首页> 中国专利> 铁电液晶装置排列

铁电液晶装置排列

摘要

一种铁电液晶装置包括包含在两个液晶盒壁之间的一层铁电液晶材料,两个盒壁上具有电极结构和表面排列处理结构。表面排列是由在至少一个盒壁上具有一定轮廓形状的表面,例如一个光栅所形成的。该光栅可以是具有对称或不对称轮廓的一个单光栅或一个双光栅。这样一种构型可使表面倾角和排列锚定能量独立调整以适合不同的液晶材料和液晶盒类型,从而形成所需的分子排列和较少的液晶盒故障。该光栅可以采用干涉图方法、照相制版技术、压纹技术、刻划技术、或载体层转移技术制成。液晶盒上的排列方向可以是平行的或不平行的。两个盒壁的表面倾角可以是相同值或不同值。液晶盒壁可以是相对刚性的,例如玻璃片,或柔性的,例如薄的塑料,其内表面可以制成压纹结构以构成光栅,或者同时构成光栅和一组分隔支柱。

著录项

  • 公开/公告号CN1145122A

    专利类型发明专利

  • 公开/公告日1997-03-12

    原文格式PDF

  • 申请/专利权人 英国国防部;

    申请/专利号CN95192470.2

  • 申请日1995-01-30

  • 分类号G02F1/1337;G02F1/141;

  • 代理机构72001 中国专利代理(香港)有限公司;

  • 代理人王勇;张志醒

  • 地址 英国汉普郡

  • 入库时间 2023-12-17 12:52:21

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2005-03-30

    专利权的终止未缴年费专利权终止

    专利权的终止未缴年费专利权终止

  • 1999-01-13

    授权

    授权

  • 1997-04-30

    实质审查请求的生效

    实质审查请求的生效

  • 1997-03-12

    公开

    公开

说明书

本发明设计铁电液晶装置排列。

液晶显示器是众所周知的。它们通常包括一个由保持在两个玻璃壁之间的一薄层液晶材料构成的液晶盒。这些盒壁上带有透明电极,这些电极在液晶层上施加一个电场以使液晶分子重新取向。许多显示器中的液晶分子采取两种分子排列状态中的一种。信息由处于一种状态的的液晶区域与处于另一种状态的区域对比而显示。一种已知的显示器是由在一个壁上的行电极与在另一个壁上的列电极之间的交叉区域形成的象素或显示单元矩阵构成的。这种显示器常常通过向连续的行电极和列电极施加电压而以多路转换形式进行寻址。

液晶材料有三种基本类型,向列相液晶、胆甾相液晶和近晶相液晶,它们分别具有不同的分子排列。

本发明涉及手性近晶相液晶材料,特别是涉及铁电液晶相液晶材料。使用这种材料的液晶装置包括表面稳定铁电液晶(SSFLC)装置。这些液晶盒能够表现出双稳定性,即当由正负电压脉冲进行转换时液晶分子,更准确地说是分子偶极子处于两种排列状态中的一种,并且当电压去掉后保持在所转换的状态。这种行为部分地依赖于表面排列性质。当有一个交流偏压存在时所转换的状态就可以是稳定的,所说偏压可以是由多路转换寻址装置中的数据(列)电压提供的。另一种类型的铁电液晶盒(FELCD)为电诊断装置。如在N.A.Clark & S.T.Lagerwall,应用物理通信36(11),1980年,899-901页和US-4367924中对于SSFLC就有介绍。另一种类型是反铁电装置(参考文献:A.Fukuda等人,化学材料杂志,(1994)4,7,997-1016页)。

铁电液晶的排列通常是采用摩擦聚合物排列处理方法实现的,但是这种方法存在一些局限。这些缺陷包括会弄脏液晶盒、由于平面内的电极放电造成的电损伤以及预倾角和锚定的均匀性。另一种已知的排列处理方法是斜蒸技术,如SiO斜蒸技术。这种方法难以对大面积显示器实施。

