子;U.SPat.No.5,689,053-brassica sp.多聚半乳糖醛酸酶启动子;U.SPat.No.5,824,863-种子皮特异的隐藏的启动子区域;U.S Pat.No.5,689,044-自烟草PR-la基因分离的化学合成的核酸启动子片段,它可以应用benzo-1,2,3-thiadiazole,异烟酸复合物或水杨酸复合物诱导合成;U.S Pat.No.5,654,414-自黄瓜壳多糖酶/溶菌酶基因分离的启动子片段,它可以通过应用benzo-1,2,3-thiadiazole诱导合成;U.S Pat.No.5,824,872-来自烟草的结构启动子,它至少在卵巢、花、未成熟胚胎、成熟胚胎、种子、茎干、叶子和根组织中有直接表达;U.S Pat.No.5,223,419-植物中基因表达的改变;U.SPat.No.5,290,924-在单子叶植物中基因表达的重组启动子;WO95/21248-应用TMV过度生产肽和蛋白质的方法;WO98/05199-含有嫩枝分裂组织特异的启动子和调节序列的核酸;EP-B-0122791-菜豆球蛋白启动子和结构基因;U.S Pat.No.5,097,025-植物启动子(sub domain of CaMV 35S);WO94/24294-应用西红柿E8-衍生的启动子表达异质性基因,例如成熟水果中的5-腺苷甲硫氨酸水解酶;U.S Pat.No.5,801,027-应用反式作用蛋白控制转基因植物中基因表达的方法;U.S Pat.No.5,821,398-编码合成的植物启动子和西红柿Adh2酶的DNA分子;WO97/47756-合成的植物核心启动子和上游调节因子;U.S Pat.No.5,684,239-有双子叶植物外伤诱导启动子的单子叶植物;U.S Pat.No.5,110,732-植物中选择的基因表达;U.S Pat.No.5,106,739-CaMV 35S增强的mannopine合酶启动子和应用合酶的方法;U.S Pat.No.5,420,034-种子特异性的转录调节;U.S Pat.No.5,623,067-种子特异性的启动子区;U.S Pat.No.5,139,954-小麦的DNA启动子片段;WO95/14098-植物中使用的空想调节区和基因盒;WO90/13658-基因产量达高水平;U.S Pat.No.5,670,349-HM6启动子表达系统和张贴在植物和植物细胞培养中收获的基因产量;U.S Pat.No.5,712,112-在植物中含有α淀粉酶基因启动子区的基因表达系统。

更可取的是,表达载体含有一个或多个增强子。本发明中能够应用的一些增强子列于下面:U.S Pat.No.5,424,200和U.S Pat.No.5,196,525-CaMV 35S增强子序列;U.S Pat.No.5,359,142,U.SPat.No.5,322,938,U.S Pat.No.5,164,316,和U.S Pat.No.5,424,200-衔接复制的CaMV 35S增强子;WO 87/07664-TMV的Ω′区;WO98/14604-PAT1基因的内含子1和/或内含子2;U.S Pat.No.5,593,874-HSP70内含子,存在于植物中的空想基因增强子表达的未翻译前导序列;U.S Pat.No.5,710,267,U.S Pat.No.5,573,932,和U.S Pat.No.5,837,849-能够与OCS转录因子结合的植物增强子因素;U.S Pat.No.5,290,924-玉米Adh1内含子;JP 8256777-翻译增强子序列。

本发明中的表达载体,也可以包括一个在植物宿主中起作用的转录终止序列。典型的终止序列包括胭脂合成酶(nos)(Bevan,NucleicAcids Res.,12:8711-8721(1984)、营养储存蛋白(vsp)(Mason等,Plant Cell.5:241-251(1993)与抑制性蛋白酶(pin2)(An等,1989)终止序列。

比较理想的情况是,一个表达载体,除包含有一个本发明中的多聚核苷酸外,还含有一个筛选标记。一些筛选标记的例子包括卡那霉素基因、β-葡糖醛酸酶基因、新霉素转移酶基因、tfdA基因、Path、和bar基因,一个表达载体也可以带有一个埃希氏大肠杆菌的复制起点,如ColE1或pBR322复制起点,这样可以令载体在大肠杆菌中较易复制。本发明的表达载体还可包括一个根癌土壤杆菌复制起点,使得那里的载体可以复制,如当根癌土壤杆菌用于植物转移时。

本发明中的表达载体,可以被设计成包括能在植物特定部分、引起多肽表达的启动子。例如,包含花椰菜花叶病毒35S启动子和一段本发明中的多聚核苷酸的表达载体,可被用来对植株进行转化,如此,一个由本发明中的多聚核苷酸表达的多肽,就可以在植物的叶子中制造了。这还有赖于多肽表达的快速分析和多肽产物的生化鉴定。

由一个2S白蛋白启动子,和一段本发明中的多聚核苷酸组成的表达载体,能够引起种子特异性多聚核苷酸表达,从而导致本发明中多肽在种子组织中的生产,如canola(Brassica napus)种子。

包含一个patatin启动子或大豆vspB启动子和一段本发明中多聚核苷酸的表达载体,可以引起块茎特异性多聚核苷酸表达和多肽在块茎组织中特异地制作,如马铃薯(Solanum tuberosum)。

包含成熟果实特异启动子,和本发明中多聚核苷酸的表达载体,能够用来转化植株,使其在成熟的果实中表达本发明中的多肽,如香蕉(Musa acuminata)。

为表达CT或LT全毒素而最优化的表达载体,也能够被构建。比如,LT和CT的A和B亚单位以1∶5的比例连接。因此,在转基因植物中,这些编码LT和CT的多聚核苷酸在转录水平上,会被调节为与在转化的细胞A和B亚单位间,mRNA的比例近似。这可以通过在表达载体中为A和B亚单位使用不同效率的启动子来实现。见WO96/12801。多聚核苷酸和表达载体对植物的转化和再生

本发明中的另一个方面,是含有本发明的一个多聚核苷酸的真核细胞或原核细胞,例如被转化的真核或原核细胞。最好是植物细胞,但其他诸如昆虫、哺乳动物和细菌的细胞也可考虑。只要使用植物细胞,那么就应该将本发明中的多聚核苷酸,尽量注入核染色体组,以保证其稳定性和在种系中的传代。本发明中的核苷酸在某些情况下也可以游离于染色体之外,如在线粒体、叶绿体或胞质内。将一段多聚核苷酸,转入昆虫细胞的较好的方式是通过病毒的运送,这样可以使复制在染色体外进行,或者通过整合。将多聚核苷酸转入哺乳动物细胞和细菌细胞的方法已为人所熟知。

被转化的植物细胞,最好是来自一种可食用的植物,或是能将所需的蛋白或多肽表达为易分离的形式。典型的植物细胞包括烟草、香蕉、番茄、马铃薯、胡萝卜、大豆、谷类、稻、小麦和向日葵。用通过转基因植物繁殖所获得的多聚核苷酸转化的转基因植物种子,仍是本发明更深刻的方面。

根癌土壤杆菌转化技术,是有效转移外源核酸进入植物的基本方法。这种方法是以花冠菌瘿的病原体为基础,可侵袭大部分的双子叶植物和裸子植物。靶植物宿主易遭受感染,根癌土壤杆菌系统可提供高速率的转化,和可预测的染色体整合模式。

通常感染植物受伤处的土壤杆菌,携带有一个巨大的染色体外遗传因子,叫做Ti(根癌诱导)质粒。Ti质粒包含有诱导根癌所需的两个区。一个区是T-DNA(转移DNA),它是在转入植物基因组DNA中,起主要作用的DNA序列。另一区是vir(毒力)区,它在转移机制中起影响作用。虽然稳定的转化需要vir区,但vir区DNA本身,并不被转移入受感染的植物。通过土壤杆菌感染和继起的T-DNA转移导致的植物细胞转化已多见于各类文献。Bevan,等Int.Rev.Genet.16:357(1982)。土壤杆菌系统已高度发展,成为了将DNA转入植物各种组织基因组的常规方法。例如,烟草、西红柿、向日葵、棉花、油菜籽、马铃薯、白杨和大豆都可以通过土壤杆菌系统来完成转化。

当使用土壤杆菌介导本发明中多聚核苷酸转化入植物细胞时,如果有其T-DNA边缘的侧翼区则较为理想。T-DNA的边缘区,是参与T-DNA转入植物基因组过程的、23到25个碱基对的同向重复序列。T-DNA的侧翼边缘区,限定了T-DNA的范围,并表示多聚核苷酸将被转移和整合入植物基因组中。最好本发明中一段多聚核苷酸或表达载体,包括至少一个T-DNA边缘,特别是右边缘。此外,将被转入植物基因组的多聚核苷酸,夹在T-DNA左右边缘之间。边缘区可以通过自任何Ti或Ri(见下)质粒所获得的传统方式,加在一个表达载体或一段多聚核苷酸上,并且也可以通过任何传统方式,加在一个表达载体或一段多聚核苷酸上。

典型地,一个包含将被转化多聚核苷酸的载体,首先会在埃希氏大肠杆菌内建造并复制。这一载体至少包括一个T-DNA右边缘区,最好在所需的多聚核苷酸的两侧,有一左一右两个边缘区。一个筛选标记(如编码抗生素,如抗卡那霉素的基因),可加到载体上,用于筛选转化的细胞。埃希氏大肠杆菌载体接着被转入土壤杆菌中,这一过程可以通过结合交配系统,或直接摄取完成。一旦进入土壤杆菌。包含本发明中多聚核苷酸的载体,就可以与土壤杆菌中的Ti质粒进行同源重组,以使其与Ti质粒中的T-DNA结合。一个Ti质粒包括一套影响T-DNA转入植物细胞的调导性vir基因。

或者,包含本发明中多聚核苷酸的载体,还能结合于Ti质粒的vir基因上。较理想的情况是,所给株系的Ti质粒是“缴械”的,其T-DNA的onc基因已被除去或抑制,来避免所转化的植株形成肿瘤,但其vir基因仍影响T-DNA转入植物宿主。见,如Hood,TransgenicRes.2:208-218(1993);Simpson,Plant Mol.Biol.6:403-415(1986)。举一例子说,在一个双载体系统中,一个埃希氏大肠杆菌的质粒载体,被建造成包括一段位于T-DNA边缘区两侧的多聚核苷酸,和一个筛选标记。这个质粒载体被转入埃希氏大肠杆菌,然后,被转化的埃希氏大肠杆菌与土壤杆菌进行接合交配。受体土壤杆菌含有一个被处理过的Ti质粒(辅助性Ti质粒),它包含vir基因,却被除去了T-DNA片段。辅助Ti质粒将提供感染植物细胞所必需的蛋白质,但只有埃希氏大肠杆菌修饰的T-DNA质粒,才能被转入植物细胞。

根癌土壤杆菌系统是进行各类植物组织转化的常规方法。见,如Chiton,Scientific American 248:50(1983);Gelvin,Plant Physiol.92:281-285(1990);Hooykaas,Plant Mol Biol.13:327-336(1992);Rogers等Science 227:12291231(1985)。被这一系统转化的代表性植物及其典型的参考文献列于表1中。其它有可食用部分或能被分离出蛋白的植物,也可以用同样的方法转化或进行常规的修饰。

表1

  植物                     参考文献

  烟草      Barton,K.等(1983)Cell32,1033

  西红柿    Fillatti,J.等(1987)Bio/Technology 5,726-730

  马铃薯    Hoekema,A.等(1989)Bio/Technology 7,273-278

  茄子      Filipponee,E.等(1991)Plant Cell Rep.8:370-373

  Pepino    Atkinson,R.等(1991)Plant Cell Rep.10:280-212

  山药      Shafer,W等(1987)Nature 327:529-532

  大豆      Delzer,B等(1990)Plant Cell Rep.9:224-228

  豌豆      Hobbs,S.等(1989)Plant Cell Rep.8:274-277

  糖用甜菜  Kallerhoff,R.等(1990)Plant Cell Rep.9:224-228

  莴苣      Michealmore,R.等(1987)Plant Cell Rep.6:439-442

  钟形胡椒  Liu,W等(1990)Plant Cell Rep.9:360-364

  芹菜      Liu,C-N等(1992)Plant Mol.Biol.1071-1087

  胡萝卜    Liu,C-N等(1992)Plant Mol.Biol.1071-1087

  芦笋         Delbriel,B.等(1993)Plant Cell Rep.12:129-132

  洋葱         Dommisse,E.等(1990)Plant Sci.69:249-257

葡萄藤         Baribault,T.等(1989)Plant Cell Rep.8:137-140

  香瓜         Fang,G.等(1990)Plant Cell Rep.9:137-140

  草莓         Nahra,N.等(1990)Plant Cell Rep.9:10-13

  稻米         Raineri,D.等(1990)Bio/Technology 8:33-38

  向日葵       Schrammeijer,B.等(1990)Plant Cell Rep.9:55-60   油菜籽/Canola   Pua,E.等(1987)Bio/Technology 5.815

  小麦         Mooney,P.等(1987)Plant Cell Tiss.Organ Cult.

