首页> 中国专利> 浓度测量装置、浓度测量装置用试片、生物传感器系统及在试片上形成端子的方法

浓度测量装置、浓度测量装置用试片、生物传感器系统及在试片上形成端子的方法

摘要

本发明提供一种浓度测量装置,用于该浓度测量装置的试片,生物传感器系统以及用于形成试片端子的方法,因此将能由试片检测的成分调整到将检测的目标成分。在测量装置(101)中设置与正电极(102)和负电极(103)分离地类型判断电极(104)以致于用测量装置判断设置的试片的类型。因此只有当与测量装置匹配的试片(115)被设置时,类型判断电极被电连接到设置试片的端子,允许测量装置测量液体检验样品中的将被检测的成分。测量装置(251)检测校准曲线信息选择变化用于选择与设置试片的生产批量一致的一个校准曲线信息,从而补偿成分的检测的浓度值的误差。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-08-07

    专利权有效期届满 IPC(主分类):G01N27/414 授权公告日:20031203 申请日:19980715

    专利权的终止

  • 2014-06-11

    专利权的转移 IPC(主分类):G01N27/414 变更前: 变更后: 登记生效日:20140515 申请日:19980715

    专利申请权、专利权的转移

  • 2014-06-11

    专利权人的姓名或者名称、地址的变更 IPC(主分类):G01N27/414 变更前: 变更后: 申请日:19980715

    专利权人的姓名或者名称、地址的变更

  • 2003-12-03

    授权

    授权

  • 2000-09-06

    实质审查请求的生效

    实质审查请求的生效

  • 2000-08-30

    公开

    公开

查看全部

说明书

技术领域

本发明涉及一种使用生物传感器测量在一种溶液中的特定的成分的浓度的浓度测量装置,将被用于该浓度测量装置的一种试片,使用该浓度测量装置和试片的一种生物传感器系统,以及用于在该试片上形成端子的一种方法。将被测量的溶液具体地说是体液,例如,血、血浆、尿、唾液等等。尤其血是经常使用的。

背景技术

目前使用生物传感器的测量装置实际应用于定量检测活体的体液中一种特定的成分,比如,血、尿等等。在这类测量装置中,一种简洁的并且可任意使用的试片被适宜当做生物传感器,例如,血被滴在试片上,从而测量血液中的葡萄糖、乳酸、胆固醇等等的浓度。

例如,在日本的专利公开出版物4-357452中披露了上述的方法和试片的结构。现有技术的试片是如图33所示的构成的。具体地说,传导碳糊或类似物质被网格印刷在一片隔离基底材料2的片上,从而在基底材料2的纵方向的未端部分形成彼此邻近的端子3、4。端子3、4在纵方向扩展以在该基底材料2的另外一个未端部分形成一个测量电极5和面对该测量电极5的一个相反的电极6。一隔离层被形成在除了端子3、4,测量电极5和相反的电极6上之外的该隔离基底材料上。与将被测量的成分相对应的由酶、介质等等构成的一种反应试剂(未示出)被施加在测量电极5和相反的电极6上。一个封面8通过一间隔物7覆盖在除端子3、4之外的基底材料2的上面。因此获得图34的一种试片1。形成一个突出部分10以至于防止该试片1对测量装置被以一个错误的方向设置。

如在现有技术4-357452中所披露的,试片1是自端子3、4一侧被插入到如图35所示的卡形测量装置20的设置部分21。在测量装置20的表面设置一个显示部分22以便显示测量结果。传统的测量装置20的设置部分21具有当试片1被设置到测量装置20时,将电连接到试片1的端子3、4的一正电极和一负电极。

在试片1被设置到测量装置20中之后,从现有技术4-357452中清楚的看到,血是点滴在试片1的另外一个未端部分,通过毛细管作用其被吸引到形成在间隔物7中的一个空间9,达到施加在测量电极5和相反的电极6反应试剂,并且与反应试药起反应。然后,一个电压从测量装置20施加到试片1的端子3、4,因此通过与酶反应使反应产物被氧化。在该测量装置20测量在这个氧化中产生的电流。该被测量的氧化电流被转换成将被测量的特定的成分的浓度。

使用的反应试药是,例如,包括当在溶液中葡萄糖将被测量时作为酶的葡萄糖氧化酶,或者是,包括当在溶液中乳酸、胆固醇将被测量时的乳酸盐氧化酶、胆固醇氧化酶,如在日本专利公开号为8-278276的公开的说明书中所透露的。

从上面的描述中显然可以看出,通过更换包含在反应试药中的酶能够获得对应于将被测量的每个成分的试片,而不必改变基本的试片1。换言之,这些试片的结构可以被做成对于将被测量的各种成分是通用的,用于这些试片的测量装置和制造设备可以是共享的,具有使制造测量装置和试片的费用降低的效果。虽然理想的情况是用于相对应的各种成分的试片要求处在相同的地位,但事实上,用于葡萄糖的试片需要量是最大的,而用于乳酸的或者胆固醇的试片的需要量是较小的。在上述的无规律的需求中,如果试片是以相同的结构构成的,那么仅仅通过改变反应试药就可获得该无规律需求的试片。

然而,如果在试片的共用结构中,变得非常难区别试片,例如,在葡萄糖的试片和乳酸的试片之间区别。可能发生的情况是,即使葡萄糖的浓度是所需的,由于不经意乳酸试片被设置到测量装置中。因此,获得不正确的结果。

本发明通过设计以解决上面描述的不当之处,其目的是提供一个浓度测量装置,用于该浓度测量装置的试片,一生物传感器系统,以及用于在该试片上形成端子的方法,从而对试片上的目标成分进行测量。

发明的公开

在实现这些和其他特征方面,根据本发明的第一方面,提供了对其设置一试片的一种浓度测量装置,该试片包括在基底材料上的与液体检验样品起反应的反应试药,一个正极端子,以及一个负极端子,这些端子基于反应试药的反应电检测在液体检验样品中特定的成分的浓度,浓度测量装置包括将分别地与试片的正极端子和负极端子电连接的一正电极和一负电极,从而通过正电极和负电极对液体检验样品中的特定成分的浓度起作用,该浓度测量装置其特征在于更进一步包括一个类型判断电极,用于判断被设置到浓度测量装置的试片的类型,该类型判断电极是与正电极和负电极分离地设置的。

如上面所描述的,在本发明第一方面的浓度测量装置中,该类型判断电极是与正电极和负电极分离地附加的。因此,该将被测量的特定成分可以通过该试片测量,该试片是适合于利用类型判断电极测量特定成分的。

根据本发明的第二方面,浓度测量装置还可以包括一第一识别装置,其根据一个事实,即仅当能够测量特定的成分的试片被设置到浓度测量装置且类型判断电极被连接到正电极时,用于输送与用于液体检验样品的能够测量特定成分的试片相对应的信息,以及

一个第二识别装置,其根据从第一识别装置馈入的信息识别试片。

根据本发明第二方面的浓度测量装置,第一和第二识别装置还被设置在第一实施例的测量装置中,其展现下列效果。当设置了能够测量将被测量的成分的试片时,随着设置的试片的类型信息从第一识别装置被发送,类型判断电极和正电极彼此连接。第二识别装置根据类型信息,识别与测量装置适合的一试片被设置。相应地将被测量的成分可以通过与测量装置适合的该试片被测量。

根据本发明的第三方面,浓度测量装置可以包括用于连接或者断开类型判断电极和正电极的和用于连接或者断开类型判断电极和负电极的开关,以及一个识别装置,其根据随着每个开关的接通/断开从正电极的检测部分获得的消息,用于识别用于液体检验样品的能够测量特定成分的试片被设置到该浓度测量装置。

根据本发明第三方面的浓度测量装置,第一实施例的浓度测量装置还设置有开关和识别装置,其展现下列效果。该识别装置可以根据随着开关的接通/断开产生在正电极的检测部分的信息,判断是不是符合该测量装置的试片被设置。因此,将被测量的成分可以通过与测量装置适合的试片被测量。

根据本发明的第四方面,浓度测量装置还可以包括一个电势判断装置,其与类型判断电极连接,判断电极判断电极是不是变成一个适合的试片设置电势,该电势是当用于液体检验样品的能够测量特定成分的试片被设置到浓度测量装置时在类型判断电极产生的电势。

根据本发明的第四方面,电势判断装置被包括在第一实施例的浓度测量装置中。电势判断装置检测类型判断电极的电势,从而判断该电势是不是适合的试片设置电势。当该电势是该适合试片设置电势时,该电势判断装置断定适合于该浓度测量装置的试片被设置。相应地,将被测量的成分可以通过符合测量装置的试片测量。

根据本发明的第五方面,浓度测量装置还可以包括一个变化判断装置,其与类型判断电极连接,类型判断电极判断电极是不是有对应于适合的试片设置变化的一个电势变化,该变化是当用于液体检验样品的能够测量特定成分的试片被设置到浓度测量装置时在类型判断电极产生的变化。

根据本发明的第五方面的浓度测量装置具有被加到第一实施例的浓度测量装置中的变化判断装置。更具体地说,当试片被设置到测量装置时,变化判断装置检测在类型判断电极的电势变化,从而判断该电势变化是不是对应于适合的试片设置变化。如果该电势变化是适合的试片设置变化,这个变化判断装置断定与该测量装置相配的试片被设置。因此可以通过与测量装置相配的试片测量成分。

