首页> 中国专利> 低电应力ZCS-PWM Superbuck变换器

低电应力ZCS-PWM Superbuck变换器

摘要

本发明公开了一种低电应力ZCS-PWM Superbuck变换器,包括主开关电路和辅助电路,主开关电路包括主开关管和与主开关管反并联的二极管,辅助电路包括辅助开关管,辅助开关管的发射极与主开关管的发射极之间连接有辅助二极管,辅助开关管的发射极连接有一条谐振支路,该谐振支路包括相串联的谐振电容和谐振电感,谐振支路还并联连接有箝位二极管,箝位二极管的阳极与辅助开关管的集电极之间连接有储能电容,主开关管的发射极与谐振支路中谐振电容和谐振电感连接节点之间连接有续流二极管。本变换器将软开关技术和Suerbuck变换器结合在一起,使其具有电应力低、体积重量小、效率高、寿命长、对电网污染小等优点。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-03-29

    未缴年费专利权终止 IPC(主分类):H02M3/155 授权公告日:20170329 终止日期:20180410 申请日:20140410

    专利权的终止

  • 2017-03-29

    授权

    授权

  • 2015-03-11

    实质审查的生效 IPC(主分类):H02M3/155 申请日:20140410

    实质审查的生效

  • 2015-02-04

    公开

    公开

说明书

技术领域

本发明涉及一种ZCS-PWM变换器开关电路,具体涉及一种特别适用于电动汽车充电的低电应力ZCS-PWM Superbuck变换器。 

背景技术

随着石油资源的消耗殆尽,近年来电动汽车的发展得到人们的青睐,各国政府也推出了相应的政策来鼓励电动汽车的发展,电动汽车的使用将会成为未来发展的一种趋势。在这种情况下,充电装置起到关键性的作用。为了减小线路损耗,大功率直流充电装置一般均采用三相电源供电,其整流电压为500V左右,高于动力电池端电压(300V)。因此,充电装置一般采用降压变换器作为主电路拓扑。现有的资料表明,Buck变换器是常作为充电装置的非隔离降压变换器。本发明涉及的Superbuck变换器(也称双电感Buck变换器),起源于Buck变换器,输入输出电压增益也和其相同。与Buck变换器相比,其输入输出电流连续,且具有更大的功率处理能力,因而非常适合于作为电动汽车的充电装置,也适合作为功率因数校正电路以及光伏接口变换器。由于大功率充电时三相桥式整流电压为500V左右,属于高压场合,而IGBTs比MOSFET有更高的电压等级和功率密度以及较低的通态损耗,因此适合作为该场合下Superbuck变换器的开关管。为了实现Superbuck变换器的小型化和轻型化,需要提高开关频率,然而IGBTs在关断时的电流拖尾会导致很大的关断损耗。解决上述问题最有效的办法是实现IGBTs的零电流开关。 

发明内容

发明目的:本发明的目的是为了解决现有技术中的不足,提供一种具有电应力低、体积重量小、效率高、寿命长、对电网污染小等优点的ZCS-PWM Superbuck变换器。 

技术方案:本发明所述的一种低电应力ZCS-PWM Superbuck变换器,包括主开关电路和辅助电路,所述主开关电路包括主开关管S1和与主开关管S1反并联的二极管D1,所述辅助电路包括辅助开关管S2,所述辅助开关管S2的集电极与主开关管S1的集电极连接,所述辅助开关管S2的发射极与主开关管S1的发射极之间连接有辅助二极管D2,所述辅助开关管S2的发射极连接有一条谐振支路,该谐振支路包括相串联的谐振电容Cr和谐振电感Lr;所述谐振支路还并联连接有箝位二极管Dc,所述箝位二极管Dc的阴极与谐振电容Cr连接,箝位二极管Dc的阳极与谐振电感Lr连接;所述箝位二极管Dc的阳极与辅助开关管S2的集电极之间连接有储能电容C1;所述主开关管S1的发射极与谐振支路中谐振电容Cr和谐振电感Lr连接节点之间连接有续流二极管D3;所述谐振支路串联连接有电感L2,所述主开关管S1的集电极连接有电感L1;所述主开关管S1的发射极与输入电压Uin的负极并联连接有输出滤 波电容C0。 