可以看到,如果所采用的排列造成高温胆甾相液晶分子的倾斜,那么在铁电相中就会形成主要(锯齿形)的无缺陷的排列。这可能是由于表面预倾角和表面(顶点和方位)锚定能量之间的平衡能够导致在工作温度下出现C1或C2人字纹。为了能够使给定液晶的平衡达到最佳,理论上必须能够有控制地和独立地改变表面预倾角和锚定能量。当所有这些特性都在同一物理相互作用中体现时,用摩擦聚合物的方法是难以实现的。

对于某些液晶材料,排列可能对这个平衡是非常敏感的,所以需要在表面上具有预倾角和锚定能量的良好的均匀性,用摩擦排列技术并不总能实现这一点。

此外,在某些FLC装置中那些彼此平行或偏转所需的角度的分子准确地排列在选定方向(在胆甾相中确定的)是关键的。而这用常规排列方法是非常难以实现的,因为无法在表面上形成容易观察得到的方向。

根据本发明通过在液晶盒壁的内表面上使用光栅解决了上述问题。

根据本发明,一种液晶盒包括一层封闭在两个盒壁之间的近晶相液晶材料,在各个盒壁的内表面上带有电极结构,各个表面经过处理以使表面上的液晶材料形成排列,

其特征在于:在至少一个盒壁上具有光栅表面排列结构。

可取的是该光栅表面排列结构能够独立地控制排列锚定强度和液晶表面倾角,从而可以使整个液晶层的液晶材料分子偶极子形成所需的倾斜。

较大的方位锚定能量可以用于C2铁电液晶材料,而较弱的方位锚定能量可以用于C1铁电或反铁电液晶材料。

光栅表面可以是一个单光栅或一个双光栅,并且可以是对称或不对称(炫耀的)光栅的任意结合。两个盒壁之间的光栅的角度可以是基本平行的,或是不平行的。具有至少一个不对称(炫耀的)光栅的双光栅可以同时形成表面排列和表面预倾角。两者可以这样设置,使得在高温长螺距胆甾相中,液晶分子具有倾斜结构。

液晶材料可以是在正常工作温度下具有铁电液晶相的一种材料,特别是那些在高温下显示出较少有序的液晶相,例如近晶相A和胆甾相液晶。

在这个意义上说,双光栅表面就是可以描述成下式的表面:

Y(x,y)=Y(x+mkx,y+nky)

其中Y是描述表面幅度的函数,m和n为整数,kx,ky为周期数。单个光栅在主方向x和y之一是恒定不变的。炫耀调制,例如说在x-方向,定义为一个表面,在这个表面上不存在一个h值使得:

Y(h-x)=Y(h+x)

对于所有的x值,这个定义可以简单地应用于其它主调制(光栅)方向(y)。

非炫耀(对称)双光栅表面的一个例子是由下式表示的双正弦结构的光栅

Y=a1sinkxx+a2sinkyy

如果a1或a2之一被设为零,那么就复原为一个单光栅。

为了在一个双光栅表面实现单稳定排列,在较高温胆甾相(或近晶相A)中必须使一个光栅调制作用在能量上超过另一个;即a12kx3>a22ky3。如果在两个其主方向基本平行设置的光栅表面之间存在一种液晶,它具有长螺距胆甾相-(近晶相A)-铁电近晶相的相序列,那么对胆甾相加热会形成单稳定排列,当冷却为铁电近晶相时就得到排列得非常好的一种液晶。

该双光栅可以是采用干涉图方法,例如M.C.Hutley,衍射光栅(学术出版社,伦敦,1982,95-125页);或照相制版方法,例如F.Horn,物理世界,33(1993年三月)形成的光聚合物成型层。该双光栅也可以是采用压纹技术,M.T.Gale,J.Kane和K.Knop,应用照相制版工程杂志,42,41(1978),或刻划技术;E.G.Loewen和R.S.Wiley,Proc SPIE,815,88(1987),或采用载体层转换技术来形成。