根据本发明的第六方面,提供了一种将被设置到本发明的第二方面中的浓度测量装置的试片,其特征在于包括将与类型判断电极和正电极电连接的一个类型判断端子,从而允许浓度测量装置的第一识别装置发送与用于液体检验样品的能够测量特定成分的试片相对应的信息。

根据本发明的第六方面,设置到本发明第二方面的浓度测量装置的试片具有类型判断端子。由于试片与测量装置适合的信息是从第一识别装置发送的,所以试片可使测量装置断定适合于该测量装置的试片被设置。

根据本发明的第七方面,提供了一种将被设置到本发明的第四方面中的浓度测量装置的试片,其特征在于包括将与类型判断电极和正电极电连接的一个类型判断端子,并允许电势判断装置判断在类型判断电极的电势是适合的试片设置电势。

在本发明的第七方面中,试片被设置到第四方面的浓度测量装置,其具有类型判断端子。该试片允许电势判断装置判断在类型判断电极上的电势是适合的试片设置电势。第七方面的试片允许测量装置判断适合的试片被设置到该测量装置。

根据本发明的第八方面,提供了一种将被设置到本发明的第五方面中的浓度测量装置的试片,其特征在于包括将与类型判断电极和正电极电连接的一个类型判断端子,并允许变化判断装置判断在类型判断电极的变化对应于适合的试片设置变化。

根据第八方面,试片被设置到第五方面的测量装置并且具有类型判断端子。因此变化判断装置可以通过一个适合的试片判断类型判断电极的电势显示的变化。该试片允许测量装置判断适合的试片被设置。

根据本发明的第九方面,提供了一种生物传感器系统,其特征在于包括:

第一浓度测量装置,其包括根据第二方面的浓度测量装置,其中正电极、类型判断电极以及负电极是按此顺序与试片的设置方向成直角排列;

第一试片,其包括根据第六方面的试片,其包括将与正电极和类型判断电极电连接的一个第一端子,将与负电极电连接的一个第二端子;

第二浓度测量装置,其包括根据第二方面的浓度测量装置,其中正电极、负电极以及类型判断电极是按此顺序(与试片的设置方向)成直角排列的;以及

一第二试片,其包括根据第六方面的将被设置到第二浓度测量装置的试片,其包括将与正电极和类型判断电极电连接的一个第一端子,将与负电极电连接的一个第二端子,

所述生物传感器系统构成为以致如果第一试片被设置到第二浓度测量装置,以及如果第二试片被设置到第一浓度测量装置,那么不能进行该特定成分的浓度检测。

根据本发明第九方面的生物传感器系统被构制成一种试片仅仅适合一种浓度测量装置,使得在不同的种类之中不可能共享试片和浓度测量装置。

根据本发明的第十方面,在第五方面的浓度测量装置中,变化判断装置可以存储多个校准曲线信息,用于补偿在液体检验样品中特定成分浓度测量中的误差,

当浓度测量装置可以测量唯一的一个特定的成分的浓度,以及具有与该特定的成分起反应的反应试药的并且能够通过该浓度测量装置测量该特定的成分的浓度的试片被设置到该浓度测量装置时,在类型判断电极检测一个校准曲线信息选择变化,以至于在多个校准曲线信息之中选择一个需要的校准曲线信息,代替在类型判断电极的适当的试片设置变化的存在/不存在,以及

基于根据检测的校准曲线信息选择变化选择的校准曲线信息,补偿误差。

根据第十方面中的浓度测量装置,校准曲线信息选择变化被检测,代替了在第五方面的测量装置中的对适合的试片设置变化的存在/不存在的检测。校准曲线信息可以是根据上面的检测选择的,并且测量误差可以通过选择的校准曲线信息补偿。相应地,可以获得更高准确性的特定成分的浓度。

根据本发明的十一方面,在第五方面的浓度测量装置中,变化判断装置可以存储多个校准曲线信息,用于补偿在液体检验样品中特定成分浓度测量中的误差,

根据包括在类型判断电极上的适合的试片设置变化中的校准曲线信息选择变化,在多个校准曲线信息之中选择一个所需的校准曲线信息,以及根据在类型判断电极的适合试片设置变化判断试片的类型,以及

根据选择的校准曲线信息补偿误差。

根据该第十一方面,在第五方面的浓度测量装置中,除了适合的试片设置变化存在/不存在的检测之外还检测该校准曲线信息选择变化,因此对应于设置到测量装置的试片的被检测出的类型的校准曲线信息和许多试片产品可以被选择。

根据本发明的第十二方面,提供了一种将被设置到本发明的第十方面中的浓度测量装置的试片,其特征在于有将与类型判断电极电连接的一个类型判断端子,并允许变化判断装置根据在类型判断电极的电势检测校准曲线信息选择变化,用于在多个校准曲线信息之中选择所需的校准曲线信息。

根据本发明的第十二方面,试片被设置到第十方面的浓度测量装置中。该试片装备有用于检测校准曲线信息选择变化的类型判断端子,因此允许变化判断装置选择该校准曲线信息。

根据本发明的第十三方面,提供了一种将被设置到本发明的第十一方面中的浓度测量装置的试片,其特征在于通过将与类型判断电极电连接的一个类型判断端子,并为了判断试片的类型允许变化判断装置判断在类型判断电极的电势变化是适合的试片设置变化,并且还允许变化判断装置检测校准曲线选择信息变化以便在多个校准曲线信息之中选择所需的校准曲线信息。

根据本发明第十三方面的试片被设置到第十方面的浓度测量装置中,其包括类型判断端子,用于检测校准曲线信息选择变化以及适合的试片设置变化的存在/不存在。因此,该第十三方面的试片允许变化判断装置判断可由设置到测量装置的试片测量的这种特定成分,而且选择校准曲线信息。

根据本发明的第十四方面,提供了一种用于制造第十二和第十三方面的试片的方法,其特征在于包括:

在试片的基底材料上施加反应试药;

将具有浓度已知的特定成分的一种标准溶液点滴到该被施加的反应试药上;

选择补偿基于反应检测的浓度和已知的该特定成分的浓度之间的误差的校准曲线信息;以及

形成类型判断端子,从而在类型判断端子产生至少指示被选择的校准曲线信息的校准曲线信息选择变化。

在用于形成根据该第十四方面的试片的端子的方法中,在校准曲线信息被选择之后,类型判断端子被形成到第十二、第十三方面的试片上,以导致校准曲线信息选择变化。

附图的简短的描述

从下面参照附图与本发明实施例相结合的描述,本发明的这些和其它特征将变得更加明显,在其中:

图1是根据本发明的第一实施例的浓度测量装置的结构图;

图2是将被设置到浓度测量装置并且与图1的浓度测量装置适合的一个试片的平面图;

图3是将被设置到浓度测量装置并且与图1的浓度测量装置不相适合的一个试片的平面图;

图4是根据本发明的第二实施例的浓度测量装置的结构图;

图5是将被设置到浓度测量装置并且与图4的浓度测量装置适合的一个试片的平面图;

图6是将被设置到浓度测量装置并且与图4的浓度测量装置不相适合的一个试片的平面图;

图7是根据本发明的第三实施例的浓度测量装置的结构图;

图8是将被设置到浓度测量装置并且与图7的浓度测量装置适合的一个试片的平面图;

图9是将被设置到浓度测量装置并且与图7的浓度测量装置不相适合的一个试片的平面图;

图10是一个用于识别在图7的浓度测量装置中的试片的操作的流程图;

图11是根据本发明的第四实施例的浓度测量装置的结构图;

图12是将被设置到浓度测量装置并且与图11的浓度测量装置适合的一个试片的平面图;

图13是将被设置到浓度测量装置并且与图11的浓度测量装置不相适合的一个试片的平面图;

图14是一个用于识别在图11的浓度测量装置中的试片的操作的流程图;

图15是将被设置到图11的浓度测量装置的一个不同的实施例的试片的平面图;

图16是图1的浓度测量装置的一个修改的例子的示图;

图17是适合于图16的浓度测量装置的一个试片的平面图;

图18是示出图4的浓度测量装置的操作的一个流程图;

图19是根据本发明的第五实施例的浓度测量装置的结构图;

图20是将被设置到图19的浓度测量装置的一个试片的平面图;

图21是图19的浓度测量装置的一个改型的结构示图;

图22是将被设置到图21的浓度测量装置的一个试片的平面图;

图23是图19的浓度测量装置的一个不同的改型的结构示图;

图24是将被设置到图23的浓度测量装置的一个试片的平面图;

图25是用于在图20、22和24中的每一试片中形成端子的第一形成方法的说明性示图;

图26是用于在图20、22和24的每一试片中形成端子的第一形成方法的说明的示图;

图27是用于在图20、22和24的每一试片中形成端子的第一形成方法的说明的示图;

图28是用于在图20、22和24的每一试片中形成端子的第一形成方法的说明的示图;

图29是用于在图20、22和24的每一试片中形成端子的一个第二形成方法的说明的示图;

图30是用于在图20、22和24的每一试片中形成端子的第二形成方法的说明的示图;

图31是用于在图20、22和24的每一试片中形成端子的第二形成方法的说明的示图;

图32是用于在图20、22和24的每一试片中形成端子的第二形成方法的说明的示图;

图33是示出传统的试片的结构的一个分解透视图;

