首页> 中国专利> 用于制备双态分子量分布乙烯聚合物和共聚物的催化剂

用于制备双态分子量分布乙烯聚合物和共聚物的催化剂

摘要

在600℃煅焙过的二氧化硅与二丁基镁(DBM)、1-丁醇、四氯化钛以及甲基铝氧烷和(BuCp)

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2005-11-23

    专利权的终止未缴年费专利权终止

    专利权的终止未缴年费专利权终止

  • 2002-01-30

    授权

    授权

  • 1998-01-21

    实质审查请求的生效

    实质审查请求的生效

  • 1997-12-31

    公开

    公开

说明书

本发明涉及在一个反应器中制备乙烯的双态分子量分布(MWD)聚合物或共聚物的催化剂及其应用。该催化剂在一种载体上至少包括两种过渡金属组分;两种过渡金属组分之一是以茂金属形式提供的。负载的过渡金属用低聚和/或聚合含氧铝化合物活化。催化剂存在下的聚合产物含有分子量明显不同的两种组分,一种组分的分子量比另一种组分的分子量高;这种聚合产物称为双态分子量分布产物。

所述的催化剂可在通用气相流化床反应器中使用,不会发生反应器结垢,在聚合反应器中不用同时加入铝氧烷。因此,本发明的催化剂可用于在单个通用气相流化床反应器中连续聚合和共聚乙烯,而不发生反应器结垢。

图1是实施例中双态分子量分布产物的凝胶渗透色谱。这些聚合产物含有两种分子量不同的组分,其中一种组分的分子量比另一种组分的分子量高。

以下根据该催化剂的制备方法对催化剂进行讨论:

不含烷基铝(如三烷基铝、卤化二烷基铝、氢化二烷基铝)之类活化剂的负载非茂金属过渡金属化合物(下文中称为非茂金属过渡金属)可通过与仅含铝氧烷或含铝氧烷和茂金属化合物混合物的溶液接触进行活化。本发明涉及在一个反应器中制备乙烯的双态分子量分布聚合物和共聚物的一种催化剂及其应用。该催化剂在一种载体上至少含有两种过渡金属组分;两种过渡金属组分之一是以茂金属形式提供。在催化剂制备过程中负载的过渡金属被活化。根据本发明,无需在反应器(淤浆或气相流化床)中加入铝烷基化合物。

在一个优选实施方案中,本发明的催化剂由负载的非茂金属过渡金属组分、茂金属过渡金属化合物和甲基铝氧烷组成。

载体材料是固体、颗粒状、多孔、最好为无机材料,如硅和/或铝的氧化物。使用平均粒度为1-500微米,最好为10-250微米的干粉型载体材料。载体的表面积至少为3平方米/克(m2/g),最好为50-350m2/g。载体材料应是干燥的,即应是无吸附的水。载体材料的干燥可在加热至100-1000℃,最好为600℃的条件下进行。载体是二氧化硅时,至少加热至200℃,较好加热至200-850℃,最好加热至600℃。载体材料必须至少具有一些产生本发明催化剂组合物的活性羟基(OH)。

在最优选的实施方案中,载体是用于第一个催化剂合成步骤之前按如下方法脱水的二氧化硅。该方法包括用氮气将二氧化硅流化,并在600℃加热16小时,以获得0.7毫摩尔/克(mmol/g)的表面羟基浓度。最优选实施方案中的二氧化硅是高表面积的无定形二氧化硅(表面积=300m2/g;孔容为1.65cm3/g),它是DavisonChemical Division of W.R.Grace and Company以商品名称Davison952或Davison955出售的一种材料。该二氧化硅是球形颗粒,如用喷雾-干燥法得到的。采购时,这些二氧化硅未经焙烧,但必须按上述方法进行脱水。