一个或两个盒壁可以是由相对厚的非柔性材料如玻璃制成,或者一个或两个盒壁可以是由柔性材料如一薄层玻璃或塑料如聚丙烯制成。塑料盒壁可以使其内表面形成压纹以构成一个光栅。此外,压纹还可以形成小支柱(例如1-3μm高和5-50μm或更宽)用以帮助盒壁之间的正确分隔,当盒壁弯曲时还可以构成液晶材料流的屏障。这些支柱也可以由排列层材料构成。

现在将通过实施例,参照附图介绍本发明的一种形式,在附图中:

图1为可多路转换寻址矩阵液晶显示器;

图2为图1所示显示器的横截面图;

图3为用于制造盒壁上光栅表面的示意图;

图4为用于制造光栅排列表面的另一种装置的示意图;

图5-12表示了盒壁上光栅的各种结构。

图1、2所示的显示器包括一个由包含在玻璃盒壁3、4之间的一层铁电液晶材料2构成的液晶盒1。材料2在较高温度相,例如近晶相C,近晶相A,长螺距胆甾相随着温度的提高有序程度较差。长螺距胆甾相可以定义为螺距大于层厚的胆甾相。分隔环5一般保持盒壁分开2μm。

此外,在液晶材料中散布由许多2μm直径的珠粒以保持盒壁之间精确的间隔。在一个盒壁4上形成由条形的行电极6例如SnO2或ITO电极,而在另一个盒壁3上形成由相似的列电极7。这m-行和n-列电极构成了一个可寻址单元或象素的m,n矩阵。每个象素是由一个行电极和一个列电极的交叉点形成的。

行驱动器8向每个行电极6施加电压。同样列驱动器9向每个列电极7施加电压。施加电压的控制是由一个控制逻辑电路10完成的,该控制逻辑电路从电压源11得到能量,从一个时钟12得到时钟信号。

液晶盒1的两侧为偏振片13、13’。常规的表面稳定铁电双稳装置在两个稳定状态之间转换,所说稳定状态在由摩擦方向促进形成的表面排列方向的其中一侧形成排列。对于本发明的装置,两个液晶盒壁3、4都具有双光栅排列结构,并在光栅主要方向的其中一侧具有排列结构的两个稳定状态之间转换。偏振片13、13’的偏振轴彼此正交,同时一个偏振片的偏振轴平行于两个(转换的)稳定状态排列方向之一。

在液晶盒1后面可以设置一个部分反射镜16和一个光源15。这使得可以利用反射看到显示和在昏暗的环境中从后面照亮。对于透射装置,这个镜子可以省略。

在装配图1、2所示的液晶盒之前,至少一个液晶盒经过表面处理以形成一个光栅;另一个盒壁也可以具有一个双光栅或一个单光栅或经过常规的例如摩擦排列处理。用于制作这个双光栅的装置表示在图3中。

如图3所示,来自一个氩离子激光器21的光20用一个第一透镜22聚焦到一个固定的第一漫射片23和一个可旋转的第二漫射片24。一个第二透镜25将已经散开的激光束重新汇聚到一个半镀铝的分光器26。光线从该分光器26反射到一个第一镜面27上,然后照射到由一个支架29支撑的基片28上。从分光器26透射的光被从一个第二镜面30和一个第三镜面31反射到该基片上。于是基片28接受来自第一镜面27和第三镜面31的两束光20a、20b,形成稳定的条纹图形。条纹图形的间距取决于来自第一和第三镜面27,31的两束光20a、20b。

利用图3所示的装置可以按如下所述制作正弦(对称)双光栅:

例1

在丙酮和异丙醇中清洗构成液晶盒壁的涂覆ITO的玻璃片28,然后以4000rpm旋覆光聚酰亚胺(Nissan RN901)20秒钟以使涂覆厚度达到1.2μm。然后将其在80℃下软态烘30分钟。之后将样品28在由图3所示的氩离子激光器21(波长为457.9nm)产生的光干涉条纹中曝光。