图34是在图33的试片被装配时的透视视图;以及

图35是显示当传统的试片被设置到一个传统的浓度测量装置时的透视视图。

实现本发明的最佳方式

下面将参照附图描述根据本发明的实施例的一个浓度测量装置,用在该浓度测量装置中的试片,配备有该浓度测量装置和试片的生物传感器系统,以及用于在试片上形成端子的方法。下面将参照附图描述根据本发明的实施例的一个浓度测量装置,用在该浓度测量装置中的试片,配备有该浓度测量装置和试片的生物传感器系统,以及用于在试片上形成端子的方法。然而,液体检验样品不限制为上面的检验样品,而且包括包含可通过反应试药测量的成分的其它液体。在本实施例中,将被测量的成分是葡萄糖以及乳酸,但是并不限制于这些种类的内容。

在附图中,功能相同的或者类似的部分通过相同的参考数字表示,并且除了特别地指出的之外,对它们的描述将不重复。第一实施例

在图1至3中,示出了根据本发明第一实施例的一个浓度测量装置和用于该浓度测量装置的一个试片。在前面的“发明的公开”中描述的起第一标识设备作用的一个例子是一个电路部分111,将在稍后描述,其包括一个放大器105,一个A/D转换器107,一个包括R1电阻器109、一个R2电阻器110和一个电阻器106的一个连接线路。另一方面,在“发明的公开”中描述的第二识别装置的一个例子是稍后将描述的CPU108。此外,从将在稍后描述的A/D转换器107发送的一个数字值对应于在“发明的公开”中的与能够测量液体检验样品的特定成分的试片相对应的信息的一个实施例。

首先将描述在图1中所示的一个浓度测量装置101。该浓度测量装置101除了具有与传统的测量装置相似的一个正电极102和一个负电极103之外,有一个类型判断电极104。类型判断电极104是用于判断一个能够在该测量装置101中测量浓度的试片是不是被设置到该测量装置101中的一个电极。正电极102、类型判断电极104和负电极103按此顺序在与对测量装置101的试片的设置方向I成直角的一个方向上成一排排列的,如图1所示。浓度测量装置101包括放大器105、通过电阻器106连接到放大器105的输出的A/D转换器107、CPU108(中央处理器)、R1电阻器109和R2电阻器110。放大器105的一个输入端105a连接到一个参考电压源Vref,放大器105的另外一个输入端105b连接到正电极102。类型判断电极104通过R1电阻器109连接到放大器105的输出。负电极103接地,而且放大器105和正电极102之间的连接线路通过该R2电阻器110接地。CPU108控制浓度测量装置101的工作,例如,控制计算将被测量的一个成分的浓度,而且判断能够在该测量装置101中测量该浓度的试片是不是被设置到该测量装置101中,换言之,执行一种确认操作。即,CPU108还起识别装置的作用。然而,可以提供与CPU108分离地一种识别装置只是进行确认操作。虽然确认操作将稍后详细的描述,因为数字值是根据能够在测量装置101测量该浓度的试片是不是被设置到该测量装置101而改变的,所以CPU108根据来自A/D转换器107的不同数字值,确定能够在该测量装置101测量该浓度的试片是不是被设置到该测量装置101中。

在第一实施例的一个例子中,R1电阻器109是100千欧姆,R2电阻器110是100千欧姆,参考电压源Vref是0.5V,放大器105有5V电压。

以下将描述上述的构成的浓度测量装置101的工作。图2和3是将被设置到浓度测量装置101的试片115、121的简化示图。每个试片115、121的基本的结构相等于在图33和34中图示说明的传统的试片1的结构。在图2和3中的参考数字116、122对应于前面描述的反应试药。测量电极5和相反的电极6是被反应试药116、122遮避,而不是在该附图中没有示出。可以由浓度测量装置101测量的反应试药被施加到试片115,而在液体检验样品中将被测量的一个成分是不能被测量,即使该试片121被设置到测量装置101中。

在试片115中,一正极端子117、一个类型判断端子118和一个负极端子119是被形成在与对测量装置101的试片115的设置方向I成直角的一个方向,并且将被电连接到浓度测量装置101的相对应的正电极102、类型判断电极104和负电极103。试片115的正极端子117和类型判断端子118被整体的形成为一个端子,以使正极端子117和类型判断端子118电连接到测量电极5,而负极端子119电连接到相反的电极6。

同时,试片121没有任何一个对应于上面的类型判断端子118的端子,只有正极端子117和负极端子119。换言之,试片121与传统的试片1一样。

当试片115被设置到浓度测量装置101时,正电极102和正极端子117,类型判断电极104和类型判断端子118,以及负电极103和负极端子119分别地彼此电连接。由于正极端子117和类型判断端子118被整体的形成在试片115中,实际上,在浓度测量装置101中正电极102和类型判断电极104被短路。

当试片115是如上述的设置的,因为浓度测量装置101的正电极102和类型判断电极104之间短路,在放大器105通过电阻器109形成一个反馈电路。结果,由于R1电阻器109、R2电阻器110和试片115的电阻,放大器105输出超过参考电压Vref的一个电压V1。A/D转换器107数字化该电压V1并且发送对应于电压V1的一个数字值D1到CPU108。

CPU108具有预先设置在其中的数字值D1。当从A/D转换器107提供数字值D1时,CPU108判断该提供的数字值等于该设置的数字值D1,并且相应地检测带有能由测量装置101测量的反应试剂116的试片115被设置到该测量装置101。将被测量的成分浓度开始被测量。

另一方面,如果不同于试片115的一个试片,例如,试片121,被设置到该测量装置101,那么测量装置101的正电极102和类型判断电极104不被短路,因为试片121没有类型判断端子118。因此在放大器105中不形成上述的反馈电路。连接到正电极102的放大器105的输入端子105b通过R2电阻器110被接地。缺乏该反馈电路的情况下,在输入端105b和参考电压Vref之间的电位差使该放大器105输出一个电压V2,其比电压V1要大,与参考电压Vref相比相当大,并且接近于放大器105的源极电压。该A/D转换器107将该电压V2数字化到对应于电压V2的一个数字值D2并发送该值D2到CPU108。

该发送数字值D2与该数字值D1不同,因此,CPU108检测带有不能由测量装置101测量的反应试药122的试片121被设置到测量装置101。因此不执行浓度测量。

当带有可由测量装置101测量的反应试药116的试片115被设置到该测量装置101中时,对应于第一识别装置111的电路部分也被用于测量将被测量的液体检验样品的成分。在下文中将讨论测量操作,在其中作为例子,被滴在试片115上的液体检验样品是血,而将被测量的成分是葡萄糖。

当试片115被设置到浓度测量装置101中时,因为如上面所描述的正电极102和类型判断电极104的短路,在放大器105中形成反馈电路。放大器105的参考电压Vref被作用到施加有反应试药116的试片115的一部分上。在此期间,血被滴在反应试剂116上。对应于通过在反应试药116和血之间的反应的氧化电流的一个电压从放大器105输出到A/D转换器107,这类似于现有技术。不用说,该氧化电流是根据血滴中的葡萄糖浓度变化的。CPU108将从A/D转换器107发送的与该血液中葡萄糖浓度相对应的数字值转换为一个血糖值。该血糖值作为一个测量结果被显示在显示部分22。

根据上面描述的第一实施例,只有当具有可由测量装置101测量的反应试药116的试片115被设置到测量装置101中时,才执行该成分的测量操作。因此,即使一个用于乳酸测量的试片被不注意地设置到测量装置101中,而不是一个葡萄糖试片,也可以避免不正确的测量。第二实施例

在图4-6和2中,示出了根据本发明第二实施例的一个浓度测量装置和使用于该浓度测量装置的一个试片。将稍后描述的CPU134对应于在“发明的公开”中描述的确认设备的一个实施例。同时,从将稍后描述的A/D转换器107输出的一个数字值是在“发明的公开”中“正电极的检测部分的信息”的一个例子。

首先将描述在图4中所示的一个浓度测量装置131。该浓度测量装置131相似的被装备有该类型判断电极104。如在图4中显示的,类型判断电极104、正电极102和负电极103是在这个顺序沿着与在浓度测量装置131中设置方向I成直角的方向成一排排列的。在测量装置131中类型判断电极104通过一个开关132连接到放大器105的输入端105b并且还通过一个开关133接地。这些开关132、133在CPU134的控制下单独地开启、关闭。放大器105的输出通过A/D转换器107连接到CPU134。

CPU134以下列方式进行控制,以在带有可由测量装置131测量的反应试药的一个试片被设置到该测量装置131中时,测量在液体检验样品中将被单独地测量的成分的浓度。具体地说,如图18所示的,当在步骤1一个试片被安装到测量装置131时,在步骤2中在试片被完全地设置到装置131中之后,CPU134将两个开关132、133关掉一个预定的时间。在步骤3,在这种状态下从A/D转换器107提供的数字值D5被存储在CPU134(涉及步骤1-3的操作,在下文中作为“第一操作”)。在数字值D5被存储之后的一预定时间,在步骤4CPU134开启开关132和保持开关133关闭,并且在步骤5存储在这个状态从A/D转换器107馈送的数字值D6(涉及步骤4和5的操作当做“第二操作”)。在数字值D6被存储之后的一预定时间,在步骤6 CPU134关掉开关132并开启开关133。然后在步骤7来自A/D转换器107的数字值D7被存储(涉及步骤6和7的操作当做“第三操作”)。在步骤8,CPU134决定数字值D5-D7是不是完全地相等,并且只有当数字值D5-D7是全部相等的时候,判断具有可由测量装置131测量的反应试剂的试片被设置到测量装置131。然后在步骤9 CPU134开始测量该成分。在除D5-D7全部数字值相等之外的其它情况下,在步骤10,CPU134判断带有不可由该测量装置131测量的反应试剂的试片被设置到测量装置131。