               25:209-218

  燕麦         Donson,J.等(1988)Virology.162:248-250

  玉米         Gould,J等(1991)Plant Physiol.95:426-434

紫花苜蓿       Chabaud,M.等(1988)Plant Cell Rep.7:512-516

  棉花         Umbeck,P.等(1987)Bio/Technology.5:263-266

  核桃         McGranahan,G.等(1990)Plant Cell Rep.8:512-516   云杉/针叶树     Ellis,D.等(1989)Plant Cell Rep.8:16-20

  白杨         Pythoud,F.等(1987)Bio/Technology 5:1323

  苹果         James,D.等(1989)Plant Cell Rep.7:658-661

别的土壤杆菌属如A.rhizogenes,可用作植物转化的载体,A.rhizogenes刺激许多双子叶植物中根毛的形成,本身带有一个大的染色体元件(称为Ri质粒,即毛根诱导质粒),后者功能类似于根癌土壤杆菌的Ti质粒。用A.rhizogenes进行转化形成了类似于根癌土壤杆菌的转化,并已成功应用,例如转化紫花苜蓿和白杨。Sukhapinda,等,Plant Mol Biol.8:209(1987)。

植物组织的嫁接方法由于植物种类和土壤杆菌转移系统的不同而不同。一种方便可行的方法是叶盘的嫁接方法,这种方法可用植出的任何组织进行,后者能很好地促发整个植物分化。在特定的条件下,也需要nurse组织,其它的嫁接方法(例如根癌土壤杆菌原生质体的体外转化)也可获得转化的植物细胞。

直接基因转导法可用于转化植物和植物组织而不需要土壤杆菌质粒。Potrykus,Bio/Technology.8:535-542(1990);Smith等CropSci.,35:01-309(1995)。直接转化涉及到植物细胞或原生质体摄入外源性遗传物质。使用化学物质或电场可增强这种摄入过程,例如,通过原生质体使用电极产生电脉冲的方法,可将本发明中的多聚核苷酸导入植物的原生质体。由于使用电极,原生质体被分离并悬浮于甘露醇溶液中。加入超螺旋或环状质粒DNA,包括本发明中的多聚核苷酸,溶液混匀后放到400伏左右的电脉冲场中,室温10-100毫秒。细胞膜发生可逆性的物理损伤,因此外源性的遗传物质就导入原生质体,接着又可被整合到核基因组。一些单子叶原生质体,也包括稻子、玉米,也通过这种方法得到转化。

脂质体导入也是一种有效的植物细胞转化的方法。其中,携带本发明中的多聚核苷酸的脂质体和原生质体放在一起。当膜融合时,外源基因就导入原生质体。Dehayes等.,EMBO J.4:2731(1985)。同样地,在N.tabacum双子叶植物和单子叶植物中,用聚乙醇(PEG)介导的方法进行了直接基因转导。直接基因转导可被Mg2+、PEG,可能还有Ca2+的协同作用影响。Negrutiu等,Plant MolBiol.8:363(1987)。此外,用经过巧妙拉伸的玻璃针,将包含本发明中的多聚核苷酸的质粒DNA溶液直接显微注射入细胞,亦可将外源DNA导入细胞或原生质体。

直接基因转导也可用粒子轰击(或微粒子加速)进行,这涉及到将携带本发明中的多聚核苷酸的微粒轰击入植物细胞。Klein等,Nature 327:70(1987);Sanford,Physiol Plant.79:206-209(1990)。其中,化学上惰性的金属粒子(如钨或金)包被本发明中的多聚核苷酸,并被加速击入植物细胞。这些粒子穿透入细胞,同时也带入了包被的多聚核苷酸。在培养的悬浮细胞,原生质体,植物(包括洋葱、玉米、大豆和烟草)的胚芽,微粒轰击可导致瞬时表达和稳定表达。McCabe等.,Bio/Technology.6:923(1988)。

此外,DNA病毒也可用作植物中的基因载体。例如,用一种携带经修饰的细菌氨甲喋呤抗性基因的花椰菜花叶病毒感染植物,外源基因就可在整个植物中扩散开来。Brisson等,Nature 310:511(1984)。这样作的好处在于易感染性,可在整个植物中扩散,以及在每个细胞中可有基因的多个拷贝。

一旦植物细胞被转化,有各种方法可使植物再生,特别的再生方法因再生植物组织和再生的植物种类而不同,许多植物可从植出植物的愈合组织而得到再生,这包括但不只限于:玉米、稻子、大麦、小麦、黑麦、向日葵、大豆、棉花、油菜籽和烟草。用根癌土壤杆菌转化的组织再生的植物,包括但不只局限于:向日葵、烟草、白苜蓿、油菜籽、棉花、烟草、马铃薯、玉米、稻子和大量的蔬菜,从原生质体而来的植物再生是一种特别有用的技术,并已在植物中得到验证,这包括但不只局限于:烟草、马铃薯、白杨、玉米、大豆。Evans等,Handbook of Plant Cell Culture 1,124(1983)。表达CT和IT的植物

本发明包括能表达至少一种本发明中的多聚核苷酸的整个植物,植物细胞,植物器官,植物组织,植物种子,原生质体,愈合组织,细胞培养,以及用于组成结构和/或功能单位的细胞群。更可取地是,每克溶解的植物,植物细胞,植物器官,植物组织,植物种子,原生质体,愈合组织,细胞培养,植物细胞群分别可产生0.001、0.01、1、5、10、25、50、100、500、或者1000微克的新的多聚核苷酸。本发明还包括LT-A、LT-B、CT-A、CT-B、LT全毒素和CT全毒素多肽。这些都是从植物细胞或植物组织经过分离、纯化或部分纯化而来。

植物组织的抽提物可通过ELISA用神经节苷酯结合以检测LT-A、LT-B、CT-A、CT-B、LT全毒素、CT全毒素以及它们的突变体进行分析。简言之,GM-X神经节苷酯在碳酸盐缓冲液中溶解后,能包被在诸如聚苯乙烯ELISA的平板上。室温温育约1小时,碳酸盐缓冲液能被PBS等洗掉,且在PBS中可用5%奶,对小槽非特异性结合进行封闭。植物抽提物样品可填到小槽中进行分析。为得到LT或CT多肽的标准曲线,可将细菌中获得的LT或CT多肽的不同的稀释倍数放在同一平板上。室温温育1小时后洗去缓冲液。LT-A、LT-B、CT-A、CT-B、LT全毒素或者CT全毒素,或者其突变型的羊抗或兔抗血清,在缓冲液和BSA中稀释,并在小槽中室温温育1小时。用缓冲液清洗4次,小槽上就会被标记,如标记上针对偶联碱性磷酸酶的羊IgG的兔抗血清。用缓冲液清洗后,小槽在二乙醇胺缓冲液中用硝基苯磷酸底物孵育。10-30分钟后,加入氢氧化钠终止反应,并在4100纳米处读取吸收光度。全毒素的完整性可用一种特异性检测A亚单位的抗体验证,其中A亚单位是不与B亚单位发生反应的。只有A亚单位同B亚单位组成全霉素后,A亚单位才会结合神经节苷酯,因此,通过ELISA用神经节苷酯检测A亚单位,就证明了全毒素的存在。

新多肽对产生该多肽的植物的毒性作用,可通过以下比较进行检测:该植物的生化情况与不产生LT或CT多肽的植物的生长情况的比较,以及与产生野生型LT或CT的植物的生长情况的比较,值得一提的是,产生新多肽的植物与不产生LT或CT多肽的植物有相同或相似的生长率,但比产生野生型LT-A或CT-A的植物的生长率要高。LT和CT多肽的组成

本发明提供了LT和CT多肽在以下物质中的组成情况:整个植物,植物细胞,植物器官,植物组织,植物种子,原生质体,愈合组织,细胞培养和植物细胞群,该植物细胞群被组成结构和/或功能单位,并至少能表达一种多肽。这些植物物质可用于人类或动物口服。本发明还包括:LT-A、LT-B、CT-A、CT-B、LT全毒素和CT全毒素等新多肽,它们自产生这些物质的植物细胞或植物组织,经分离、纯化或部分纯化而来。例如,植物的果实抽提物或果汁,本发明也提供了LT或CT多肽的组成情况。

本发明的组成中包括一种药理学上可接受的载体,载体本身不诱导产生对宿主有害的抗体。药理学上可接受的载体,对于这一领域的人来说是很了解的。这些载体包括,但不只限制于大的、代谢缓慢的大分子,如蛋白、多糖,后者如乳化琼脂糖、琼脂糖、纤维素、纤维素珠及其类似物,多羟基丙酸、多羟基乙酸、多聚氨基酸(如多聚谷氨酸、多聚赖氨酸及它们的类似物,氨基酸的异分子聚合物)、肽类似物、脂类以及不活跃的病毒颗粒。

药理学上可接受的盐也在本发明组成中用到,例如,矿物盐,如氯化物、溴化物、硫酸盐、有机酸盐,如乙酸盐、proprionates、丙酸盐或苯甲酸盐。特别有用的蛋白物质,是血清白蛋白、血蓝蛋白、免疫球蛋白分子、甲状腺球蛋白、卵白蛋白、破伤风毒素和其它的蛋白(对这一领域熟悉的人都是非常了解的)。本发明还包括液体或形剂,诸如水、盐、甘油、葡萄糖、malodextrin、乙醇,或者它们的类似物(它们或单独地或联合地存在),以及象润湿剂、乳化剂或PH缓冲液。脂质体也可在本发明中作为载体使用。