催化剂的合成在惰性、无水无氧条件下进行。

将具有上述羟基的载体材料放在非极性溶剂中形成淤浆,然后将所得的淤浆与至少一种有如下经验式的有机镁化合物接触。溶剂中载体材料的淤浆的制备方法是,最好在搅拌下将载体加入溶剂中,同时将混合物加热至25-75℃,最好加热至40-60℃。这里的温度对于随后加入的非茂金属过渡金属是关键的;即90℃或更高的淤浆温度会使随后加入的非茂金属过渡金属失活。因此,所有的催化剂前体合成步骤都在90℃以下进行。然后在按上述方法继续加热时将该淤浆与上述有机镁化合物接触。

有机镁化合物具有如下经验式:

            RMgR′

式中R和R′是相同或不同的C2-C12烷基,较好是C4-C10烷基,更好为C4-C8烷基,最好是R和R′各为丁基。

合适的非极性溶剂是能溶解本发明所用的反应物(即有机镁化合物和非茂金属过渡金属化合物)的物质。虽然也可使用包括环烷烃(如环己烷)和芳烃(如苯、甲苯和乙苯)的其它各种物质,但优选的非极性溶剂是烷烃,如异戊烷、己烷、正庚烷、辛烷、壬烷和癸烷。最优选的非极性溶剂是异戊烷。使用前,非极性溶剂应加以提纯,如用硅胶和/或分子筛渗滤,以除去痕量的水、氧、极性化合物和其它可损害催化剂活性的物质。

在合成这种催化剂的最优选实施方案中,重要的是只加入正好够物理或化学淀积在载体上的量的有机镁化合物,因为溶液中过量的有机镁化合物可能与其它合成化合物反应,并沉淀在载体表面。载体干燥温度影响载体上有机镁化合物可用的部位数目-干燥温度越高,部位数目越少。因此,有机镁化合物对羟基的确切摩尔比是变化的,且必须根据各个条件加以测定,从而确保在溶液中的有机镁化合物加入量正好仅够其沉积在载体上,而不在溶液中留下过量的有机镁化合物。因此,仅将下述的摩尔比看作大致的指标,本实施方案中有机镁化合物的确切用量必须受上述作用限制所控制,即必须不大于其可沉积在载体上的量。如果加入溶剂中的量大于此量,超过的量可能与非茂金属过渡金属化合物反应,从而在载体外表形成沉淀物,这种沉淀物对本发明催化剂的合成是有害的,必须加以避免。不超过载体上沉淀量的有机镁化合物用量可按任何常规方法进行测定,如搅拌时将有机镁化合物加入载体溶剂淤浆中,直到有机镁化合物在溶剂中被检出为止。

例如,对在600℃加热过的二氧化硅载体而言,淤浆中的有机镁化合物的加入量要使得固体载体上镁与羟基(OH)的摩尔比为0.5∶1-4∶1,较好的为0.8∶1-3∶1,更好的为0.9∶1-2∶1,最好的为1∶1。有机镁化合物溶解在非极性的溶剂中形成溶液,然后有机镁化合物从该溶液沉淀在载体上。

也可以加入超过载体上沉淀量的有机镁化合物,然后例如用过滤和洗涤的方法除去任何过量的有机镁化合物。然而,这种方法没有上述最优选的实施方案优越。

将有机镁处理过的载体与有机醇试剂(R″OH)接触。这种有机醇试剂的用量以能有效地提供0.5-2.0,较好为0.8-1.5的R″OH∶Mg比为度。

负载镁化合物的二氧化硅与有机醇试剂的接触在淤浆中进行。接触温度为25-90℃,最好为40-60℃。

有机醇中的烷基可含有1-12个碳原子,最好为1-8个碳原子;在如下的实施方案中,它是含2-4个碳原子的烷基,特别是含4个碳原子的烷基(丁基)。本发明的催化剂合成中包括醇试剂步骤产生比无此步骤活性高得多的催化剂,该催化剂需要少得多的非茂金属过渡金属化合物(如钛),而且比用茂金属组分产生的组分的活性要高得多。