上面的构成的浓度测量装置131是以在下面将被描述的方式工作的。在图5和6中,将被设置到浓度测量装置131的试片141、145是以一种简化的方式图示说明的,其与图33并且34中传统的试片1是基本上相似的结构。在图5和6中的参考数字142、147对应于反应试药。虽然在附图中未示出并且被反应试剂142、147所遮避,但是实际上设置了测量电极5和相反的电极6。在试片141中,施加了可被测量装置131测量的反应试药。即使试片145或者图2的试片115被设置到测量装置131中,在液体检验样品中的成分也不能被测量。

正极端子117和负极端子119沿着与设置方向I成直角的方向被形成在试片中,将电连接到测量装置131的正电极102和负极电极103。换言之,试片141不具有能电连接到测量装置131的类型判断电极104的一个端子。

形成对比,该试片145有一个负极端子146和该正极端子117。负极端子146被电连接到测量装置131的类型判断电极104和负电极103,从而短路类型判断电极104和负极电极103。正极端子117电连接到测量装置131的正电极102。

当试片141被设置到测量装置131中时,测量装置131的正电极102电连接到试片141的正极端子117,测量装置131的负电极103电连接到试片141的负极端子119。测量装置131的类型判断电极104没有任何电气连接。因此,即使当CPU134在试片141被完全地设置到装置131中之后执行第一至第三操作,从A/D转换器107输出的数字值D5-D7也不曾变化。因此CPU134根据在数字值D5-D7中的没有变化,判断带有可由测量装置131测量的反应试药142的试片141被设置到测量装置131。现在利用测量装置131开始被测量成分的测量。

当试片145被设置到测量装置131时,测量装置131的类型判断电极104和负电极103电连接到试片145的负极端子146。因此,测量装置131的类型判断电极104和负电极103被短路,而测量装置131的正电极102和试片145的正极端子117彼此电连接。

在试片145完成设置之后,CPU134执行上面描述的第一至第三操作。由于浓度测量装置131的类型判断电极104和负电极103被短路,在第一和第三操作中在放大器105的输入端开关132被保持断开,从A/D转换器107输出的数字值D5、D7不变化。然而,当CPU134执行第二操作时,开关132进入开启状态,而测量装置131的类型判断电极104和负电极103被短路并接地,因此放大器105的输入被接地。结果,在第二操作中从A/D转换器107发送的数字值D6变成不同于数字值D5、D7。

CPU134根据全部数字值D5-D7不相等的事实,来判断该试片145不是带有可由测量装置131测量的反应试药142的试片,从而不执行成分测量。

当在图2所示的试片115被设置到测量装置131时,测量装置131的类型判断电极104和正电极102电连接到试片115的正极端子117和类型判断端子118。由于这个缘故,测量装置131的该类型判断电极104和正电极102被短路。测量装置131的负电极103被电连接到试片115的负极端子119。

在试片115完成设置之后,CPU134执行上面描述的第一至第三操作。由于测量装置131的类型判断电极104和正电极102被短路,在第一和第二操作中,从A/D转换器107发送的数字值D5、D6不变化。另一方面,当CPU134执行第三操作时,开关133被开启,此外,由于测量装置131的类型判断电极104和正电极102被短路,放大器105的输入变成接地。结果,在第三操作中从A/D转换器107发送的数字值D7不同于数字值D5、D6。

CPU134根据全部数字值D5-D7不相同的事实,来判断该试片115不是带有可由测量装置131测量的反应试药142的试片,从而不开始成分测量。

图4的电路构成也允许该成分浓度的测量。为了测量这个浓度,这CPU134执行该第一操作,将该开关132,133关闭。例如,血被滴在试片141的反应试剂142上,从而以测量例如在该血滴中的乳酸盐的浓度。测量浓度的操作大体上同于对应于第一实施例的前面描述的操作,相应地其描述在这里被省略。

根据上面描述的第二实施例,只有当具有可由测量装置131测量的反应试药142的试片141被设置到测量装置131中时,要被测量的成分可以被测量。因此,防止了虽然将要测量乳酸盐,但是用于测量葡萄糖的一个试片被不注意地设置并且获得一个错误的结果。

由于CPU134获得如在上面第二实施例中的数字值D5-D7,如果CPU134是预先被适合于识别与上面的数字值D5-D7相对应的试片的类型,设置到测量装置131的试片的类型可以被识别。第三实施例

在图7-9中示出根据本发明第三实施例的一个浓度测量装置以及用于该浓度测量装置的一个试片。稍后描述的一个CPU153对应于在“发明的公开”中的电势判断装置的一个例子。

在图7中的浓度测量装置151将被描述。浓度测量装置151同样地包括一个类型判断电极152。如在图7中所示的,在浓度测量装置151中,正电极102和负电极103被排列在与在试片被插入的入口的设置方向I成直角的方向,以及一个第一类型判断电极152a、一个第二类型判断电极152b和一个第三类型判断电极152e被排列在比正的和负的电极102、103的位置靠里的测量装置151的内部。第一类型判断电极152a、第二类型判断电极152b和第三类型判断电极152e被统称为类型判断电极152。

该正电极102被连接到该放大器105的输入。放大器105的输出通过A/D转换器107被连接到CPU153。该负电极103和第三类型判断电极152e两者都被接地。另一方面,第一类型判断电极152a和第二类型判断电极152b通过相对应的连接线路154、155被连接到CPU153,线路154、155通过各自的电阻器被正常地施加一个+5V的电压。

CPU153如在下文中将描述的,只有当具有可由测量装置151测量的反应试药的一个试片被设置到测量装置151中时,控制测量在液体检验样品中的成分的浓度。更具体地说,参照图10,当一个试片被设置到测量装置151中时,CPU153检测通过连接线路154、155获得的第一和第二类型判断电极152a、152b的各自的电势。只有在“适合的试片设置电势”的状态,其是当一个适当的试片被设置时获得的一个电势状态,即,第一类型判断电极152a的电势是一个高电平并且第二类型判断电极152b的电势是一个低电平,CPU153承认设置在测量装置151中的试片是具有可由该装置151测量的反应试药的一个试片,并且开始测量在液体检验样品中的成分。如果第一和第二类型判断电极152a、152b不是上面的由适当的试片获得的电势状态,CPU153显示例如一个警告并且制止测量。

在该实施例,该CPU153被用于判断该类型判断电极152的电势。然而,本发明不限制为这种结构,只用于评价类型判断电极的电势的一个电势判断装置可以是在测量装置151之内分离地设置的。

另外,类型判断电极的数量不再限制为3个。可以形成四个或者更多的类型判断电极以满足将被识别的试片类型的数量,在此情况下至少那些类型判断电极的电势的一个组合是适合于上面的适合试片设置电势。

因此构成的浓度测量装置151的工作过程将被描述。图8和图9是将被设置到浓度测量装置151的试片161、165的简化的示意图。试片161、165基本上与图33和34的常规的试片1相同。图8和图9的标号162、166为前面所描述的反应试药。在图中测量电极5和相反的电极6被反应试药遮盖并没有示出。试片161是其上加有可由测量装置151测量的反应试药的试片,而且即使试片165被设置到测量装置中,在液体测试样品中的成分也不可以由试片165测量。

当试片161被完全地插入到测量装置151中时,在试片161中形成的正极端子117和负极端子119将与测量装置151的正电极102和负电极103连接。此外,在试片161中形成一个第一类型判断端子163a,其将与测量装置151的第一类型判断电极152a连接。在试片161上设置的第二类型判断端子163b能与测量装置151的第二和第三类型判断电极152b和152c连接。第一类型判断端子163a和第二类型判断端子163b统称类型判断电极163。

在试片161被完全插入测量装置151的同时,测量装置151的第二和第三类型判断电极152b和152c被第二类型判断端子163b短路。因为第三类型判断电极152c被接地,所以第二类型判断电极152b的电势变为低电平。同时,虽然第一类型判断电极152a连接到试片161的第一类型判断端子163a,因为第一类型判断端子163a没有电连接,所以第一类型判断电极152a保持在+5伏。

此外,CPU153判断第一类型判断电极152a是高电平而第二类型判断电极152b是低电平,换句话说,满足适合的试片设置电平。CPU153认为被插入到测量装置151中的试片是配备有可由测量装置151测量的反应试药的试片,从而开始在液体测试样品中的成分的测量。

试片165有正极端子117和负极端子119,类似于试片161。试片165还有一个第一个类型判断端子167a、一个第二类型判断端子167b和一个第三类型判断端子167c,当试片165完全地设置到测量装置151中时,它们可以分别与测量装置151的第一个类型判断电极152a、第二类型判断电极152b和第三类型判断电极152c电连接。这些第一、第二和第三类型判断端子167a、167b、167c是彼此独立的没有任何相互的电的连接。