如果需要的话,能提高免疫原提呈给淋巴细胞能力的共刺激分子,例如B7-1或B7-2,或细胞因子(如IL-2和IL-12)也加入本发明中。佐剂也可选择性加入到本发明的组成中。能被使用的佐剂有(但不只限于这些):MF59-0,氢氧化铝,N-acetyl-muramyl-L-threonyl-D-isoglutamine(thr-MDP),N-acetyl-nor-muramyl-L-alanyl-D-isoglutamine(CGP11637),(非MDP物质),N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1′-2′-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine(CGP19835A,作为MTP-PE)和RIBI,后者包括三种从细菌抽提出来的物质:单磷酸脂A、海藻糖二梅菌酸酯和在2%鲨烯/Tween80乳液中的细胞壁骨架(MPL+TDM+CWS)。

本发明的组成中包括一系列公开的陈述,肠溶衣、片剂、咀嚼片、胶囊、溶液、胃肠外给药的溶液、鼻内喷雾剂或粉剂、锭剂、栓剂、粘贴膏、悬浮液。总之,根据所需剂量和组成类型,新多肽或多核苷酸总量的0.01、0.1、1、3、5、10、20、30、40、50、60、70或80%都包括在该组成中。激发免疫应答的方法

本发明的LT或CT多肽可在人类和以下动物中激发免疫应答,如牛、猪、鼠、兔、家禽(如鸡、鸭、鹅)、黑猩猩,狒狒、短尾猿。进一步,LT或CT多肽,可诱发产生抗-LT或抗CT的IgG和/或IgA抗体。其中,诱导的抗-LT或抗-CT抗体,可为优化抗-LT或抗-CT抗体对埃希氏大肠杆菌或霍乱弧菌的反应,提供模型系统,也可为治疗或预防埃希氏大肠杆菌或霍乱弧菌提供帮助。

LT或CT多肽转入后,抗-LT或抗-CT滴定的检测和/或定量,可用来鉴定LT或CT的抗原决定簇。后者对于诱发抗-LT或抗-CT抗体是特别有效的。针对埃希氏大肠杆菌或霍乱弧菌,而发生强的抗-LT或抗-CT抗体反应的LT或CT的抗原决定簇,可通过直接诱发不同长度的LT或CT多肽的抗-LT或抗-CT抗体来鉴定。由特定的LT或CT多肽的抗原决定簇诱导的抗-LT或抗-CT,可被检测,方法是用抗-LT或抗-CT的ELISA法来鉴定何种多肽包含最有效的产生强应答的抗原决定簇。因而,包含这些抗原决定簇或编码抗原决定簇的多肽的LT或CT多肽或融合蛋白,就可用来构建,以引起强的抗-LT或抗-CT抗体应答。

发明中包含有LT或CT多肽或重组多肽的合成物,在使用方式上,可与特定的合成物共同应用,在量上,则能有效地诱导对LT或CT的免疫应答,例如,如上所述,通过ELISA检测抗-LT或抗-CT抗体的滴定。

LT或CT多肽可在动物或人类体内,诱导免疫应答。LT或CT多肽的口服是可取的,多肽的给药方法是该领域常见的包括口服、肌肉注射或皮下注射,包括生物发射枪(“基因枪”),也可鼻腔内应用。建议口服LT或CT多肽,应同时应用蛋白载体。综合多种的给药方法,也可诱导抗-LT或抗-CT的免疫应答。例如,免疫原一次剂量可应用一种给药方法(如口服),而另外的一次剂量或佐剂可通过皮内、皮下、静脉内、肌肉、鼻腔内或直肠内给药。

本发明特定的抗原剂量,由许多因素决定的,包括但不只局限于物种、年龄、人或动物的一般状况、给药方式。本发明的有效剂量,只用常规的实验就很容易得到。此处所描述的体内或体外模型,可用于鉴定所用剂量的适当程度。一般而言,0.1、1.0、1.5、2.0、5、10或100毫克/千克的抗原剂量,可用到大的哺乳动物,如狒狒、黑猩猩或人。如果需要的话,共刺激分子或佐剂,也可在抗原使用之前、之后或与抗原同时使用。新LT或CT多肽可用到不被埃希氏大肠杆菌或霍乱弧菌感染的动物或人,也可用到感染埃希氏大肠杆菌或霍乱弧菌的动物或人。

免疫应答包括由本发明中的合成物,在人或动物中诱导产生抗-LT或抗-CT的IgG和/或IgA抗体,可被不同剂量、给药途径或佐剂所增强。本发明的组分的剂量可一次性给予,更可取的是分次给予。接种的最初过程,包括分1-10次剂量给予,接下来在适当的时间间隔下,给予其它剂量,以维持和/或增强免疫应答。例如,在1-4月后给第二次药,假如需要的话,过几个月后,再次给一次或数次剂量。值得一提的是,由于考虑到费用和方便,以上的给药方式至少有一种是口服来诱导粘膜的免疫应答。口服给药包括服用本发明的转基因植物或植物的部分。

LT或CT多肽给药,能在动物或人类,诱导抗-LT或抗-CT抗体和/或细胞免疫应答。这种应答可持续至少1周、2周、1月、2月、3月、4月、6月、1年或更长。可选择在初次给药后的1月、2月、3月、4月、5月、6月、1年或更长时间,通过在动物或人类,1次或多次增强注射,来维持抗-LT或抗-CT的免疫应答。在初次注射这种合成物来诱导对LT或CT的免疫应答后,也可将本发明的多肽制成的植物物质或食物,用作增强剂使用。

口服时,为鉴定本发明的植物源性LT或CT多肽的免疫原性,可用表达本发明的LT或CT多肽植物的提取物或植物组织喂养动物,如鼠和人。例如,可用表达本发明多肽的植物组织或植物提取物喂养一组小鼠,另一组小鼠用重组LT或CT多肽喂养,后者从表达重组质粒同一抗原的埃希氏大肠杆菌中纯化而来。可用ELISA法检测血清和粘液的免疫应答(见例21)。而且,毒素中和试验能鉴定抗体的保护能力,抗体可用植物来源的物质,在小鼠体内诱导。(见WO96/12801和例21)使用LT和CT多肽和多聚核苷酸作佐剂

本发明的LT和CT多肽和多聚核苷酸能作为其它免疫原的佐剂,包括LT-A,LT-B,CT-A,CT-B,LT或CT多肽和突变型以及它们的重组体,或编码这些多肽的多聚核苷酸,或它们的重组体,这使得基因和其它抗原的蛋白融合体,转运入小肠粘膜细胞,变得更加容易,并能增强其它抗原的粘液和体液免疫应答。一种或多种多肽佐剂,可作为二种抗原的融合蛋白一起使用,也能作为佐剂以增强对融合抗原的免疫应答。适于与本发明的LT或CT多肽融合的病原微生物抗原,包括移生性抗原、病毒性抗原,以及病毒性抗原或移生性抗原的抗原决定簇。

例如,编码LT-A,LT-B,CT-A,CT-B,LT全毒素或CT全毒素或它们的突变型的多肽,能用一种已知的技术,与Norwalk病毒衣壳蛋白(NVCP)(Jiang等,J.Virol.66:6527(1992))或乙型肝炎病毒表面抗原(HBsAg)融合(见例15和WO96/12801)。例如,检测NVCP的ELISA方法,可用下述方法进行:用兔抗-I-rNV作为捕捉抗体,几内亚猪抗-I-rNV作为检测抗体,来检测Norwalk病毒抗原的表达情况。(见WO96/12801)。食用包含有融合蛋白的植物或植物提取物,在人或动物中诱导的免疫应答,可通过应用抗-LT,抗-CT和抗NVCP的ELISA,来检测IgG和IgA。在口服一种异嗜性抗原或疫苗时,本发明中编码LT-A,LT-B,CT-A,CT-B,LT或CT以及它们的突变型和重组体的免疫原性多肽和多聚核苷酸,也可在人或动物中,作为一种佐剂应用。

此外,包括本发明的佐剂和异嗜性抗原的转基因植物,能通过植物的杂交得到,杂交的两种植物,一种表达本发明的抗原,另一种表达感兴趣的异种疫苗,如NVCP或HbsAg。结果,所得后代既可表达本发明的佐剂,又可表达异嗜性抗原,它们可用于特定疾病或感染的治疗和预防(见例19)。

有许多方法可用来证明本发明中植物表达的佐剂,在粘液中的辅佐能力。例如,或是表达本发明佐剂的植物粗制品(NT1细胞或西红柿果实),或是它们的提取物,能于模型抗原一卵白蛋白一起喂养小鼠,小鼠体内直接针对卵白蛋白的免疫应答(血清IgG和胃肠道分泌型IgA),可与只喂食卵白蛋白的对照鼠的免疫应答进行比较。在两组受试鼠中,检测到卵白蛋白应答产生的平均抗体滴定,是倍数增长。每组(8-10)鼠的样本数已把标准误计算在内,这就使所得的数据具有统计学意义。

以下仅仅是提供的范例,并不是要限制此前用广义性术语所描述的本发明的应用范围。所有在本文中引用的注释一并包含在其后的括号中。例证 例1.构建合成LT-A(s-LTA)编码序列

密码子使用表(Ausubel F.,et al.,eds.Current Protocolsin Molecular Biology,Vol.3,p.A.1C.3(1994))是用于设计s-LTA的植物特异编码序列,和消除与假的mRNA加工过程相关的序列模式。(Adang et al.Plant Mol Biol 21:1131-1145(1993))。在启动子甲硫氨酸密码子附近插入一个单密码子(GTG编码缬氨酸)于是创造出一个限制性内切酶NcoI的位点。表1显示出s-LTA的核苷酸序列(SEQ ID NO:1)。

40碱基的寡核苷酸和其互补的40碱基寡核苷酸成为一对引物,它们的扩增产物包含了全部的s-LTA编码序列,且该寡核苷酸连接处的中心允许有20碱基对的重叠。这样的寡核苷酸对可以买到。(表2。SEQ ID NOs:2-41)。在其5′-末端有一NcoI限制性内切酶位点,3′-末端有一SacI限制性内切酶位点,以利于将该片段克隆至植物表达质粒中去。集合PCR(多聚酶链式反应)被用来组装和扩增编码序列,这一点在Stemmer等,Gene.164:49-53(1995)中亦有叙述。最后的扩增产物,用限制性内切酶NcoI和SacI切开,并克隆至pGEM-5zf(+)(Promega,Madison,WI),构建成pGEM-sLTA。经过DNA测序筛选,一旦全序列都被证实,我们就得到了这一克隆。例2.由pGEM-sLTA点突变形成S63K替换

用PCR(多聚酶链式反应)来改变下面划线的224位密码子(SEQID NO:1),从“TCC”(编码丝氨酸)到“AAG”(编码赖氨酸),形成一个sLTA-K63突变体。我们可以买到下面这样一段能产生突变的寡核苷酸序列:5′-GCTAAGCTTGGTG GACACATA-3′(SEQ ID NO:49),用这一引物与PUC/M13-正向引物(5′-GTAAAACGACGGCCAGT-3′)配合,以pGEM-sLTA为模板,扩增出一330bp的片段。将这一330bp的片段电泳并割胶回收,作为一个“大引物”与PUC/M13-反向引物(5′-AACAGCTATG ACCATG-3′)(SEQ ID NO:51)配合,以pGEM-sLTA为模板,扩增出sLTA-K63全长编码序列。将sLTA-K63 PCR扩增产物克隆至含有T-尾的pBluescript-KS(Stratagene,La Jolla,CA),且将其用限制性内切酶来进一步确认,应在5′-末端有一NcoI位点,380位有一NdeI位点(表1)(SEQ ID NO:1)。用sLTA-K63的NcoI/NdeI片段替换pGEM-sLTA中的同样大小的片段,从而生成pGEM-sLTA-K63。例3.在sLT-A中生成G192突变体