将样品28在1.5mW/cm2的能量密度下曝光90秒钟。将样品28从支架29上取下,旋转90°,重新放置好后再曝光90秒钟。然后将其浸入微定位MF319显影液中显影60秒钟,其后在去离子水中漂洗30秒钟。最后经过在170℃下烘烤60分钟,在350℃下烘烤30分钟使光聚酰亚胺发生交联反应。这样得到的样品就包含一个表面凹凸的双光栅,其中两个主调制方向彼此成90°角。但是,对于某些特殊用途调制方向彼此之间的角度小于90°,例如45°可能是有利的。

上述的技术可以用于单个或双非炫耀光栅。图4中表示了制作其中一个主调制方向为炫耀的双光栅的一种简单技术。

带有铟锡氧化物薄电极36的基片35上涂覆有一种光聚物37如Ciba Geigy 343。在聚合物37之上是由在一个玻璃片40上的铬图纹39形成的掩膜38。铬图纹是双光栅照相制版掩膜的图纹。一个汞灯41以与掩膜表面非正交的角度照射掩膜38。这种在由掩膜法线和掩膜主方向之一所定义的平面内的离轴照射确保了在一个方向得到炫耀光栅轮廓而在其它主方向上得到非炫耀轮廓(在QZ3301中显影和在QS3312中清洗之后)。不在由掩膜法线和一个主方向所定义的平面内的离轴照射则形成在两个主方向上都是炫耀轮廓的双光栅。

下面的图5-12表示了在一个液晶盒中光栅的不同设置。

图5示意性表示了对称(非炫耀)和不对称(炫耀)光栅轮廓,其中用双箭头表示对称结构,而用单箭头表示炫耀方向。

图6表示基本平行排列的两个单光栅表面(在相同或相反方向)。阴影椭圆表示在较高温胆甾相的各个平面中得到的液晶偶极子排列。在例如一种胆甾相中偶极子排列的同一方向,表面预倾角为零。

图7表示两个光栅表面,上壁具有非炫耀光栅(垂直箭头)和辅助其它光栅的任意一个第二非炫耀光栅(用虚线表示的水平方向)。这导致偶极子排列如图所示,在上壁表面为水平排列,表面倾角为零。下表面上的双光栅是类似的。这两个双光栅基本形成了较高温胆甾相中液晶分子的非扭曲、单稳定排列。

图8表示在上表面形成排列和零表面倾角的一个双光栅。其下表面具有一个对称光栅和一个炫耀光栅。该对称光栅是主要的,因此液晶偶极子呈水平排列,但是具有由于炫耀光栅形成的表面倾角。

图9表示两个类似的双光栅,在两个液晶盒壁上的一个对称光栅和一个不对称光栅;对称光栅是主要的。这些光栅形成了排列方向和表面倾角,在胆甾相中形成了倾斜的偶极子结构。

图10与图9相似,但是下表面上的炫耀方向与上表面的炫耀方向相反。这些光栅基本形成了较高温胆甾相液晶分子的非扭曲、单稳定排列。

图11表示两个彼此方位存在偏差的单光栅或双光栅表面,从而该液晶盒将使胆甾相液晶材料排列为单稳定扭曲状态。偏转角可以调整以使在一种人字纹层结构中的铁电液晶中的半倾斜状态稳定或不稳定。

图11b表示两个双光栅表面,,每个表面对于与该表面接触的胆甾相液晶分子具有两种优选的排列状态。在每个双光栅中的两个光栅具有相同的形成这两个优选的排列方向的锚定能量。该双光栅是彼此偏转设置的,以在胆甾相中形成基本均匀的单稳定排列。每个表面上的双稳态之间的夹角是可以调整的以使在一种人字纹层结构中的铁电液晶中的半倾斜状态稳定或不稳定。

图12表示两个双光栅表面,每个都具有两个炫耀的主方向,以在较高温胆甾相中形成基本无扭曲的排列。两个双光栅都形成排列和表面倾角。所示的实施例具有两个在相同方向平行的炫耀方向,而另外两个(主要的)则在相反方向平行;这使得人字纹状态以及半倾斜状态的稳定性可以调整。这种结构的一个优点是锚定能量与排列方向在两个液晶盒壁上的相反方向可以是不对称的。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号