当上面的结构的试片165被完全地插入到测量装置151中时,因为在试片165的第一、第二和第三类型判断端子167a、167b和167c之中没有相互的电的连接,该测量装置151的第一类型判断电极152a和第二类型判断电极152b的具有保持在+5V的状态。因此,该CPU153断定该第一和第二类型判断电极152a,152b两者在高电位,从而承认设置到该测量装置151中的该试片165不是具有可由该测量装置151测量的反应试药的试片。在CPU153中不实施该成分的测量。

成分的浓度还可以在图7所示电路构成中测量。例如,血被滴到试片161的反应试药162上,例如,在该血中葡萄糖的浓度通过测量装置151的正的和负的电极102和103测量。因为测量操作是基本上与第一实施例相同的,所以对其的描述将被省略。

根据第三实施例,只有当具有可由测量装置151测量的反应试药162的试片161被设置到测量装置151中,才允许成分测量。因此这样一个不慎的事故被防止,即,虽然葡萄糖是需要被测量的,但是一个用于乳酸测量的试片被不注意地设置到测量装置151中,并且获得一个错误的结果。

在上面的实施例中,虽然在试片中至少形成两个类型判断端子(163a和163b),但是端子数不限制于此。在四个或者更多类型判断电极提供于该测量装置中时,至少两个类型判断端子要被形成,以使电势判断装置可以从类型判断电极和类型判断端子的连接组合判断适当的试片设置电势。第四实施例

根据本发明第四实施例的一种浓度测量装置和用于该浓度测量装置的试片被显示在图11至15中。

一种稍后将描述的CPU173作为在“发明的公开”中的变化判断装置的例子描述。下面将描述图11中的一种浓度测量装置。浓度测量装置171同样地装备有类型判断电极172,正如图11所示,正电极102、类型判断电极172和负电极103被排列在与设置方向I成直角的方向。正电极102被连接到放大器105的输入,输出放大器的输出通过A/D转换器107连接到CPU173。负电极103接地。该类型判断电极172通过一种连接线174被连接到该CPU173。一个+5V的电压通过一个电阻器正常地施加到该连接线174。

CPU173以下列方式控制,以便只有当带有可由测量装置171测量的反应试药的试片被设置到测量装置171中时,测量在液体检验样品中的分量。关于图14,在步骤(图14中由S指明的)21在一个试片被插入到测量装置171之后以及在步骤22中当该试片被完全地设置到装置171时,CPU173立即检测类型判断电极172的电势。在步骤23检测在两个时间点之间的电势的变化。更明确的地说,CPU173判断是不是电势的改变对应于一“适当的试片设置变化”,该“适当的试片设置变化”只有当带有可由测量装置171测量的反应试药的一适当的试片被设置到测量装置171中时才会出现。当该电势变化是适当的试片设置变化时,CPU173承认带有可由测量装置171测量的反应试药的试片被设置到测量装置171中,从而开始成分测量。当断定电势变化不是适当的试片设置变化时,CPU173作出一个警告显示,不开始该测量。

在上面的实施例中,CPU173在上面的两个时间点检测类型判断电极172的电势藉此判断电势变化。然而,本发明不限制于本实施例,并且用于检测电势和判断电势变化的变化判断装置可以在测量装置171中分离地设置。

浓度测量装置171的操作过程将被描述。要被设置到测量装置171中的并且是以简化的形式画出的图12和13中的试验元件181、185与图33和34的传统的试片1为基本上类似的结构。在图12和13中的参考数字182、186对应于反应试药。设置的测量电极5和相反的电极6被反应试药182、186遮避并且在图中看不见。试片181具有施加到其上的可由测量装置171测量的反应试药,并且即使当试片185设置到测量装置171,试片185也不能测量液体检验样品中的成分。

在试片181中,与浓度测量装置171的正电极102和负电极103相对应,正极端子117和负极端子119沿着设置方向I扩展。而且,一个类型判断端子183被形成在试片181中,试片181在以设置方向I被插入到测量装置171中之后立即电地连接到浓度测量装置171的类型判断电极172。类型判断端子183是与负极端子119整体的形成的。

从图12中清楚的看出,在试片181沿着设置方向I对测量装置171的插入之后,测量装置171的正电极102、类型判断电极172和负电极103位于由参考数字191指定的一条线上,并且分别地电连接到正极端子117、类型判断端子183和负极端子119。因为试片181的类型判断端子183和负极端子119是集成的,所以在插入之后测量装置171的类型判断电极172和负电极103立即短路。因为负电极103被接地,所以测量装置171的类型判断电极172的电势变成地电平,就是低电位。

当试片181在设置方向I被更进一步插入时并且完全地设置到测量装置171中时,测量装置171的正电极102、类型判断电极172和负电极103是呈现在一条线192上。在这个状态中,正电极102和负电极103被维护在电连接到正极端子117和负极端子119的状态。然而,因为在试片181上与类型判断电极172相当的位置处没有端子,所以测量装置171的类型判断电极172不被电连接。当试片被完全地设置时,测量装置171的类型判断电极172的电势被改变到+5V,即,高电位。

正如上面所描述的,当带有可由测量装置171测量的反应试药182的试片181被设置到测量装置171中时,作为试片181的插入的结果,测量装置171的类型判断电极172的电势从最初的高电位变化到低电位,并且当该插入完成时再一次返回到高电位,即,产生较早提及的适当的试片设置变化。CPU173检测适当的试片设置变化,从而承认带有可由测量装置171测量的反应试药182的试片181被设置到测量装置171,并且开始在液体检验样品中成分的测量。

顺便地,只有正极端子117和负极端子119被形成在试片185中,没有类型判断端子183。如图13所示,在试片185沿着设置方向I被插入到测量装置171之后,测量装置171的正电极102、类型判断电极172和负电极103位于线191上,致使正电极102和负电极103分别地电连接到正极端子117和负极端子119。因为试片185未装备有对应于类型判断电极172的一个端子,所以类型判断电极172没有电的连接。在该插入之后,类型判断电极172相应地保持在+5V。

当试片185被更进一步沿着设置方向I插入并且完全地设置到测量装置171中时,正电极102、类型判断电极172和负电极103是在线192上,正电极102和负电极103被保持在与正极端子117和负极端子119分别地电连接。因为在试片185中未形成与类型判断电极172对应的一个端子,所以测量装置171的类型判断电极172没有电的连接,并且保留+5V,即,甚至在完成插入后,是高电位。

当带有不能由测量装置171测量的反应试药186的试片185被设置到测量装置171中时,测量装置171的类型判断电极172的电势不会从最初的高电位变化。因此,CPU173认定具有反应试药186的试片185被设置到测量装置171中,并且不开始在液体检验样品中的成分的测量。

根据第四实施例,在测量装置171的类型判断电极172的适当的试片设置变化被适用于初始时表示高电位,在后来的试片的插入时为低电位,并且当插入完成时为高电位。电势变化不限制为这个模式,并且是由形成在试片中的与类型判断电极172相对应的类型判断端子的形状决定的。例如,在图15中的试片184可以被设计为以设定电势变化,即,适当的试片设置变化从当试片被插入时的高电位到当完成插入时的低电位。

成分浓度是以图11的电路结构测量的。例如,血被滴到试片181的反应试药182上,并且通过测量装置171的正电极102和负电极103测量在该血液中的葡萄糖的浓度。由于上面的用于浓度测量的操作与第一实施例的描述基本上没有不同,所以它的描述被相应地省略。

根据该第四实施例,只有当有可由该测量装置171测量的反应试药182的试片181被设置到测量装置171时,该成分能被测量。这样防止了一个不便,即,虽然需要测量葡萄糖,但是用于乳酸盐测量的一个试片被不注意地设置到测量装置171中并且获得一个错误的结果。

在前面的实施例中,各个浓度测量装置适合于识别与各个浓度测量装置相符的试片,这些试片在这些测量装置之中不能通用。例如,图2的试片115合适于图1的测量装置101,同样地,图5的试片141适合于图4的测量装置131。即使当图5的试片141被设置到测量装置101中,在测量装置101中也不能执行该成分的测量。同样地,即使图1的试片115被设置到测量装置131,该测量装置131不能执行该成分测量。由此,在这些实施例中,本发明可以实现一个生物传感器系统,它禁止在不同的浓度测量装置之中试片共享。

图16是图1的浓度测量装置101的一个改变的例子。浓度测量装置201可以是由正电极102、负电极103和类型判断电极104按此顺序在与设置方向I成直角的方向设置构成的。能够在测量装置201中测量成分的一个试片205被显示在图17中。试片205具有用于电连接测量装置201的正电极102和类型判断电极104的一个第一端子206。而且,形成一个第二端子207,它电连接到测量装置201的负电极103。

即使当与测量装置101相符的试片被设置到测量装置201,也不可能进行该成分测量。而且,即使当与测量装置201匹配的试片205被设置到测量装置101,也不能测量该成分。那是因为正电极102和类型判断电极104在任何情况下不短路。如上所述,通过改变结构本发明可以提供生物传感器系统,在其中甚至在相同的实施例的测量装置之中试片也不能共享。