向淤浆中加完有机醇试剂后,将该淤浆与非茂金属过渡金属化合物接触。淤浆的温度必须保持在25-90℃,最好在40-60℃。如上所述,该淤浆中温度为90℃或更高可使该催化剂失活。适用于本发明的非茂金属过渡金属化合物是元素周期表(由Chemical and Engineering News,63(5),27,1985出版)中第4和5族金属的化合物,前提是这些化合物能溶解于非极性溶剂中。这些化合物的非限制性例子是卤化钛和卤化钒(如四氯化钛,TiCl4,四氯化钒,VCl4,三氯氧钒,VOCl3)和烷氧基钛和烷氧基钒(该烷氧基具有1-20个碳原子、最好为1-6个碳原子的直链或支链烷基)。优选的过渡金属化合物是钛化合物,尤其是四价钛化合物。最优选的钛化合物是四氯化钛。非茂金属型钛或钒的用量为:Ti/Mg摩尔比为0.3-1.0,最好为0.5-0.80。

也可使用这些非茂金属过渡金属化合物的混合物,而且一般对可包含的过渡金属化合物没有限制。任何可单独使用的过渡金属化合物也可与其它过渡金属化合物结合使用。

加完非茂金属过渡金属化合物后,经蒸发或过滤除去淤浆溶剂,得到自由流动的粉末。接着可加入茂金属组分。该茂金属用铝氧烷活化。茂金属化合物具有通式CpxMAyBz,式中Cp是取代或未取代的环戊二烯基,M是锆或铪,A和B是包括卤原子、氢或烷基的基团。在上述茂金属化合物的通式中,优选的过渡金属原子M是锆。在上述茂金属化合物的通式中,Cp基是未取代、单或多取代的环戊二烯基;x至少为1。环戊二烯基上的取代基较好是直链C1-C6烷基。环戊二烯基也可以是双环或三环基团(如茚基、四氢茚基、芴基或部分氢化芴基)的一部分以及取代二环或三环基团的一部分。如果上述茂金属化合物通式中的x等于2,环戊二烯基也可被聚亚甲基或二烷基甲硅烷基(如-CH2-、-CH2-CH2-、-CR′R″-和-CR′R″-CR′R″-(R′和R″是短链烷基或氢原子)、-Si(CH3)2-、-Si(CH3)2-CH2-CH2-Si(CH3)2-和类似桥基)所桥连。上述茂金属化合物通式中取代基A和B是卤原子;如果x+y+z等于M的化合价,则y+z等于3或更小。如果上述茂金属化合物通式中取代基A和B是烷基,它们较好是直链或支链C1-C8烷基,如甲基、乙基、正丙基、异丙基、正丁基、异丁基、正戊基、正己基或正辛基。

合适的茂金属化合物包括二卤化双环戊二烯基金属、氢卤化双环戊二烯基金属、一卤化一烷基双环戊二烯基金属、二烷基双环戊二烯基金属和二卤化双茚基金属,其中金属是锆或铪,卤化基较好是氯,烷基是C1-C6烷基。茂金属的示意性但非限制性的例子包括二氯化双环戊二烯基锆、二氯化双环戊二烯基铪、二甲基双环戊二烯基锆、二甲基双环戊二烯基铪、氢氯化双环戊二烯基锆、二氯化1,2-亚乙基双茚基锆、二氯化1,1-亚乙基双茚基锆、氢氯化双环戊二烯基铪、二氯化双(正丁基环戊二烯基)锆、二氯化双(正丁基环戊二烯基)铪、二甲基双(正丁基环戊二烯基)锆、二甲基双(正丁基环戊二烯基)铪、氢氯化双(正丁基环戊二烯基)锆、氢氯化双(正丁基环戊二烯基)铪、二氯化双(五甲基环戊二烯基)锆、二氯化双(五甲基环戊二烯基)铪、二氯化双(正丁基环戊二烯基)锆、三氯化环戊二烯基锆、二氯化二茚基锆、二氯化双(4,5,6,7-四氢-1-茚基)锆和二氯化亚乙基-[双(4,5,6,7-四氢-1-茚基)]锆。用于本发明实施方案中的茂金属化合物可以是结晶固体、烃类溶液或负载型的溶液。