有报道说LT-A切口位点突变体(R192G):192位的精氨酸被改为192位的甘氨酸,是一种低毒性的粘膜佐剂(Dickinson & Clements,1995,1998)。由于其在植物细胞表达全毒素LT-G192中的潜在作用,G192突变被置于植物最优化的sLTA基因中进行研究。

象上面讲到的sLTA-K63一样,应用“大引物”PCR法,产生出G192突变体。设计一个引物,该引物包含在pGEM-sLTA的sLT-A基因的631位点上的一个单碱基由A变成G,结果造成原来编码Arg的AGG,变成了编码GLY的GGG。引物序列如下,被改变的核苷酸用下划线标出:5′-CTCAGGG_ACCATCACA-3′(SEQ ID NO:52)。这一引物与pUC/M13-反向引物配合,以pGEM-sLTA为模板,扩增出—233bp的片段。将这一产物电泳纯化、割胶回收,作为“大引物”与sLTA-F1引物(SEQ ID NO:2)配合,以pGEM-sLTA为模板,扩增出全长sLTA-G192编码序列。将sLTA-G192片段克隆至有T-尾的pB1uescripe-KS(stratagene,La Jolla,CA),并测序以证实其正确无误,则形成pGEM-sLTA-G192。例4.在合成的LT-A基因中生成R72突变体

在霍乱弧菌和埃希氏大肠杆菌热易变毒素LT的A亚单位上的活性位点的突变,限制了这些蛋白质的毒性,而仍保持作为佐剂的活性。(Fontana等,1995);De Magistris(1996)MucosalImmunization:Genetic Approaches & Adjuvants.IBC BiomedicalLibrary,Southborough,MA,pp.1.8.1-1.8.12(基于IBC会议的陈述,1995年10月16-18日,Rockville MD)。有报道说,LTA-RT2突变体比LT-K63佐剂(Rappuoli,1998)更好,因为LTA-RT2突变体具有相对低的酶活性,但它的酶活性仍可被检测出,当与LT-B五聚体LTA-RT2结合后,的确优于LT-K63佐剂。为了获得LT-A活性位点突变体,能在植物细胞中被有效表达的例证,我们又准备了合成的植物优选化的LT-A(sLT-A)基因的AT2R突变体,它的72位的丙氨酸被替换成了72位的精氨酸。

为了向sLT-A基因中引入R72突变,271、272位的GC被改变为AG,结果使编码丙氨酸的密码子GCA,变成了编码精氨酸的密码子AGA。我们用QUICKHANGETM点突变,生成试剂盒(stratagene,La Jolla,CA)来实现这一过程,并配用如下生成突变的引物:5′-AGGGTCTGCTCACTTGAGAGAGGACAATCCATCCTC-3′(SEQ ID NO:53)3′-TCCCAGACGAGTGAACTCTCCTGTTAGGTAGGAG-5′(SEQ ID NO:54)

其中突变点的核苷酸以下划线表示出。使用试剂盒中的特定方法,用pfuDNA聚合酶,PCR扩增pGEM-sLTA质粒。反应参数:95℃下30秒1循环,接着是16个循环(95℃30秒,55℃1分钟,68℃7.5分钟)。按试剂盒说明书指导,用限制性内切酶DpnI酶切反应产物,然后转化入埃希氏大肠杆菌XL-1蓝细胞中(stratagene)。从转化的克隆中提取质粒,用限制性内切酶MwoI酶切,突变体由于sLT-A序列中MwoI位点的丢失,而与非突变体区别开。阳性克隆将由sLT-A基因两侧测出全序列,以证实突变的存在和序列的正确性,此克隆被命名为pGEM-sLTA-R72。例5.在sLT-A中的K63/G192和R72/G192双突变体

植物优选化的sLTA基因的双突变体中,我们能得到K63和G192替换(K63/G192)或R72和G192替换(R72/G192),psLTA-K/G是由psLTA-K63的一个380bp的NcoI/NdeI片段,替换psLT-A-G192的同样片段组成的。从转化克隆中提取出质粒,用限制性内切酶HindIII酶切,因为HindIII的酶切位点在K63突变中存在,而在psLTA-G192不存在,所以可以由此来确认其是否正确。对重组体进行测序,以确定其DNA序列的正确性。

同样,应用psLTA-R72的380bp的NcoI/NdeI替换psLTA-G192的同样片段,构成psLTA-R/G,此时由于psLTA-R/G中不存在原来在psLTA-G192中包含的限制性内切酶MwoI酶切位点,再用MwoI来酶切,将无法切开。对重组体测序,以确定其DNA序列的正确性。例6.表达质粒的构建

pTH110,pTH210:(图3,图5,Mason等,1998)是sLT-B的表达质粒,它包含从pTH210克隆到pBI101(Clontech,palo Alto,CA)的sLT-B的表达盒,这个表达盒存在于HindIII和EcoRI限制性内切酶位点之间。pTH210等同于pLTB210(Haq,等,1995),只是pTH210的编码区是植物优选化的。

pSLT101:首先我们提供限制性内切酶酶切,得到一个NcoI/SacI片段,这一片段包含有pGEM-sLTA和pGEM-sLTA-K63的全部野生型,和LT-A突变体全部编码序列。我们将这一片段纯化,并连接到pBTI211,生成pSLTA211和pSLTA(K63)211。质粒pBTI211包含带有双增强子的35S启动子,被熔合到烟草花叶病毒“Ω”的非编码区(Gallie,等,Nucleic Acids Res.20:4631-4638(1992)),其后有一多克隆位点,和一个vspb终止子(Haq等,1995)。一个从质粒pBSG660(Biosource Technologies,Inc.,Vacaville,CA)得到的EcoRV/XhoI片段,包括35S的启动子和“Ω”非编码区的3′端,被亚克隆至pIBT210的EcoRV/XhoI位点构成pBTI211.1(Haq等,1995)。将pBTI211.1用限制性内切酶XhoI和NcoI酶切,再用绿豆核酸酶钝化末端,再钝端连接,于是就去掉了TEV的上游序列。这样生成的pBTI211与pIBT210(Haq等,1995)。只是烟草花叶病毒“Ω”的非编码区,把TEV的5′-非编码区替换了。

二元T-DNA质粒pSLT101(图3)是由四个DNA片段连接而构成的。一个10kb的载体:pGPTV-KAN(Becker等,Plant Mol.Biol.20:1195-1197(1992)),用EcoR1和HindIII双酶切;一个1.8kb的片段:包含有一个由35S启动子控制的sLT-A基因,由用HindIII和SacI双酶切pSLTA211得到的;一个1kb的片段,包含PIN-2终止子序列,由SacI和PstI双酶切pRT38(Thornburg等,Proc.Natl.Acad.Sci.USA.84:744-748(1987))得到;一个2kb片段:包含有sLT-B基因,被35S启动子和VSP终止子序列侧接,由PstI和EcoRI双酶切psTH210得到。

pSLT102:与pSLT101采用同样的方法构建,只是其中的1.8kb片段是由HindIII和SacI双酶切pSLTA(K63)211得到的,而不是pSLT101中的pSLTA211。

pSLT103:为了在西红柿果实中表达LT-K63而构建的二元载体。pE8TH作为构建pSLT103的中间体,它是由连接一个包含有西红柿E8启动子(Giovannoni等,Plant Cell.1:53-63(1989))的2kb的EcoRI/NcoI双酶切片段,包含有从pTH210用EcoRI和KpnI双酶切的pBluescript KS片段组成的。pSLT103是由四个DNA片段构成的:一个10.6kb的载体:用HindIII和KpnI双酶切pSLT101得到;一个1.8kb的片段:用HindIII和SacI双酶切pSLTA(K63)211得到的;一个1kb的片段,用SacI和PstI双酶切pRT38得到;一个2.4kb片段:用PstI和KpnI双酶切pE8TH得到。这个质粒的结构包括:由35S启动子启动的sLT-A-K63基因和西红柿特异的E8启动子(图3)启动的sLT-B基因。

pSLT105:为了要构建一个能使sLT-A-G192基因共同表达的质粒载体,首先把一个确认有sLTA-G192序列的NcoI和SacI双酶切片段亚克隆至pBTI211,构成psLTA-G192-211,在psLTA-G192-211中,sLTA-G192基因5′末端侧接于CaMV35s启动子和烟草花叶病毒“Ω”前导序列。用HindIII和SacI双酶切psLTA-G192-211,得到一段1.8kb的启动子-前导序列sLTA-G192片段,再象psLT101那样连接,就构成pSLT105(图3)。这个pSLT105与pSLT101相同,只是sLTA-G192编码序列,把sLTA编码序列替代。

pSLT107:为了要构建一个能使sLTA-R72基因共同表达的质粒载体,用NcoI和SacI双酶切pGEM-sLTA-R72,得到sLTA-R72编码序列,并将这一780kb的编码序列,进行琼脂糖电泳纯化,割胶回收,并连接到pBTI211的NcoI和SacI双酶切产物上,构成psLTA-R72-211,在psLTA-R72-211中,CaMV35S启动子和烟草花叶病毒侧接于psLTA-R72的5′端,将psLTA-R72-211用HindIII和SacI双酶切,得到一个1.8kb启动子-前导序列-sLTA-R72片段,连接到pSLT101上构成pSLT107。pSLT107与pSLT101基本相同,只是sLTA编码序列被sLTA-R72编码序列所取代。例7.烟草NT1细胞的转化

NT1细胞是烟草科烟草的一种非光合自养的愈伤组织细胞系,它既可在固体培养基上培养,又可在液体培养基中培养。(An G,PlantPhysiol.79:568-570(1985)).将细胞装在一个250毫升三角瓶中,加入40毫升NT培养基,26℃-28℃,150rpm摇动培养。(NT培养基:MS盐,30克/升蔗糖,3uM硫胺素,0.56mM的肌醇,1.3mM的KH2PO4,1uM的2,4-D,2.5mM的Mes,pH值5.7)。每7天传代一次,将5%的种菌移至新瓶中。该细胞在温度稍低的情况下也可生长,只是生长活动有所改变,并且传代间隔有所延长,例如,在23℃培养,可8-10天传代一次。

T-DNA质粒可被电纯化至根癌土壤杆菌LBA4404或EHA105,其方法就象转入埃希氏大肠杆菌一样。从一个新划的平板(LB-琼脂+50毫克/升的卡那霉素)接种一个单克隆至5毫升包含有50毫克/升的卡那霉素的YM培养基(Life Technologies,10090-017;每升中含有:0.4克酵母抽提物,10克甘露糖醇,0.1克氯化钠,0.2克七水硫酸镁,0.5克磷酸氢二钾)中,30℃振荡培养12-16个小时,我们就得到了一个包含有表达结构的土壤杆菌系。测定菌液在600纳米时的吸光度OD值,当OD等于0.5时即可停止。如果OD值过大,则可用新的YM+50毫克/升的卡那霉素培养基稀释30℃培养,至OD值等于0.5时停止。