基本上,在上面描述的各个实施例中的浓度测量装置能够测量一种成分,例如,葡萄糖,并且只有当带有适合葡萄糖测量的反应试药被设置时,才适合执行葡萄糖浓度的测量。然而,在各个实施例中的上面的浓度测量装置和要在下面描述的根据第五实施例的浓度测量装置不限制于这个模式。例如,测量装置是可分的,当运输或者使用之前并可组合,以使它能测量许多种需要的成分,并且只有当与需要成分一致的试片被插入时,执行浓度测量。

在前面的描述中,类型判断电极和类型判断端子被用于检测是不是与要被测量装置检测的成分一致的试片被设置到该测量装置中。然而,使用类型判断电极和类型判断端子的技术的思想不是限制为上述实施例的概念,它是可利用的,例如,如在下列第五实施例中校准测量装置。在该测量装置中执行的校准至少包括通过在许多校准曲线之中一个需要的校准曲线的选择对成分浓度误差的补偿,以及当要显示预定浓度值的预先调整的试片被设置到该测量装置中时,基于一个预定浓度值显示检验测量装置的操作。第五实施例例示上面的校准曲线的选择。第五实施例

正如在“实现本发明的最佳方式”的开始描述的,包括在施加在与要被检测的成分相应的试片的基底材料上的反应试药中的酶对于每个生产批量有一个生产误差。例如,当包含100mg/dl浓度的葡萄糖的一种液体检验样品被滴到包括第一生产批量的酶上时,测量装置显示100mg/dl。另一方面,当相同的液体检验样品被滴到包括第二生产批量的酶的一种反应试药上时,测量装置显示90mg/dl。由于该酶本身的生产误差,如上所述在检测的值中包括一误差。虽然在检测的值中引起最大的误差的一个因素是酶的制造误差,但是形成在试片的底部材料上的正极端子、负极端子等的电阻值也同样招致误差,这是因为被印刷以便形成端子的传导性的碳糊也不是无制造误差的。

为了消除上面的问题,照惯例,用于补偿在检测的浓度中的误差从而显示一个真实的浓度的校准曲线信息被预先储存在测量装置中,正如在日本的专利的出版物4-357452中所揭示的。以及,为每一组具有相同的生产批量的试片准备一个用于从许多校准曲线信息中选择可以补偿每个生产批量的制造误差的校准曲线信息的校准试片。因为对于测量的大有影响的因素是酶的制造误差,相同的生产批量通常对应于一组试片,该组试片被施加包括相同的生产误差的酶的反应试药。照惯例,使用不同的生产批量的试片的一个用户首先设置校准试片到测量装置,然后选择与使用的试片的生产批量一致的校准曲线信息。只要使用的试片是相同的生产批量的试片,选择一次校准曲线信息是足够的,而不必要在相同的生产批量的各个试片被使用时每次都选择该信息。

正如在前面所描述的,在传统的浓度测量装置中,用户需要关注试片的酶的变化,就是,生产批量的变化。除非与酶的生产误差一致的校准曲线信息被选择,否则在测量装置显示的检测的值中包含大的误差。

第五实施例是被设计为要解决该问题,在其中选择校准曲线信息的功能是根据前面的实施例描述的类型判断电极和类型判断端子的使用的技术的概念,由类型判断电极、类型判断端子和CPU进行的。

正如将在前面描述的,被构成的第五实施例将是第四实施例的一个修改,这是因为将被检测的每个成分通常有十种或者更多种类校准曲线信息,因此必需使试片的类型判断端子用尽可能少的类型判断端子数量区别十种或者更多种类的校准曲线信息。然而,不只是通过第四实施例改变结构能使校准曲线信息的选择有效,而且如果将被区分的校准曲线信息仅仅包含几种,那么上面的第二或者第三实施例的修改在某些情况下可以处理该选择。

第五实施例是如此构成以至通过形成在试片上的类型判断端子选择校准曲线信息,同时,测量装置的类型判断电极和CPU判断可测量的成分,类似于第一至第四实施例。第五实施例不限制于这个结构,可以是适合于只是选择校准曲线信息。

根据本发明第五实施例的一种浓度测量装置和用于该浓度测量装置的试片将参照图19至24被描述。在下文将被描述的CPU258、308和358是发挥“变化判断装置”功能的实施例。

图19显示第五实施例的一例子的浓度测量装置251,图20是将被设置到该浓度测量装置251中的一个试片271。

浓度测量装置251对应于关于图11的第四实施例的浓度测量装置171的一个修改,具有在与试片271的设置I成直角的方向设置的正电极102、三个类型判断电极252、253和254,以及负电极103。正电极102被连接到放大器105的输入,输出放大器的输出通过A/D转换器107连接到CPU258。负电极103接地。类型判断电极252-254通过各自的连接线255-257连接到CPU258。通常,每个+5V的电压通过电阻器被施加到每一连接线255-257。

CPU258配备有一个储存部分259,储存用于补偿包括在液体检验样品中的特定的成分的浓度中的测量误差的多条校准曲线信息。类似于上面的各个实施例描述的测量装置,只有当带有可由浓度测量装置251测量的反应试药的试片271被设置到测量装置251中时,CPU258实现控制以测量该浓度,以及按照插入测量装置251中的试片271的生产批量从储存部分259中选择和提取可以补偿测量误差的一个预定校准曲线信息。虽然CPU258的操作将稍后详细地讨论,基本上,在试片271被开始在设置方向I插入以测量装置251之后及试片271被完全地设置到251中之前,CPU258检测在类型判断电极252、253和254中的每一个上的电势变化模式,即,正如在第四实施例中描述的适当的试片设置变化,并且也检测将稍后描述的“校准曲线信息选择变化”。基于检测的适当的试片设置变化,CPU258判断是不是具有与该可由测量装置251测量的特定的成分起反应的反应试药的试片被设置到该装置251。此外,基于该检测的校准曲线信息选择变化,CPU258选择一个校准曲线信息,通过该校准曲线信息按照该设置试片的在检测的浓度中的误差可以被校准。

类型判断电极252-254可以被分为第一电极和第二电极。在试片开始被插入之后及试片被完全地插入测量装置之前,第一电极产生从高电位到低电位以及从低电位到高电位的适当的试片设置变化,并且产生校准曲线信息选择变化。在第五实施例中,类型判断电极252和253作为第一电极。在本实施例中低电位电势对应于接地电位,高电位电势对应于+5V。第二电极与在第一电极的电势变化同步交替地产生高和低电位电势,以便于检测第一电极的适当的试片设置变化和校准曲线信息选择变化的定时。类型判断电极254对应于在第五实施例中的第二电极。

虽然在第五实施例中,第一电极包含两个电极,但是第一电极的电极数量不特定的限制于此。

图20的试片271基本上是构成为与图33和34中显示的传统的试片1类似的结构。参考数字272对应于反应试药,在图中它遮避了测量电极5和相反的电极6。可由测量装置251测量的反应试药被应用到试片271。

试片271具有在设置方向I扩展的将分别地电连接到测量装置251的正电极102和负电极103的一个正极端子273和一个负极端子274。在试片271开始被插入到测量装置251之后及被完全地设置到测量装置251中之前,在试片271在I方向移动的同时,在正电极102和正极端子273之间和在负电极103和负极端子274之间的电的连接被维持。试片271更进一步配备有与测量装置251的类型判断电极252、253和254一致的类型判断端子275、276和277。构成类型判断端子275的两个类型判断端子275-1和275-2被间断地形成在类型判断电极252的通路上,构成类型判断端子276的四个类型判断端子276-1至276-4被间断地形成在类型判断电极253的通路上,如此以致于在试片271沿着方向I开始被插入到测量装置251之后及最后设置到测量装置251之前的时候,造成类型对判断电极252和253的合适试片设置变化和校准曲线信息选择变化。类型判断端子275和276对应于用于对于第一电极产生电势变化的一个部分。类型判断端子275-1和275-2,以及类型判断端子276-1至276-4通过连接线被连接到负极端子274。连接线是与类型判断电极252-254电绝缘的,以致防止在类型判断电极252-254和随类型判断电极252-254移动的连接线路之间的电的连接。

在试片271沿着方向I开始被插入到测量装置251之后及完全地设置到测量装置251之前的时候,为了产生对判断电极254的合适试片设置变化和校准曲线信息选择变化,构成类型判断端子277的两个类型判断端子277-1和277-2被间断地形成在类型判断电极254的通路上,类型判断端子277对应于用于为第二电极产生定时的一个部分。在本实施例中,类型判断端子277-1和277-2是与负极端子274整体的形成的。

同时,一个设置完成检测端子278与负极端子274整体的形成在试片271中,以使测量装置251检测试片271何时被完全地设置到装置251中。

上面描述的正端子273、负极端子274、类型判断端子275-277和设置完成检测端子278是通过印制导电性的材料等等形成的,类似于已有技术。稍后将更详细地描述端子的形成方法。

虽然根据第五实施例提供了六个类型判断端子275和276作为对第一电极的电势变化的部分,但是类型判断端子的数量不被限制于此,并且可以是由将被选择的校准曲线信息的种类数量确定的。