铝氧烷可以在催化剂制备方法的任一阶段中浸渍到载体中。在本实施方案中,铝氧烷提供的铝量足以提供50-500,较好的为75-300的Al∶过渡金属(由茂金属提供)摩尔比。

铝氧烷的种类包括用如下通式表示的低聚线型和/或环状烷基铝氧烷:R-(Al(R)-O)n-AlR2(低聚线型铝氧烷)(-Al(R)-O-)m(低聚环型铝氧烷),式中n为1-40,较好的为10-20,m为3-40,较好的为3-20,R为C1-C8烷基,较好的为甲基。MAO是分子量分布很宽且平均分子量一般为1200的低聚物的混合物。甲基铝氧烷一般由三甲基铝与水或水合无机盐(CuSO45H2O或Al2(SO4)3.5H2O)的反应制得。甲基铝氧烷也可通过向反应器中加入三甲基铝和水或含水无机盐在聚合反应器中就地形成。MAO是分子量分布很宽且平均分子量一般为1200的低聚物的混合物。MAO一般以溶液的形式保存在甲苯中。钛和锆的活化部位都可用市售的甲基铝氧烷活化。对于锆部位,最优选的活化剂是甲基铝氧烷。在最优选的实施方案中,在催化剂前体中加入这种市售的甲基铝氧烷足以活化锆部件以及钛和/或钒部位。

可以用各种方法将活化的茂金属组分结合在载体上。可以分别或同时将铝氧烷和茂金属化合物加入到由加入非茂金属过渡金属后形成的淤浆中。

或者,根据将铝氧烷注入到载体孔隙中独特方法,即加入非茂金属过渡金属化合物后除去载体淤浆中的溶剂,形成自由流动的粉末。然后可以通过测定载体的孔隙体积,提供体积等于或小于载体总孔隙体积的铝氧烷(或茂金属-铝氧烷)溶液,并回收干燥的催化剂前体的方法浸渍该自由流动的粉末。所得的自由流动的粉末在聚合反应器中无需与活性剂(有时称为助催化剂)配合使用。

因此,含有固体铝氧烷和溶剂的溶液体积可以变化。在一个将铝氧烷加入到载体中的优选实施方案中,控制铝氧烷加入到载体材料中的因素之一是载体的孔隙体积。在本优选实施方案中,浸渍载体材料的方法是注入铝氧烷溶液,而不形成载体材料(如二氧化硅)在铝氧烷溶液中的淤浆。铝氧烷溶液的体积足以充满载体材料的孔隙,而不形成溶液体积超过二氧化硅孔隙体积的淤浆;因此,铝氧烷溶液的最大体积最好等于即不超过载体材料试样的总孔隙体积。铝氧烷溶液的最大体积保证不形成二氧化硅的淤浆。因此,如果载体材料的孔隙体积等于1.65cm3/g,则铝氧烷的体积应等于或少于1.65cm3/g。该条件的结果是,浸渍后虽然载体孔隙中除别的外还充满溶剂,但浸渍的载体材料似乎立刻干燥。

可以通过加热和/或在通入惰性气流(如氮气)的正压力下从浸渍铝氧烷的载体孔隙中除去溶剂。如果使用,控制这一步的条件,以减少(如果不能消除)浸渍的载体颗粒结块和/或铝氧烷交联。在这一步中,可以用在40-50℃较低温度下进行的蒸发方法除去溶剂,以防止催化剂颗粒结块和/或铝氧烷交联。虽然可以在比规定的40-50℃更高的温度下除去溶剂,但必须使用非常短的加热时间,以防止催化剂颗粒结块和/或铝氧烷交联。