为了转化NT1细胞(Newman等,Plant Cell.5 701:714(1993)),加入20uM的乙酰丁香酮至培养基,26℃培养3天,23℃培养4天。传代后,用10毫升塑料枪头吸打20次,使细胞磨损。土壤杆菌(10-20微升,OD600nm等于0.5)与4毫升磨损过的NT1细胞混合,23℃,50rpm振荡培养3天,然后移入50毫升塑料离心管,加入45毫升含有500毫克/升羧苄青霉素(NTC)的NT1培养基,混匀,并在吊桶式转头离心机(Timentin,SmithKline/Beecham制造,可以替代羧苄青霉素)内离心1000rpm。将这些细胞团用50毫升NTC洗净2次后,使其再溶解于4毫升NTC中,各取2毫升,铺2个平板(95毫米),其中含有100到200毫克/升的卡那霉素和500毫克/升羧苄青霉素(NTCK)的NT琼脂培养基。200毫克/升的卡那霉素,可使筛选的效率提高。3-4周后,选择已发生转化的具有抗-卡那霉素的愈伤组织细胞,并且传代到新的NTCK琼脂中。当这些愈伤组织细胞长到足够大时(例如直径5-10毫米),我们可以应用PCR、ELISA、Western印迹杂交、Northern印迹杂交来检测转基因及其表达的情况。

NT1细胞系被本发明中应用根癌土壤杆菌系LBA4404电转入人工合成的二元质粒所转化。用乙酰丁香酮处理培养4天的NT-1细胞,并上下吹打,使其受损,以期提高转化率。然后,NT1细胞与25-100微升的过夜培养sLT101或sLT102土壤杆菌液混合,在5厘米平皿中共培养3天。然后用NTSK培养基充分洗涤,并在NT1平板上补充卡那霉素和羧苄青霉素。一般情况下,这以后的3-4周内,会见到转化体的出现。例8.抽提烟草细胞

从固体培养基或液体培养基中,取出烟草细胞,加入1.5毫升小离心管中,扔入干冰中冰冻。液态培养的细胞在3000xg离心5分钟,取上清液用ELISA法,测定其中分泌到培养基中的重组蛋白。估计出细胞的体积,加入3倍体积的抽提缓冲液(25mM磷酸钠,pH值6.6,50mM的抗坏血酸,100mM的氯化钠,1mM的EDTA,1%Triton X-100,100微克/毫升亮氨酸)到冷冻细胞管中。用一与小离心管内壁同样形状的塑料杵,旋转匀浆缓冲液中的细胞,然后冰浴10分钟,离心16,000xg,5分钟,取上清液用于ELISA检测。例9.LT-B和突变型LT-A神经节苷酯依赖性ELISA反应

如表2所示:ELISA反应可以用于LT-B的神经节苷酯结合依赖性的检测,这一点在Cardenas和Clements的文章中有所描述(Infect.Immun,61:4629-4636(1993)),只是检测用的抗体被换成了山羊抗LT-全毒素(受赠于John Clement博士,Tulane Medical Center,NewOrleans,LA),而非抗LT-B。为了检测LT全毒素,ELISA中的抗体,应用了CT-A特异性抗体(受赠于John Clement博士,Tulane MedicalCenter,New Orleans,LA)。它能与LT-A,而不是LT-B交叉反应。因为单LT-A不与神经节苷酯结合,只有与LT-B结合成为全毒素的情况下,才能与神经节苷酯结合,所以sLT-A神经节苷酯依赖性ELISA测定,可证实其是否已结合成全毒素。将细胞提取物或细胞培养液,稀释在1%的脱脂奶磷酸盐缓冲液中(PBS),pH值7.2,为ELISA反应做好准备。

表2应用ELISA检测烟草细胞中LT-B和装配型LTA-K63

             纳克/微克总可溶性蛋白质细胞系               α-LT-B               α-CT-ANT1                    0.0                   0.0NT1/TH110-1            1.1                   0.0NT1/TH110-2            1.5                   0.0NT1/SLT102-1           1.4                   2.7NT1/SLT102-2           2.2                   5.8

有不同浓度的LT稀释液(3.1-100纳克/毫升),制成标准曲线(LT受赠于John Clement博士,Tulane Medical Center,NewOrleans,LA)。蛋白定量应用BSA(牛血清蛋白)作标准蛋白,进行Bradford检测,其结果被用作解释ELISA结果的基础。

进一步讲,在NTI/SLT102细胞培养液中确定有一部分LT(数据未示出),这一点明确指出了,至少有一些重组蛋白质被分泌到培养基中。例10.在应用pSLT105和pSLT107转化NT1细胞系中,LT全毒素的表达

本例表明,LT-A的G192和R72突变形式,能在转基因的烟草NT1细胞中表达,而且每一个突变体与表达有LT-B的同一细胞进行装配,能产生一种与神经节苷酯相关的全毒素复合体。

NT1烟草细胞可以稳定地转入pSLT105(G192)和pSLT107(R72),它们分别带有LT-A突变体(G192或R72)形式和LT-B的表达盒,使它们能在同一细胞内表达,并且比组装成A1∶B5形式的全毒素复合体。组装后的全毒素可通过LT-B五聚体与神经节苷酯GM1结合,但未经组装的LT-A是不能与神经节苷酯结合的。于是,是否存在组装好的全毒素,可以被神经节苷酯依赖性的ELISA反应检测出。是否存在CT-A则可被特异性抗体探针检测出(与LT-B无反应)。例9中已经叙述过,在依赖性神经节苷酯的ELISA反应中,应用的是抗-LT(全毒素)的抗体和抗霍乱毒素A亚单位(CT-A)的抗体。它们与LT-A存在交叉反应,而与LT-B(表3)则没有交叉反应。埃希氏大肠杆菌细胞中表达的LT-全毒素,可作为两个探针的标准毒素使用。

NT1细胞簇可生长在含有100微克/毫升的卡那霉素的固体琼脂培养基中,在如上面描述过的改良的PBS中抽提。抽提物的稀释液,用神经节苷酯依赖性的ELISA反应的抗-LT和抗-CT-A探针来检测。应用Bradford试剂(BioRad试剂盒)检测总可溶蛋白质,以BSA作为标准蛋白质。在已组装的A1∶B5全毒素(抗-CT-A探针)中LT(抗LT探针)和LT-A的定量,被标准化总可溶性蛋白质的含量,即每微克可溶解的蛋白质中,所获得的多少纳克的重组蛋白质。表3中的结果显示,如同所预料的土壤杆菌介导的DNA传递,在不同的转基因细胞系中,LT的表达差别很大。然而,正如以前在pSLT102中观察到的一样,从A1∶B5全毒素复合体中浓缩出的LT-A,总是比抗LT抗体测出的LT全毒素的量要高。具体的原因至今仍不清楚,但表明,植物产生的LT-A比细菌产生的LT-A,在与抗-CT-A反应时更强。

                        表3

            每毫克总蛋白含抗原的量(纳克)细胞系             LT(抗-LT)        全毒素中的LT-A(抗-CT-A)SLT105-24            1.5                    2.6

   58            0.2                    0.6

   88            0.9                    1.9

  141            0.7                    1.1

  144            0.8                    2.6 SLT107-4            2.0                    9.6

   15            0.7                    5.8

   18            0.8                    4.6

   30            1.6                   14.7

   32            1.2                   10.6

   33            0.4                    9.8

   73            0.7                    5.8例11.含有一个植物信号肽的LT-B基因的构建及其在烟草NT1细胞中的表达

此例描述了编码埃希氏大肠杆菌热易变性肠毒素B亚单位LT-B)的一个修饰基因的构建,在其中,自大豆vspA的一个衍生的植物信号肽,取代了这个细菌信号肽。Mason等,Plant Mol.Biol.11:845-856(1988)。尽管这个细菌的信号肽在植物中表现正常的功能,产生装配神经节苷脂结合的LT-B五聚体,但是一个植物信号肽可能使蛋白质传输到内质网改进,因此也增强了装配五聚物的积聚。这个例子进一步描述了应用这个修饰基因产生转基因的烟草NT1细胞,并且论证了在这些细胞中有正确装配的神经节苷脂结合的LT-B五聚物形成。

以pHB306(图11)为模板,应用序列为5′-CTGGAGCTCCCCATGCTACCAAAAT-3′(SEQ ID NO:55)的引物S-VSP-Sac和序列为5′-AATCCCACTATCCTTCG-3′(SEQ ID NO:56)的引物35S,来扩增一个大小约260bp包含这个大豆vspA信号肽的片段(DeWald,D.Ph.D.Dissertation,Dept.of Biochemistry & Biophysics,Texas A & MUniversity,College Station,TX,1992)。pHB306包含有融合到乙型肝炎表面抗原上的这个大豆vspA信号肽,乙型肝炎表面抗原又在PIBT211.1表达载体上。应用限制性内切酶XhoI和SacI切开这个PCR产物,便可得到包含烟草蚀刻病毒5′-未翻译区和大豆vspA信号肽的片段。将这个片段插入pTH210的XhoI和SacI位点(Haq等,Science 1995;268:714-716)以产生pvspSP-LTB(图12)。最后,将含有全部表达盒的pvspSP-LTB的HindIII/EcoRI片段与pGPTV-KAN相连接,以产生pTHαS110(图13)。

正如例证7中描述的,用pTHαS110转化烟草NT1细胞,并且选择在含有卡那霉素的培养基中稳定的转基因细胞系。应用例证9中描述的依赖神经节苷脂的ELISA方法,测定个别细胞系的LT-B。这种测定方法仅能发现能结合天然的配体神经节苷脂GM1装配的LT-B五聚体。表4的结果表明:筛选的30个细胞系中有8个是结果最好的细胞系。这些细胞系中LT-B的水平范围高达每克总可溶解蛋白(TSP)中有3.1纳克。这些水平比得上甚至在一些情况下高于用含细菌信号肽的pTH110所获得的水平(例9)。

总之,将这个vspA信号肽融合到了编码成熟肽的植物-优选化的LT-B序列中。这个重组基因在烟草NT1细胞中直接表达了神经节苷脂结合的LT-B五聚体。这样一来,这个vspA信号肽在靶LT-B到ER中是有效的,并且引起功能性LT-B五聚体的正确折叠及其装配。为了确定LT-B多肽的合成、装配和降解的速率,可以应用放射性同位素标记的氨基酸加标记的间歇追击细胞,来进行细菌或vspA信号肽的效力与LT-B效力更精确的比较。同样,为检测一个植物信号肽可能改进LT-A的表达这一思路,可以通过应用一个植物信号肽构建植物-优选化的LT-A基因来进行。

表4.在pTHαS110转基因的NT1细胞系中LT-B的水平

  细胞系              LT-B的水平(ng/llg TSP)

    5                        2.5

    9                        0.6

    14                       1.2

    16                       2.7

    24                       3.1

    25                       1.2

    26                       0.8

    27                       1.6例12.全毒素在pSLT102转化的马铃薯中的表达

这个例子表明,在转基因的马铃薯植物的叶子中能够表达LT-A的K63突变型,并且它能与在同一细胞中表达的LT-B相装配,以产生一种神经节苷酯结合性的全毒素复合物。这个发现阐明了在全部植物的已分化组织中,可能获得装配的A1∶B5全毒素复合物。

含有突变型LT-A(K63)和LT-B表达盒的pSLT102,能稳定的转化马铃薯(Solanum tuberosum L.cv.“Desiree”)植株。正如所描述的,马铃薯植株本质上是由土壤杆菌介导的DNA转移所转化的(Mason等,1998)。使再生的转基因嫩枝扎根在含50ug/ml卡那霉素的培养基中。正如所描述的,切下在琼脂培养基上繁殖的幼苗叶子,并且在改良的PBS中提取(Mason等,1998)。使用抗-LT和抗CT-A的探针,应用依赖神经节苷脂的ELISA方法测定提取物的稀释度,并且采用布雷德福测定法(BioRad工具包)利用BSA作为总的可溶解蛋白的标准对照。在装配的A1∶B5全毒素复合物(抗-CT-A探针)中,LT(抗-LT探针)和LT-A的测定被标准化到总的可溶解蛋白,以便获得每微克总的可溶解蛋白中含多少纳克的重组蛋白。

表5中的结果表明,正如土壤杆菌介导的DNA传输所料,在独立转基因的细胞系中,LT的表达变化相当大。就采用抗-LT探针发现LT的一切情况而论,应用抗-CT-A探针也能观察到LT-A装配的全毒素。因此,在所有植物的已分化组织中,均能产生出已装配的A1∶B5全毒素复合物的活性形式。

                        表5.