如上面的构成的浓度测量装置251以下列方式操作。

在图20中,在紧随试片271以设置方向I被插入到测量装置251之后的那一时间点,测量装置251的正电极102、类型判断电极252-254和负电极103被放置在由行281所示的位置。正电极102被电连接到试片271的正极端子273,类型判断电极253和254分别地电连接到类型判断端子276-1和277-1,负电极103电连接到负极端子274,而没有相应端子的类型判断电极252没有电的连接。类型判断端子275-1和275-2,以及类型判断端子276-1至276-4电连接到负极端子274,类型判断端子277-1和277-2是与负极端子274整体的形成的。结果,接地负电极103电连接到负极端子274,那么类型判断端子275-1、275-2、276-1至276-4和277-1、277-2通过负极端子274变成低电位电势,就是,在本实施例中的接地电势。在试片被开始插入的时间点281,类型判断电极253、254和负电极103是接地电势,即,低电位电势,而连接到类型判断电极253、254的连接线256、257是接地电势,而连接到类型判断电极252的连接线255是+5V,即,该高电位电势。

根据试片271沿着设置方向I对测量装置251的更进一步的插入,当正电极102、类型判断电极252、253、254和负电极103出现在由线282所示的位置时,正电极102保持与正极端子273的连接,负电极103也保持与负极端子274的连接,而类型判断电极252、253分别地电连接到类型判断端子275-1、275-2。同时,类型判断电极254没有相对应的端子,因此没有电连接。因此,在位置282,类型判断电极252和253以及负电极103是接地电势,连接到类型判断电极252的连接线255和连接线256是接地电势,连接到类型判断电极254的连接线257是+5V,即,高电位电势。

同样地,当试片271在设置方向I对测量装置251的更进一步的插入时,正电极102、类型判断电极252-254和负电极103出现在由线283所示的位置上,正电极102保持与正极端子273的连接状态,同样地,负电极103保持与负极端子274的连接,连接线255导致高电位电势而连接线256和257改变到接地电势。其后,当试验271在设置方向I对测量装置251的更进一步的插入时,导致将正电极102、类型判断电极252-254和负电极103定位在由线284所示的位置上,正电极102保持与正极端子273的连接状态,负电极103仍然与负极端子274连接,连接线255和256变为接地电势而连接线257改变到高电位电势。当试片271被最后设置到测量装置251中时,正极电极102、类型判断电极252-254和负电极103出现在线285所示的一个位置,正电极102与正极端子273的和负电极103与负极端子274的各个连接状态被保持,连接线255-257全部被变成接地电势。

根据试片271被开始设置之后及试片271被完全地设置到测量装置251中之前试片271的移动,换言之,根据正电极102、类型判断电极252-254,以及负电极103从位置281到位置285的移动,测量装置251的CPU258检测在类型判断电极252-254,即,连接线255-257的电势变化。更明确的说,当试片271被完全地设置到测量装置251中,以及当CPU258检测每一连接线255-257达到接地电势时,CPU258断定试片271被插入到测量装置251的一个设置完成位置。根据试片271从一个开始位置到完成位置的移动,连接线257的变化是从接地电势-->高电位电势-->接地电势-->高电位电势-->接地电势。换句话说,在连接线257上接地电势和高电位电势被交替重复的。CPU258检测在连接线257上的交替的电势变化。基于交替的电势变化,CPU258获得适当的试片设置变化的一个检测定时,该适当的试片设置变化是在连接线255、256上的电势变化,并且也检查试片271是不是被正常地设置到测量装置251。即,只有在试片271的开始位置之后到设置完成位置连接线257两次变成高电位电势时,CPU258断定试片271被正常地设置到测量装置251。在上面的情况之外的其他情况下,CPU258断定试片271在与设置方向I相反的方向至少移动一次,换句话说,试片271返回,例如表现一误差显示。

与连接线257的电势变化同步,CPU258检测在连接线255、256上产生的适当的试片设置变化。更明确的说,在第五实施例中,当试片271从设置开始到设置完成被正常地设置到测量装置251中时,连接线255的变化是从高电位电势-->接地电势-->高电位电势-->接地电势,由高电位电势变到接地电势,并且连接线256是从接地电势-->接地电势-->接地电势-->接地电势到接地电势变化的。CPU258识别在每一连接线255和256的电势变化模式,同时类型判断电极252、253被移动以定位从位置281至284。在本实施例中,因为在位置281至284有六个类型判断端子275、276,电势变化可以是26,即最大值64个模式。电势变化的64个模式对应于校准曲线信息,以及在本实施例更进一步对应于可由设置试片271测量的被储存在储存部分259中的特定的成分的信息。在第五实施例中,根据在类型判断端子252、253定位于设置完成位置285之前那一刻的连接线255、256的每一电势,在位置284,CPU258选择特定的成分的信息,即,用于试片的类型认证的信息,以及根据“校准曲线信息选择变化”选择校准曲线信息。“校准曲线信息选择变化”是在类型判断端子252、253从位置281到283移动时连接线255、256的电势变化。相应地,在第五实施例中,存在有用于选择校准曲线信息的校准曲线信息选择变化的24=16个模式,以及用于选择特定的成分的信息的电势变化的22=4个模式。

基于识别出的电势变化,CPU258从储存部分259中选择并取出与设置试片271的生产批量一致的校准曲线信息以及可由试片271测量的特定的成分的信息。

当试片271被设置到浓度测量装置251中时,基于表示特定的成分的被选择的信息、用于标识试片的类型的信息,如果CPU258决定与可由测量装置251测量的特定的成分一致的试片271被设置,那么CPU258变成了一个可测量的状态。然后CPU258选择和提取与试片271的生产批量一致的校准曲线信息。例如,当血被滴在设置试片271的反应试药上时,在血中的葡萄糖的浓度是通过测量装置251的正电极102和负电极103检测的。CPU258利用在选择的校准曲线信息校准在进行特定的成分的浓度测量中的浓度,并且使得结果被显示。因为本浓度测量操作是基本上类似于第一实施例描述的方式实现的,所以在这里将相关的描述省略。

在对比中,如果设置了一个对应于不可由测量装置251测量的特定的成分的试片,那么CPU258不会变成可测量的状态,并且显示一错误显示。

在上面描述的第五实施例中,只有当具有可由测量装置251测量的反应试药的试片271被设置到测量装置251中时,可以执行该测量。因此,这样可以防止一个不便,即,虽然需要测量葡萄糖,但是用于乳酸盐测量的一个试片被不注意地设置到测量装置171中并且获得一个错误的结果。此外,当用于特定成分的试片271被设置时,可以利用与该试片271的生产批量一致的校准曲线信息校准浓度,从而使得用户不必要注意试片的生产批量和设置校准试片以选择校准曲线信息。因此,当一个正确的试片,即,具有可由一个测量装置测量的反应试药的一个试片被设置,可以没有校准的获得该成分的浓度。用户相应地免除了使用校准试片和测量试片两者的传统的麻烦,于是从烦恼中解放出来。

根据第五实施例,正如前面所描述的,为在连接线255、256上的电势变化的适当的试片设置变化模式通常是两个种类,用于校准曲线信息选择变化的电势变化模式和用于选择表示特定的成分的信息的电势变化模式。然而,本发明不限制于此。例如,在可由测量装置测量的特定的成分已经知道以及与特定的成分一致的试片在被设置的情况下,不需要用于选择特定的成分的信息的电势变化模式,因此,在适当的试片设置变化中的模式可以完全地利用校准曲线信息选择变化的模式。相反地,其他种类的电势变化可以被加到上面的模式中以形成三种或者更多种类的模式。

浓度测量装置和试片不被限制为在图19和20中显示的实施例,例如,可以被改变成在图21至24中显示的将在下面描述的形式。

在上面的浓度测量装置251中两个连接线255、256的电势变化被用于选择校准曲线信息和特定的成分信息。另一方面,根据图21的浓度测量装置301,在连接到三个类型判断电极302-304的三个连接线305-307之中的一个连接线306的电势变化被CPU308检测到,此检测的信息至少被用于校准曲线信息的选择。连接线305、307两者通过各自的10k欧姆电阻器被连接到各个+5V电源,连接线306通过一个100k欧姆电阻器接地。在其他点上测量装置301的结构与上述的测量装置251的结构相同。

与将被设置到测量装置301中的试片321上端子的形成有关基本原理是与试验271的形成相类似的。然而,虽然试片271具有与类型判断电极252和253一致的分开的类型判断端子275和276,差别是试片321装备有将类型判断电极302和303对应的一个类型判断端子325。因为一个类型判断端子325是与类型判断电极302和303相对应的提供的,所以类型判断端子325是适合于被放在沿着设置方向I的六个点上,以致获得上面的适当的试片设置变化的64个模式,这类似于该测量装置251。不用说,类型判断端子325的数量不被限制为上面的六个点,并且可以根据适当的试片设置变化的模式的数量确定。

下面将描述上面的结构的测量装置301的操作过程。

在试片321开始被设置到测量装置301的起始时间点,正电极102、三个别类型判断电极302-304和负电极103位于由线331显示的位置。正电极102被电连接到试片321的正极端子323,类型判断电极302、303电连接到类型判断端子325,类型判断电极304电连接到类型判断端子327,负电极103电连接到负极端子324。类似于试片271的类型判断端子277,试片321的类型判断端子327产生定时。根据试片321在设置方向I的移动,类型判断端子327产生对连接到类型判断电极304的连接线307的接地电势和高电位电势的交替的电势变化。在测量装置301中,在试片321的设置开始到完成之后,当连接线307三次变成高电位电势时,CPU308断定试片321是完全正常地设置到测量装置301中,并且在除了上述情况之外的其它情况下显示一错误显示。