在优选的实施方案中,在用溶液浸渍载体之前将茂金属加入到铝氧烷溶液中。还有如上所述,也含有茂金属的铝氧烷溶液的最大体积等于载体材料试样的总孔隙体积。铝氧烷提供的铝(表示为Al)与茂金属金属(表示为M,如Zr)的摩尔比为50-500,较好的为75-300,最好的为100-200。本发明的一个附加优点是,可以直接控制所述的Al∶Zr比。在一个优选的实施方案中,注入前,将铝氧烷和茂金属化合物在20-80℃的温度下混合0.01-6.0小时。用于茂金属和铝氧烷的溶剂可以是合适的溶剂,如芳烃、醚、环醚或酯,较好的是甲苯。

由有机镁化合物、非茂金属过渡金属化合物和活化茂金属形成的催化剂前体组分不需要再用烷基铝化合物之类的助催化剂活化。另外,使用这种催化剂时不需要同时向反应器中加入铝氧烷。

铝氧烷的用量要足以提供如下的Al∶Ti摩尔比,即5∶1-1000∶1,较好的为15∶1-300∶1,最好的为20∶1-100∶1。该催化剂在较长时间内具有高的活性,几乎不失活。

催化剂可以颗粒状地加入到用于乙烯气相聚合和共聚的流化床反应器中。另外,根据本发明,可以在没有铝氧烷溶液存在的条件下将该催化剂加入到用于乙烯气相聚合和共聚的流化床反应器中。所述的流化床反应器必须在低于聚合物颗粒结块温度的温度下进行操作。用本发明方法生产乙烯共聚物的优选操作温度为30-115℃,最优选的操作温度为75-95℃。75-90℃的温度用于制备密度(g/cc)为0.91-0.92的产物,80-100℃的温度用于制备密度(g/cc)为0.92-0.94的产物,90-115℃的温度用于制备密度(g/cc)为0.94-0.96的产物。相应地,流化床反应器中聚合反应在高达1000psi,较好地在150-350psi的压力下进行,在上述范围内的较高压力下进行反应有利于传热,因为增加压力就增加了气体的单位体积热容量。产物

根据本发明,可以用本发明的催化剂在单个反应器中制备具有双态分子量分布的聚乙烯,而无需向聚合反应器中加入另外的铝烷基助催化剂。具体地说,不含烷基铝化合物(如三烷基铝、卤化二烷基铝或氢化二烷基铝)之类活化剂的负载非茂金属过渡金属化合物可通过使含非茂金属过渡金属的负载催化剂与含茂金属化合物和铝氧烷化合物的溶液接触进行活化。在聚合反应器(淤浆或流化床)中无需分开加入铝氧烷或三烷基铝化合物。在钛/二茂锆(zirconocene)系双金属催化剂体系中,低分子量组分由锆部位产生,而高分子量组分由钛位产生。这两种位的相对生产率决定了最终产物中高分子量/低分子量组分的重量分数。对于常规的齐格勒-纳塔催化剂,为了活化产生聚乙烯的催化剂,一般将烷基铝助催化剂加入到聚合反应器(淤浆或气相)中。

聚合产物含有两种分子量不同的组分,一种组分的分子量比另一种组分要高。双态分子量分布产物中分子量相对较高的组分具有较窄的分子量分布。

按照本发明,可以生产乙烯聚合物以及乙烯和一种或多种C3-C10α烯烃的共聚物。因此,可以得到具有两种单体单元的共聚物或具有三种单体单元的三聚物。这种聚合物的具体例子包括乙烯/1-丁烯共聚物、乙烯/1-己烯共聚物、乙烯/4-甲基-1-戊烯共聚物。

氢气可用作本发明聚合反应中的链转移剂。所用的氢气/乙烯之比在气相中可在每摩尔乙烯0至2.0摩尔氢气之间变化。对催化剂和反应物惰性的任何气体也可存在于气流中。

乙烯/1-丁烯和乙烯/1-己烯共聚物是用本发明方法和催化剂聚合的最佳共聚物。按本发明制得的乙烯共聚物较好至少含有70%重量的乙烯单元。本发明的催化剂也可用于聚合丙烯和其它α-烯烃以及共聚这些烯烃。