              每微克总蛋白中的纳克抗原马铃薯细胞系            LT(抗-LT)      全毒素中的LT-A(抗-CT-A)

SLT102-3              1.0                   0.7

      14              0.4                   0.4

      17              0.2                   0.4

   25            0.5           0.4

   44            0.1           0.2

   78            0.7           0.3例13.全毒素mLT-K63的表达和在用pSLT102转化的马铃薯块茎中的装配

正如在例12中所描述的,这个例子描述了用pSLT102转化的马铃薯块茎中产生的mLT-K63的特征。正如使用特异性的LT-A抗体通过神经节苷脂结合的ELISA方法所确定的,可以将A1B5复合物装配在块茎中。

正如Mason等在Vaccine 1998;16:1336-1343中所描述的,转基因马铃薯植物“Desiree”/SLT102-14被移植到土壤中,在温室中生长到成熟。收割、洗涤和晾干块茎。如Mason等在Vaccine1998;16:1336-1343中所描述的,获得去皮的块茎组织样品,并且每克块茎用4ml的缓冲液提取,缓冲液为在一个十-Broek的磨砂玻璃高速搅拌器(0.15毫米孔隙)中含有25mM的磷酸钠,pH值6.6,100mM的氯化钠、1mM的乙二胺四乙酸、1mM的PMSF和0.1%的Triton-X-100。提取物在4℃的温度下以16,000xg离心3分钟;然后正如例9中所描述的,使用抗-LT和抗CT-A的探针,应用依赖神经节苷脂的ELISA方法,测定提取物的稀释度,并且应用布雷德福测定法(BioRad工具包)采用BSA作为总的可溶解蛋白的标准对照。测定的LT-B(抗-LT探针)和全-LT(hLT)(抗-CT-A探针)被标准化到总的可溶解蛋白,以便获得每微克总的可溶解蛋白(TSP)中含多少纳克的重组蛋白,或被标准化到新鲜样品的重量,以便获得每克新鲜块茎中含多少微克的重组蛋白。

下面表6中的资料表明,在转基因细胞系SLT102-14的块茎中积聚的LT-B的水平可高达TSP的0.19%或每克新鲜块茎组织(去皮的)中含8.7微克。而且,装配的hLT-K63积聚到TSP的0.6%和每克新鲜块茎中含2.6-8.7微克。在测试的两种不同的块茎之间有些变化;然而,尚需要更多的试验以确定变化程度是否有统计学意义。尽管在这个例子中,块茎越小,产生的LT-B和hLT-K63的水平越高,但是尚需进一步试验,以确定是否块茎大小是抗原变化的基础。

      表6.SLT102-14马铃薯块茎中的LT-B和hLT水平

                   Ng/ug TSP        Ug/g块茎细胞系     块茎大小    LT-B    hLT    LT-B    hLT   合成率(%)SLT102-14    42.9      1.3     0.3    6.0     1.4    23.3%SLT102-14    16.5      1.9     0.6    8.7     2.6    30.2%Desiree      51.3      0.0     0.0    0.0     0.0     NA%

总之,SLT102马铃薯块茎产生的LT-B亚单位,可有效的装配入神经节苷脂结合的五聚体形式,积聚到大约每克块茎有8.7微克。装配好的hLT-K63在这些块茎中积聚的水平达每克果实有2.6微克。这样以来,马铃薯是一个潜在性地有用体系,它可产生突变型的LT形式,用作口服粘膜性佐剂,共同提呈异种抗原,也可作为一种疫苗性抗原,用于治疗或者预防ETEC腹泻。进一步的研究可供选择的启动子,例如,块茎特异性的或者化学诱导性的启动子,有可能使马铃薯块茎中突变型LT蛋白的水平增加。例14.全毒素在pSLT107转化的马铃薯中的表达

这个例子表明,在转基因马铃薯植物的叶子中,可能有LT-A的突变型R72形式的表达,并且它在同样的细胞中装配表达的LT-B,以便产生一个神经节苷脂结合的全毒素复合物。这个发现说明,用LT-A-R72装配的复合物A1∶B5全毒素产品,可以在全部植物的已分化组织中获得。

含有突变型LT-A-R72和LT-B表达盒的pSLT107,能稳定的转化马铃薯(Solanum tuberosum L.cv.“Desiree”)植物。正如Mason等,Vaccine 1998;16:1336-1343所描述的,土壤杆菌介导的DNA转移转化马铃薯植物(Mason等,1998)。使再生的转基因嫩枝扎根在含50ug/ml卡那霉素的培养基中,并且筛选表达LT-B的扎根嫩枝。正如Mason等,1998所描述的,切下在琼脂培养基上繁殖的幼苗叶子,在改良的PBS中提取。使用抗-LT血清,应用依赖神经节苷脂的ELISA方法测定LT-B提取物的稀释度,并且使用BSA应用布雷德福测定法(BioRad工具包)作为总的可溶解蛋白的标准对照。以表达LT-B的叶子为基础,转基因细胞系SLT107-28被选择应用于进一步的研究,并被克隆且在温室中生长直至成熟。

收获、漂洗和空气干燥细胞系SLT107-28的块茎。如同Mason等,1998描述的,获取去皮的块茎组织样本,并且应用每克块茎4毫升的缓冲液进行提取,缓冲液含有25mM的磷酸钠,Ph值6.6;100mM的NaCl;1mM的EDTA,1mM的PMSF和0.1%的Triton X-100,置于一个十-Broek玻璃底的匀浆搅拌器(0.15毫米孔隙)中。提取物在4℃以16,000xg离心3分钟,应用例9中描述的抗-CT-A血清,通过依赖神经节苷脂的ELISA方法测定装配的全毒素(hLT-R72)提取物的稀释液,通过Bradford测定总可溶性蛋白质采用BSA作为标准对照。hLT-R72的测定被标准化为新鲜样本的重量以便获得每克的新鲜块茎中有多少微克的重组蛋白质。在下面的表7中的资料显示,在转基因细胞系SLT107-28的块茎中积聚的hLT-R72,在每克新鲜块茎组织(没有皮)中可上升到1.1微克,而没有转基因的“Desiree”马铃薯植株的块茎则显示没有表达。

表7.在SLT107-28马铃薯植株的块茎中hLT-R72的表达

  品系            块茎重,克       HLT,纳克/微克TSP

SLT107-28           95.6                  1.1

Desiree             51.3                  0.0

结论,SLT107马铃薯块茎产生LT-A-R72和能有效地装配入神经节苷脂-结合性A1B5形式的LT-B亚单位,积累的hLT-R72可上升至每克块茎1.1微克。因此,马铃薯是一个潜在性地有用体系,它可产生突变型的LT形式,用作口服粘膜性佐剂,共同提呈异种抗原,也可作为一种疫苗性抗原,用于治疗或者预防ETEC腹泻。进一步的研究可供选择的启动子,例如,块茎特异性的或者化学诱导性的启动子,有可能使马铃薯块茎中突变型LT蛋白的水平增加。例15.在转基因马铃薯块茎中mLT和异嗜性抗原的共同表达

本例描述了在来自转基因植物的马铃薯块茎中,mLT′s与异种疫苗抗原的共同表达,该转基因植物中包含有植物-优选化的LT-A基因(以及它的突变型)、植物-优选化的LT-B基因,以及至少有一个其它抗原的表达盒。由于取益于异种疫苗抗原与粘膜性佐剂mLT的共同传输,这种转基因块茎构成了一个改良的传输异种疫苗抗原的口服体系。

我们应用pNV110(图7)(表达Norwalk病毒的衣壳蛋白,NVCP)和pHB117(图8)(表达乙型肝炎病毒表面抗原,HBsAg)创建了转基因马铃薯“Desiree”植物。这些转基因植物携带有耐卡那霉素(kanR)的可选择的标记物nptII。应用包含有一个改变的可选择标记物的质粒载体,可能能够“超转化”这些kanR植物。因此,我们构建了pSLT407(图14),这种品系包含有可选择的标记物bar,可编码磷化三氢乙酰转移酶,并且能够在含有磷化三氢(PPT)的培养基中进行选择。pSLT407还包含有植物-优选化的LT-A-R72和植物-优选化的LT-B基因的表达盒,而且是通过结合来自带有pGPTV-BAR的pSLT407(BeckerD.,等,Plant Mol Biol 1992;20:1195-1197)的4.1kb的HindIII/EcoRI片段来建立的。

除了应用于幼苗再生的培养基中含有1毫克/升的PPT(SigmaChemical Co.,St.Louis,MO)以及不含有卡那霉素以外,均精确地按照前面所描述的方法,进行了带有pSLT407的NV110或者HB117转基因品系的超转化。幼苗在含有1毫克/升的PPT培养基中形成根系,被认为转了bar基因并且因此连接了表达盒。采用在例9中所描述的,应用神经节苷脂-依赖性ELISA方法,来测定被选择的幼苗的LT-B表达和装配的全毒素LT-R72。然后,对在各个水平上均高于0.1%的总可溶性叶片蛋白的表达LT-R72的转化株,进行抗原表达的检查,该抗原与npt II标记物相结合。因此,可采用ELISA方法测定NV110/SLT407幼苗的NVCP表达(Mason等,Proc.Natl.Acad.Sci.USA.93:5335-5340(1996));并且采用ELISA方法测定HB117/SLT407幼苗中HbsAg的表达。Mason等,Proc.Natl.Acad.Sci.USA.89:11745-11749(1992)。有必要澄清的是,来自pSLT407的T-DNA的插入并没有干涉基因与nptII标记物结合的抗原的表达;因此,在超转化幼苗中,NVCP或者HbsAg的水平应该与那些亲代NV110或者HB117植物中的相似。

繁殖NV110/SLT407和HB117/SLT407品系,移植入土壤中,并且在温室中生长至成熟。然后,收获块茎并且如前面描述的方法检测LT-R72和NVCP或者HbsAg的表达。选择在各个水平上LT-R72的表达均高于每克新鲜块茎组织1微克的品系,以及在各个水平上NVCP或者HBsAg的表达均高于每克新鲜块茎组织10微克的品系,用于动物免疫原性的研究。

一个可改变的超转化产生NV110/SLT407和HB117/SLT407细胞系的方法,是来构筑一个含有NVCP或HbsAg表达盒的bar载体(来源于pGPTV-BAR)。以相似的方式,来转化例10和14中的转基因细胞系SLT107 kanR植物。植物在包含有1毫克/升PPT的培养基中新生和生根,采用ELISA方法测定植物中NVCP的表达(Mason等,1996),或者采用ELISA方法测定HbsAg的表达(Mason等,1992)。选择出被证实有LT-R72表达的幼苗,繁殖产生块茎,并且如同上述方法进行测定。