当类型判断电极302和303是由类型判断端子325电连接时,电源电压通过10千欧姆电阻器和连接线305被施加到与类型判断电极303连接的连接线306,以使连接线306变成高电位电势。当试片321更进一步在设置方向I移动时,以及如果类型判断端子325不在的话,例如,当类型判断电极302和303位于由线333表示一个位置时,类型判断电极302和303彼此并不电连接。在这种情况下,连接线306通过100千欧姆电阻器接地并因此变成低电位电势。在目前的例子中,根据试片321从开始位置到在那里有正电极102的一个设置完成位置的移动,三个类型判断电极302-304和负极电极103是在一条线337上,连接线306显示出从高电位电势-->高电位电势-->低电位电势-->高电位电势-->高电位电势-->高电位电势到低电位电势的变化。取决于类型判断端子325的存在/不存在,在试片321从开始位置移动到设置完成位置的同时,可以引起对连接线306的电势变化上升。CPU308检测在连接线306的电势变化模式,然后选择并提取例如预先储存在与连接线306的电势变化模式相对应的一个储存部分309中的校准曲线信息。在其它点上测量装置301是与测量装置251的相同方式操作的,因此在这里省略对它们的描述。

参照图23,在浓度测量装置351中,在连接线356的电势变化被检测,这类似于测量装置301,从而选择例如校准曲线信息。用于产生到连接线356的电势变化的结构与测量装置251相比是不同的。具体地说,测量装置351具有三个类型判断电极352-354,连接到类型判断电极352-354的连接线355-357,一个CPU358以及一个储存校准曲线信息等的一个储存部分359。各个+5V电源经由各自的电阻器连接到连接线355-357。测量装置351另外备有一个接地电极360,其与产生由CPU358检测的电势变化的连接线356的类型判断电极相邻。当CPU358检测类型判断电极352电连接到将稍后描述的一个设置完成检测端子378时,CPU358识别出对装置351的一个试片371的设置完成。

在此期间,将被设置到测量装置351的试片371类似于试片321,其具有正极端子323、负极端子324以及类型判断端子375等。试片371还包括与负极端子324整体的形成的设置完成检测端子378。设置完成检测端子378检测何时试片371被完全地设置到测量装置351中。当类型判断电极352位于由387表示的设置完成位置时,检测端子378将形成电连接到类型判断电极352的结构。在其他方面试片371的结构是与试片321的结构相同的。

在下文将描述如此构成的测量装置351的操作。因为该操作与测量装置301的操作基本上是类似的,将仅仅描述装置351和装置301之间的差别。

即,当试片371开始被设置到测量装置351时,类型判断电极353和接地电极360位于由线381表明的位置并且电连接到类型判断端子375。因为类型判断电极353的电连接是通过类型判断端子375电连接到接地电极360,所以由CPU358检测的连接线356的电势变化变成接地电势。当试片371被更进一步在设置方向I插入并且类型判断电极353和接地电极360位于由线383表明的位置时,由于试片371没有类型判断端子,所以连接线356变成+5V的高电位电势。

根据前面描述的实施例,利用在试片371被开始插入之后及正电极102、三个类型判断电极352-354、接地360以及负电极103达到线387表示的位置之前试片371的移动,连接线356显示出电势变化是从接地电势-->接地电势-->高电位电势-->接地电势-->接地电势-->接地电势到该接地电势。因此,基于类型判断端子375的存在/不存在,根据在设置开始到完成之后的试片371的移动,连接线356经历电势变化。CPU358检测在连接线356的电势变化模式,然后选择并提取例如预先储存在与连接线356的电势变化模式相对应的一个储存部分359中的校准曲线信息。在其它点上测量装置351是与较早描述的测量装置251以相同方式操作的,因此在这里省略对它们的描述。

在下面将说明用于正极端子、类型判断端子、负极端子以及形成在第五实施例的试片中的设置完成检测端子的一种方法,尤其是,用于形成类型判断端子的一种方法。

正如以前描述的,试片不可避免地包括对于每一生产批量的测量误差,并且对于测量误差影响大的因素是在反应试药中酶的生产误差。因此,用于形成将在下文描述的判断元件方法是一种基于酶的生产误差形成判断元件的方法。试片271作为下列描述中的一个例子,下列描述是关于到试片的类型判断端子275-277形成校准曲线信息选择模式的一种情况。

通常有两个方法用于形成正极端子、类型判断端子等等。根据第一个方法,在反应试药的生产误差,尤其是酶的生产误差被确认之后,形成类型判断端子,以致至少造成对连接线的校准曲线信息选择变化。根据第二方法,尤其是在酶的生产误差被确认之后,预先沿着设置方向I形成没有模式图案的一个类型判断端子,并且在该没有模式图案的类型判断端子上施加绝缘物质,所以至少造成对该连接线路的校准曲线信息选择变化。

下面将参照图25至28描述上述的第一个方法。正如图25所示,25,测量电极、相反的电极以及连接到这些电极的连接线被形成在样品试片271的基底材料上,以确定校准曲线信息。除了测量电极和相反的电极的一部分之外,利用绝缘糊等形成一绝缘层,正如在图26中由倾斜线指出的,并且其后反应试药272被施加在测量电极和相反的电极上。在图26-28中的倾斜线不是表示横截面的阴影。那么,在图27中,包含与反应试药272起反应并且它的浓度是已知的一种特定的成分的一种规格的溶液被滴到该反应试药272上,并且一个电压被施加到反应试药272的一部分上。那么一个浓度,一个电流值被测量。根据检测的浓度和知道的浓度,获得该反应试药272的测量误差。在图28中,类型判断端子275、276和正极端子273等等是由导电材料形成的,以使与对于上面的测量错误的校准曲线信息补偿一致的校准曲线信息选择变化利用类型判断端子275、276和正极端子273等引出。

在前面的描述中,试片是用于确定校准曲线信息的样品。在为了出售的其中包括与施加到样品元件的反应试药的酶相同的生产批量的酶的试片271被应用的情况中,应该根据在该基底材料上反应试药的应用时间测定,选择形成判断端子275的一种传导性的材料。即,通常,包括在反应试药272中的酶被稍微加热而酶的活力被减少,或者一旦不比50摄氏度低的一个温度作用到酶上,酶变成非活性的。因此试片271是不可用的。因此,在与生产批量一致的校准曲线信息被确定之后产生试片271的情况中,以及如果在类型判断端子275等被形成之前反应试药272被施加在基底材料上,一种在标准温度处理的传导性的材料应该用于该类型判断端子275等,正如图28所示。例如,上面的类型的传导性的材料是包含银和环氧基树脂粘合剂的的导电的粘合剂比如“ELECTRODAG5820”(Acheson(日本)公司商品名)或者包含镍和热塑性的粘合剂比如“SS24306”(Acheson(日本)公司商品名),等等。

同时,在类型判断端子275等等被形成之后当反应试药272被施加在基底材料上时,上面描述的适于正常温度类型的导电的材料不是必需的,而可以使用照惯例需要在大致130-150摄氏度加热使用的热硬化性的导电的材料。

第二方法将参照图29-32描述。

在图29中,在用于确定校准曲线信息的样品试片271的基底材料上形成测量电极、相反的电极、连接到这些电极的连接线、正极端子273、负极端子274、设置完成检测端子278以及没有模式的类型判断端子401、402。类似于参照图26的描述,在形成除了测量电极和相反的电极的部分之外的一绝缘层之后,施加反应试药272,正如在图30中倾斜线所显示。在图30-32中的倾斜线不是用于表示横截面的阴影。在图31,标准溶液被滴到反应试药272,以及一个电压通过正极端子273以及负极端子274施加到部分反应试药272上。然后,检测标准溶液的浓度、电流。根据检测的浓度和知道的浓度,获得反应试药272的测量误差。在图32,绝缘糊405、406等被如倾斜线指出的施加在没有模式的类型判断端子401、402上,以使能够补偿上面的测量误差的校准曲线信息可以被选择,从而形成用于选择该校准曲线信息的一个模式并且获得类型判断端子275、276。作为为了选择校准曲线信息对没有模式的类型判断端子401、402形成图形模式的方法,一对类型判断端子401、402进行切割或类似的处理,代替在常温下进行的施加绝缘糊405、406。例如,上面的类型的绝缘糊405、406是包含聚亚安酯PV序列树脂粘合剂的绝缘颜料,正如“JEF-226C”(Acheson(日本)有限公司商品名))或者包含聚酯树脂粘合剂的绝缘颜料比如“JEH-116G”(Acheson(日本)有限公司商品名)的绝缘颜料等等。

正如较早地提到的,根据施加到试片271的反应试药272的应用时间,热硬化性类型的绝缘糊能被使用。

根据上面的第二方法,如图31,当标准溶液的浓度被检测时,因为正极端子273和负极端子274被使用,该浓度可以利用作为正极端子273和负极端子274包括的材料的导电的碳糊的产品误差被检测,和第一个方法不同。因此,特定的成分的浓度可以用比第一个方法更高的准确性检测。

在19977月22递交的日本专利申请No.9-195866的内容包括说明书、权利要求书、附图、以及摘要被合并在此处被引用。

虽然本发明已经参照附图结合优选的实施例被完全地描述,显然的对于本领域的熟练者来说是能够做出改变和修改的。这样的变化和修改只要没有脱离由权利要求所定义的本发明的范围,将被认为是在本发明的范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号