在本发明的另一个实施方案中,本发明的催化剂具有聚合乙烯和较高级α-烯烃的高活性,而且可以合成具有宽分子量分布的乙烯聚合物和共聚物。一般来说,在双态分子量分布树脂共混物中,一种组分的分子量较高,另一种组分的分子量较低。双态树脂的分子量分布用熔体流动比表示,为70-200。

(实施例1)催化剂制备

催化剂的钛组分按实施例1A所述的方法制备。催化剂的锆组分按美国专利5,332,706中所述的物理“干”浸渍法制备。该专利作为参考引用于本发明中。(实施例1A)钛催化剂制备:在装有搅拌桨的两加仑不锈钢高压釜中称入在600℃焙烧过的955二氧化硅(541克)。接着,在高压釜中加入约4.8升的干燥异戊烷,搅拌速度设定在100rpm。二氧化硅/异戊烷淤浆的温度为54-58℃。然后,在该淤浆中加入二丁基镁(389毫摩尔)。将高压釜中的物质搅拌60分钟。然后加入1-丁醇(468毫摩尔),再搅拌1小时。最后在高压釜中加入四氯化钛(233毫摩尔),搅拌1小时。然后在氮气吹扫下蒸发掉所有溶剂。非茂金属过渡金属组分的产量为480克白色自由流动的粉末。钛的实测值为1.60%重量,镁的实测值为1.38%重量。(实施例1B)成品双金属催化剂的制备:溶液(A):将(BuCp)2ZrCl2(0.096克,0.237毫摩尔)转移到30毫升血清瓶(serum-bottle)中,并加入5.0毫升(4.68克)4.75摩尔铝(14.1%重量Al)的甲基铝氧烷溶液中。将瓶子摇动1分钟,以形成溶液。该溶液立即按下述的方法使用。

在惰性气氛保护下,向200毫升含有一个磁力搅拌棒的梨形烧瓶中加入2.5克实施例1A中所述的含钛组分。所述的搅拌棒用于激烈搅拌催化剂粉末。然后在室温下,向该烧瓶中滴加3.7毫升上述溶液(A),历时10分钟。所用溶液(A)的总体积使得在整个滴加过程中含钛催化剂似乎总是干的。然而,在这段滴加时间,白色的含钛催化剂变成深棕色。最后将该梨形烧瓶放入55-60℃的油浴中。吹氮气从溶液(A)中除去残余的甲苯,得到干燥、褐色、自由流动的粉末。Ti:1.09%重量;Mg:0.91%重量;Al:13.1%重量;Zr:0.42%重量。(实施例2)聚合-淤浆

聚合:用上面实施例1B中制得的双金属(Ti/Zr)催化剂制备乙烯/1-己烯共聚物,产生分子量相对较高的高密度聚乙烯。

在47℃和慢慢吹扫氮气下,向1.6升不锈钢高压釜中加入0.750升干燥己烷、0.030升干燥的1-己烯。注意:在此反应器中不加入烷基铝助催化剂。然后将反应器出口阀门关闭,搅拌速度设定在900rpm,将内部温度升高至85℃,用氢气将内部压力升高至5-13psi。通入乙烯,使反应器压力保持在200psi。然后在反应器中加入0.103克实施例1B中所述的催化剂,与此同时乙烯压力上升和温度上升,将温度其保持在95℃。聚合反应继续进行60分钟,然后停止通入乙烯,让反应器冷却至室温。收集到70.8克聚乙烯。聚合物的HLMI为2.3,这表明分子量较高,该聚合物的凝胶渗透色谱图示于在图1。讨论

用凝胶渗透色谱测定从淤浆反应器中制得的聚合物的分子量分布,该结果清楚地表明该聚合物具有一种较高分子量组分和一种较低分子量组分的双态分子量分布。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号