为了评估LT-R72共同-提呈异嗜性抗原的辅助性,用所述(Mason等,1996)的5克NV110/SLT407块茎喂食小鼠,并且采用ELISA方法检测血清中的抗NVCP的抗体。用表达相似NVCP水平的NV110块茎喂食分组的小鼠,结果两组小鼠抗体水平的比较,出现有统计学意义上的差异。例16.西红柿转化方案

植物原料的准备:西红柿种子在20%的CHLOROX溶液中浸泡消毒20分钟,然后用无菌的milli-Q水,仔细漂洗2次或更多次。大约30粒消毒过的种子,各自播种在含有1/2MSO培养基(TanksleyTA234TM2R种子库,平均每100粒种子380毫克)的一个Magenta盒中。每周(2:48)在KCMS液体培养基中通过传代NT1(NicotianaTobacum)准备组织培养。在切下子叶的前一天,用吸液管从一周旧的NT1悬浮培养液中吸取2毫升液体到一个有KCMS的培养皿中。用一个消毒的7厘米的Whatman滤纸覆盖悬浮液,并且在黑暗的环境中过夜培养。在播种后8天,每一棵籽苗放置于以无菌水浸湿的无菌纸巾上,在叶柄处切下子叶并切掉其尖端。如果子叶的大小大于1厘米,则每一样本再次分成两半。将移植体近轴侧放置入已经准备好的培养皿中,在25℃下过夜培养,光周期16小时。

转化:约在转化前一周,将土壤杆菌划线种植于LB选择性培养板上,并在30℃下孵育培养。从划线培养板上选取单个菌落,接种于液体选择性培养基中,加入3毫升带有150微克硫酸卡那霉素的YM培养基。随后,在30℃下较强震荡液体培养48小时。应用250毫升的培养瓶,吸取1毫升接种到49毫升已加入2.5毫克硫酸卡那霉素的YM培养基中。30℃较强震荡培养24小时后,在600纳米下应用分光光度计测量0D值,所获得的最佳光密度值为0.5-0.6。

培养的土壤杆菌(农杆菌)经8000rpm离心(Sorvall离心分离机,ss34转子)10分钟准备转化,然后倒出YM培养基,使细胞球重新悬浮于MS-0,2%中。最终的OD值应该在0.5和0.6之间。吸取25毫升培养液放入无菌的Magenta盒内,将移植体与土壤杆菌培养液/MS-0,2%孵育,并将移植体从2到3个培养板转移入同一Magenta盒中。移植体不定期地震荡孵育5分钟,然后移到一无菌纸巾上。随后,移植体近轴侧被倒向植入培养板上,用Nesco薄膜密封培养皿。移植体在25℃下以16小时光周期共同培养24小时,然后转移近轴侧入选择性培养基(2Z)。培养板以微孔的带子封住,返回到25℃16小时光周期的环境中。移植体每3周转移到新的IZ选择性培养板中,并且当发芽时转移入IZ Magenta盒中。

再生、生根和选择:在4到6周内,出现最初的发芽。当这些芽苗长到至少2厘米时,便从移植体上切下来,并确保至少包含有一个茎节,放入含有西红柿生根选择性培养基的Magenta盒中。新生根在约2星期内开始出现。

用上面所描述的pSLT103转化西红柿细胞系TA234,利用Northern印迹杂交法,筛查几个在卡那霉素培养基中生根的品系。从西红柿叶片中得到的总RNA,如同(Mason等,1998)描述的,经电泳和印迹转到尼龙膜上。印迹应用包含有sLT-A编码序列的DNA片段进行探查,那些通过定量分析显示有强信号的细胞系,应用分子动力荧光图像分析仪进行选择。这些品系再移植到温室的土壤中,生长至成熟。例17.全毒素在用pSLT103转化的西红柿中的表达

本例显示,LT-A的K63突变型能够在转基因西红柿植物的果实中被表达,而且在相同的细胞中,它装配有表达的LT-B,产生一个神经节苷脂结合的全毒素复合物。这一观察结果阐明:装配的A1B5全毒素复合物的生产,是能够在全部植物的可食性果实中获取的。

包含有突变的LT-A(K63)和LT-B的表达盒的pSLT103,稳定地转化西红柿植物(Lycopersicon esculentum L.cv.“TA234”)。在这种构造中,LT-B的转录由果实-特异性E8启动子所引导,以至于在植物的组织中期望没有LT-B的表达。LT-A-K63盒应用构建的CaMV35S启动子,在幼苗发育的早期通过对叶片RNA的Northern印迹杂交法,能够筛查幼苗的表达。

正如上面所描述的,西红柿植物被土壤杆菌介导的DNA转换所转化。重新生长的转基因芽苗在含有50微克/毫升卡那霉素的培养基中生根,切下在琼脂培养基中繁殖的幼苗的叶片,如前所述制备RNA(Mason等,1998)。采用Northern印迹杂交方法,应用LT-A-K63编码序列作为探针,测定RNA样本(资料没有显示)。结果显示:正如对土壤杆菌-介导的DNA传递所预料的,在非依赖性的转基因细胞系中的表达变化很大。对2、10、11、12、16、17和23号细胞系进行繁殖筛选,并且把它们移植到温室的土壤中生长。例18.全毒素mLT-K63在pSLT103转化的西红柿果实中的表达和装配

该例描述了例17中所述的用pSLT103系转化的成熟的西红柿植物,在果实中产生mLT-K63的特征。资料显示:装配的A1B5复合物在果实中合成,由带有针对LT-A的特异性抗体的神经节苷脂-结合的ELISA方法所决定。

依据对转基因植物上花的观察,把这些花中获得的花粉,用于人工对花柱的授粉,以保证自花受粉和有效的果实发育。然后,我们在成熟的不同阶段获取果实,用每克果实2毫升的缓冲液提取果实,其缓冲液包括50mM的磷酸钠,PH值为7.0,100mM的氯化钠,1mM的EDTA,1mM的PMSF和0.1%Triton-X-100,加入十-Broek玻璃底的高速搅拌器中(0.15毫米的滤孔)。提取物在4℃下16,000xg离心3分钟,提取物的稀释度通过神经节苷脂-依赖性ELISA,利用抗-LT和抗CT-A探针(在例19中描述)加以测定,对可溶性的蛋白质采用BSA作为标准物由Bradford试剂测定。LT-B(抗LT探针)和holo-LT(hLT)(抗CT-A探针)的测定,把总的可溶性的蛋白质标准化成每微克的总可溶性蛋白质能获得多少纳克的重组蛋白质,或者说把新鲜样本的重量,标准化成每克的新鲜果实中能获得多少微克的重组蛋白质。

因为在pSLT103细胞系中可引发LT-B基因的转录的E8启动子只有在果实成熟期间才是有活性的,所以我们对不同成熟阶段的转基因果实进行研究。出于这一目的,运用以下定义:成熟绿色:果实完全长大,只是颜色是绿的,没有黄色或红色的痕迹;中间色:果实开始出现黄色或桔黄色着色;粉红色:绿颜色大部分消退,以桔黄色到粉红色为主;红色:整个果实呈深红色着色,并且摸上去已变软。我们利用ELISA测定SLT103-12细胞系在不同成熟阶段的果实的LT-B或hLT。结果显示在下面的表8中。在没有转基因的TA234品系的果实或者在成熟绿色或中间色阶段的SLT103-12细胞系的果实中未见LT-B,而在粉红色和红色阶段的SLT103-12细胞系的果实中LT-B的累积日益增多。在粉红色和红色阶段的SLT103-12细胞系的果实中也观察到了hLT-K63,分别占总LT-B的22%和12%。在一项实验中hLT-K63上升到占总LT-B信号的30%,并且在每克红色西红柿果实中累积上升到2微克。这很可能是因为引导这两种基因的启动子不同,使LT-B和LT-A-K63在细胞类型的特异性表达出现一些差异。因此,当引导这两个基因的启动子相同时,可能会出现较高的合成率。

表8在SLT103-12细胞系的西红柿植物果实中的LT-B和hLT

                            纳克/微克TSP细胞系         成熟阶段     LT-B       hLT    合成率(%)SLT103-12      成熟绿色      0.0       0.0     没有合成SLT103-12      中间色        0.0       0.0     没有合成SLT103-12      粉红色        2.3       0.5       22%SLT103-12      红色          3.3       0.4       12%TA234          红色          0.0       0.0     没有合成

我们应用了两种不同的抗体,进行Western印迹杂交分析SLT103西红柿果实:一种是鼠的抗LT-A的特异性单克隆抗体(Chemicon,Temecul,CA),以及另一种针对LT全毒素的山羊多克隆抗血清(giftof John Clements,Tulane Medical Center,New Orleans,LA)。图9中的印迹显示:转基因植物SLT103-12在果实中产生LT-A-K63,是共同迁自细菌的LT-A-G192。这一观察显示:在信号肽裂解位点上,植物性原料能正确地被处理,但是在胰岛素裂解位点R192上,则不能进行蛋白水解作用。在SLT103-12植物的叶片中,LT-A-K63蛋白出现少量的迁移,但较在果实中的慢,提示:它至少可能是部分地使蛋白质糖基化。一个单一的N-连接的蛋白质的糖基化作用前后出现在N205(N-L-S),提示在叶片的细胞中,这一位点是用于进行蛋白质糖基化作用的。当利用多克隆抗-LT血清探查出一个相似的印迹时,正如同所期望的,LT-B仅仅在SLT103-12果实中见到,而表示在叶片的提取液。果实源性的LT-B信号与细菌的LT-B共同迁移,显示出这是正确的信号肽加工过程,而不是出现其它的的翻译后修饰。没有转基因的TA234叶片的提取液,则没有显示出LT特异性信号。

结论,SLT103转基因西红柿植物在成熟的果实中能产生正确地加工LT-K63的A和B亚单位。此外,LT-B亚单位有效地组装入与神经节苷脂-结合的五聚体形式中,并累积上升至每克果实7微克。组装的LT-K63在这些果实中累积上升至每克果实2微克的水平。因此,西红柿是一种潜在的可应用品系,可产生突变型的LT,可作为口服的粘膜性佐剂,用于共同提呈异嗜性抗原,也可作为一种疫苗抗原以预防ETEC腹泻。例19.西红柿转基因pSLT103植物用于与西红柿转基因异嗜性抗原植物进行有性杂交

该例阐明了转基因西红柿细胞系的应用,如同例17中描述的SLT103-12,与表达异嗜性抗原的转基因西红柿植物有性杂交,为了产生出转基因的pSLT103和异种构建,即在果实中产生出mLT-K63和异嗜性抗原的西红柿品系。由于与粘膜性佐剂mLT-K63共同显示的益处,这些果实将构成一个改良的口服提呈异种疫苗抗原系统。

我们使从自花授粉的SLT103-12西红柿细胞系获得的种子发芽,并且在包含有50毫克/升卡那霉素的琼脂培养基中选择幼苗。因为孟得尔分离定律,在减数分裂和卵母细胞受精期间,失去转基因的幼苗将不能生长,而从研究中除去。抗-卡那霉素植物移植到土壤中,并在温室中生长。同样地,我们使TA234转基因西红柿系NVT110和HB117的种子发芽,并选择抗卡那霉素幼苗。这些细胞系被pNVT110(图7)(包含有一个诺沃克病毒衣壳蛋白,(NVCP)表达盒子)和pHB117(图8)转基因(包含有一个乙肝表面抗原(HBsAg)表达盒子)。

直到花的出现,转基因植物一直在温室中生长。从SLT103-12植物的花上收集花粉,并应用到NVT110和HB117植物的柱头上。进行相互杂交,即从NVT110和HB117植物的花上收集花粉,应用于SLT103-12植物的柱头上。每一朵带有相互异种花粉的花用一个标签标记,以鉴别杂交的情况。果实正常的发育和成熟,并且在果实出现粉红色到红色时收获。果实通过筛目、清洗和干燥,收集子代种子。

在每升含有50毫克卡那霉素的琼脂培养基中发芽之前,子代的种子在4℃下储存6周。然后以基因特异性寡核苷酸探针行基因组PCR,来检测抗卡那霉素幼苗的所有正确转基因的表现。例如,应用编码植物-优选化的LT-A-K63、植物-优选化的LT-B和NVCP序列的特异性探针,检测SLT103-12与NVT110和HB117的杂交。显现所有正确基因阳性PCR的幼苗在温室中生长至成熟,花为自体授粉。

当果实成熟到粉红色至红色阶段时,便收获自花授粉杂交的果实,采用神经节苷脂-依赖性ELISA(见例9)测定mLT-K63,并且在所引用的论著中,测定了NVCP(Mason,H.等,Proc.Natl.Acad.Sci.USA 1996;93:5335-5340)或者HbsAg(Mason,H.等,Proc.Natl.Acad.Sci.USA 1992;89:11745-11749)。

通过免疫原性测定,把粉红色到红色的正确杂交的子代果实,直接给小鼠喂食,每次用量大约10克新鲜果实。在对照实验中,给相似的小鼠喂食仅仅表达有异嗜性抗原(NVCP或HBsAg)而没有mLT-K63的果实。在免疫后,不时从小鼠体获取血清,检测抗适当抗原(NVCP或HBsAg)的抗体的表现。例20.抗LT-A-K63兔抗血清的产生

该例描述了采用埃希氏大肠杆菌产生的LT-A-K63免疫兔,制备特异的兔抗血清。利用神经节苷脂-依赖性ELISA,这种特异性的抗血清用于检测装配LT-B五聚体形成A1B5全毒素复合物的(突变型)LT-A亚单位。因为LT-B五聚体结合有神经节苷脂GM1,并且未组装LT-A的亚单位不结合神经节苷脂GM1;这种ELISA是一种针对装配性全毒素的确定性测定方法。

我们所得到的寡核苷酸引物:sLTA-Bgl-F:(SEQ ID NO:57)5′-CAATCCAAGGTGAAGAGGCAAAgaTctTCAGACTACCAATCAGAG-3′sLTA-Bgl-R(SEQ ID NO:58)5′-CTCTGATTGGTAGTCTGAagAtcTTTGCCTCTTCACCTTGGATTG-3′

这些引物退火,在成熟LT-A的Q121下游立即产生一个BglII位点。根据Sixma等(Nature1991;351:371-377)Q121是不被LT-B五聚体环绕的A2亚单位的最后残基。我们应用这些引物和QUICKCHANGETM位点-直接诱变的试剂盒(Strategene,La Jolla,CA),在包含有pSLTA(K63)-211(例6)的LT-A-K63基因中,创造一个BglII位点。利用BglII的消化和基因3′区序列的测定,来证实这种突变。然后,我们从已证实的突变体中分离BstXI/Bgl II片段,并且连同pSLTA(K63)-211(包含有LT-A-K63基因的5′末端)中的Ncol/BstXI一起结合入pQE-60(Qiagen)的Ncol/BglII位点处,从而形成pQEK63(图10)。在这个结构中,LT-A-K63片段在C-末端融合一个6-His标记物,可应用Ni2+-亲合层析法很容易提纯重组蛋白质。

应用pQEK63转化埃希氏大肠杆菌BL21-(DE3)RIL细胞(Stratagene,la Jolla,CA)。埃希氏大肠杆菌BL21-CodonPlus(DE3)RIL细胞中包含有基因的额外的拷贝,该基因在埃希氏大肠杆菌中,编码tRNAs的密码子极少应用,而在我们的植物-优选化LT-A-K63基因中经常发现。pQEK63转化细胞在含有50毫克/升氨苄青霉素的5毫升LB液体培养基中,37℃过夜生长。这种培养再转移到含有100毫克/升氨苄青霉素的100毫升LB液体培养基中,37℃生长2小时。增加IPTG使终浓度为1毫摩尔/升。在培养生长另一个4小时后,利用离心机离心收集细胞,并且在-20℃过夜冻存。

细胞在冰上解冻15分钟,然后重新悬浮在每克细胞5毫升的溶解缓冲液中(50mM的NaH2PO4,pH8.0;300mM的NaCl;0.1%的TritonX-100;20mM的β-巯基乙醇,1mM的PMSF;10mM的异吡唑)。经过超声降解溶解细胞(six 10-second bursts),在4℃下旋转10000xg离心30分钟。溶解的产物在冰上(震荡)1小时,与1ml的镍-NTA基质混合。然后,把浆液加载至一个一次性微层析柱上并使之下行。随后,用4毫升漂洗缓冲液(50mM的NaH2PO4,pH8.0;300mM的NaCl;1mM的PMSF;20mM的异吡唑)洗离子交换树脂柱2次,并且用0.5毫升洗脱缓冲液(50mM的NaH2PO4,pH8.0;300mM的NaCl;1mM的PMSF;250mM异吡唑)洗脱四次。然后,样本在SDS-PAGE/PVDV印迹分析,随后采用抗-LT的多克隆羊血清(John Clements博士赠送,Tulane医学中心,新奥尔良,LA)探查。

洗脱下的重组蛋白质经PBS透析,PH值7.2,并且应用于免疫兔子,每次剂量为200至500微克。首剂应用弗氏完全佐剂乳化,而且第二剂和第三剂(在首剂后的1和2个月)则应用弗氏不完全佐剂乳化。在背部几个点的皮下应用,抗原能够被提呈。在第二剂能够应用mLT-G192(John Clements博士赠送)或者霍乱毒素(CT)(SigmaChemical Co.)作为标准,采用神经节苷脂-依赖性ELISA检测以后,检测出血2周。应用LT-B(John Clements博士赠送)或者CT-B(SigmaChemical Co.)作为抗原的相似的ELISA进行阴性对照实验,以验证抗血清与LT-B间没有交叉反应。例21在小鼠和小鸡中引发的免疫反应

表达发明中多聚核苷酸的植物组织的提取物,能够通过在液氮中冷冻植物组织加以制备,并且在搅拌器中混匀。可溶性蛋白质能在以下缓冲液中提取,缓冲液为40mM抗坏血酸,20mMEDTA,和1mM的PMSF。不能溶解的植物细胞残留物,则通过15000xg离心除去。在4℃下,植物的提取物利用40%的硫酸胺沉淀。在15000xg离心后,获取的上清液在4℃下进一步利用终浓度为60%的硫酸胺加以沉淀。在15000xg离心后,获取的沉淀物能够溶解在PBS中,并且可用于口服免疫研究。

一组小鼠喂食植物提取物的汁或者口服完整的植物。另一组小鼠则给予一种来自于埃希氏大肠杆菌纯化的重组多肽,该大肠杆菌表达有来自重组质粒的抗原。给每一只小鼠所服用的抗原的剂量相当,例如为5、10、12.5、20、50或者100微克,并且强迫喂食入0、4、21和25天。从实际的样本中,利用ELISA法检测血清和粘膜的抗体应答,例如30-32天。

来自于小鼠的血清和粘膜提取物的分离,首先须采用氯胺酮使小鼠麻醉。采用心脏穿刺抽取血清,并且采用颈椎脱臼法处死小鼠。小肠的取材选择在十二指肠至盲肠之间,并放置于冰上冷EDTA/STI(50mM的EDTA,0.1毫克/毫升的大豆胰岛素抑制剂)。肠组织在EDTA/STI中应用高速搅拌机搅匀,然后在32000xg下离心。上清液被冷冻干燥过夜,在TEAN缓冲液中再悬浮和透析,并且如同上述和例证9中所描述的,采用ELISA法进行基本的测定。在肠组织中的IgA的ELISA反应,除了组织原料是由针对小鼠IgA的羊抗血清(Sigma公司)稀释液探查外,与IgG的ELISA反应相似,依次再经过碱性磷酸酶结合针对羊IgG(Sigma公司)的抗血清稀释液所探查。见例WO96/12801。所得的数值因为交叉反应和粘膜的带血清污染可能进行矫正。见WO96/12801。

应用发明中的多肽免疫动物后,获得的血清和粘膜免疫球蛋白的效能,是利用它们有中和LT或CT的生物反应的能力来进行检测的,与口服应用相同剂量的由细菌产生的重组多肽作为抗原,来免疫的动物所产生的血清和粘膜抗体,有着相同的效能。肾上腺细胞的中和作用检测,能够应用微培养下的小鼠Y-1肾上腺细胞加以进行。毒素的选择应用剂量,是采用对收集的血清和粘膜样本的连续稀释法加以调制的,例如,采用表达有发明中多肽的植物的提取物或者细菌源性的多肽,进行小鼠口服免疫。在37℃预培养1小时以后,样本被一单层小鼠的YI肾上腺细胞(ATCC CCL79)应用,并连续培养18小时。效价被定义为显示完全中和生物反应的血清的最大稀释倍数的倒数,例如50微微克的毒素。

小鸡和其它家禽为动物免疫提供了相当大的市场。作为一项在家禽中,食物产生抗原来引发免疫反应的实验,小鸡作为实例进行喂养表达有发明中免疫原性多肽的生马铃薯块茎。然后,在来自于这些小鸡的血清中,测定针对发明中免疫原性多肽的特异性抗体。例如,给一天龄的来亨鸡B12/B12同基因小鸡喂食转基因马铃薯的块茎,其中包含有大约5微克的发明中的多肽,采用ELISA法测定。例如,把5克的块茎喂食小鸡0、4、14和18天。例如在第28天,从小鸡体内抽取血液,并且制备血浆。血浆能够利用ELISA进行测定。见WO/96/12801。例22双顺反子盒载体

本发明中的多聚核苷酸能够进一步与一个表达载体相结合,从而形成一个表达盒。例如,一个质粒能够包含有一个双顺反子盒,后者可共同表达LT-A,CT-A,或者它的突变型,例如LT-A-R72,以及LT-B,CT-B,它们的突变型,例如LT-B。一个内在的核糖体进入位点(IRES)能够应用于刺激下游LT-B或者CT-B顺反子的翻译始动。病毒性的IRES成分的一些形式,能够被应用,参考Rohde W等,作为模型系统的植物病毒,在较高等植物中,应用研究非典型的翻译机制,J.Gen.Virol.,1994;75:2141-2149。随意地是,烟草蚀刻病毒5′UTR(通过一个植物poty病毒的5′非翻译区的帽-非依赖性的翻译扩增),能够插入到LT-A或者CT-A与LT-B或CT-B多聚核苷酸之间。更适宜地是,双顺反子盒是被35S启动子所引导,并且通过vspB3′区域终止,但其它的启动子和终止区域也能够被应用。图15显示了一个带有共同表达LT-A-R72和LT-B的双顺反子盒的质粒,其中的LT-B带有一个LT-B多聚核苷酸的IRES下游序列。出现在多聚核苷酸与双顺反子盒之间的烟草蚀刻病毒5′UTR,是通过35S启动子引导的,并且在vspB3′区域终止。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号