进一步的,所述辅助二极管D2的阴极与主开关管S1的发射极连接,辅助二极管D2的阳极与辅助开关管S2的发射极连接。 

进一步的,所述续流二极管D3的阳极与主开关管S1的发射极连接,续流二极管D3的阴极与谐振电容Cr和谐振电感Lr连接节点连接。 

进一步的,所述电感L2一端与输入电压Uin的负极连接,另一端与箝位二极管Dc的阳极相连;电感L1的一端与输入电压Uin的正极连接,另一端与主开关管S1的集电极相连。 

有益效果:本发明提出的一种新型的ZCS-PWM Superbuck变换器,其能在整个负载范围内实现所有开关管的零电流关断以及所有二极管的零电压开通;谐振电感不与主开关管串联,使得主开关管的电流应力达到最低;输入电流连续,网侧电流谐波小;输出电流连续,因此不需要电解电容;无源箝位电路,消除所有功率管的电压尖峰,使得电压应力最低;本变换器将软开关技术和Suerbuck变换器结合在一起,使其具有电应力低、体积重量小、寿命长、效率高、对电网污染小等优点。 

附图说明

图1为本发明ZCS-PWM Superbuck变换器的主电路拓扑结构示意图。 

图2为本发明ZCS-PWM Superbuck变换器的主电路等效结构示意图。 

图3为本发明ZCS-PWM Superbuck变换器在t0~t6工作模态等效电路。 

图4为本发明ZCS-PWM Superbuck变换器在t6~t11工作模态等效电路。 

图5为本发明ZCS-PWM Superbuck变换器在一个工作周期内的主要波形示意图。 

图6为本发明ZCS-PWM Superbuck变换器实验输出满载时仿真波形示意图。 

具体实施方式

如图1所示的一种低电应力ZCS-PWM Superbuck变换器,包括主开关电路和辅助电路,主开关电路包括主开关管S1和与主开关管S1反并联的二极管D1,辅助电路包括辅助开关管S2,辅助开关管S2的集电极与主开关管S1的集电极连接,辅助开关管S2的发射极与主开关管S1的发射极之间连接有辅助二极管D2,辅助开关管S2的发射极连接有一条谐振支路,该谐振支路包括相串联的谐振电容Cr和谐振电感Lr,谐振支路还并联连接有箝位二极管Dc,箝位二极管Dc的阴极与谐振电容Cr连接,箝位二极管Dc的阳极与谐振电感Lr连接,箝位二极管Dc的阳极与辅助开关管S2的集电极之间连接有储能电容C1,主开关管S1的发射极与谐振支路中谐振电容Cr和谐振电感Lr连接节点之间连接有续流二极管D3,谐振支路串联连接有电感L2,主开关管S1的集电极连接有电感L1,主开关管S1的发射极与输入电源的负极之间并联连接有电容C0。 

进一步的,辅助二极管D2的阴极与主开关管S1的发射极连接,辅助二极管D2的阳极与 辅助开关管S2的发射极连接。续流二极管D3的阳极与主开关管S1的发射极连接,续流二极管D3的阴极与谐振电容Cr和谐振电感Lr连接节点连接。电感L2一端与输入电压Uin的负极连接,另一端与箝位二极管Dc的阳极相连;电感L1的一端与输入电压Uin的正极连接,另一端与主开关管S1的集电极相连。 

现对于本变换器做原理分析,为了简化工作原理分析,特作如下假设: 

①电路工作已经达到稳态; 

②开关管S1、S2为理想元件; 

③忽略二极管D1、D2和D3的导通压降; 

④所有二极管的结电容均相等,用C表示; 

⑤电感、电容均为理想储能元件; 

⑥电容C1足够大,C1>>Cr,其端电压纹波可忽略,故可将C1等效为恒压源UC1; 

⑦电感L1、L2足够大,L1>>Lr,L2>>Lr,其电流近似不变,故可分别看成恒流源IL1和IL2,且IL1+IL2=Io。 

基于上述假设,可将该变换器的主电路等效为图2。该ZCS-PWM Superbuck变换器在一个开关周期的工作过程分为11个模态,工作原理分析如下: 

模态1[t0~t1](等效电路如图3(a)所示) 

在t0时刻前,S1、、S2都处于关断状态,等效恒流源IL1、IL2和Io以及等效恒压源UC1通过Lr、D3支路续流。在t0时刻,S1开通,Lr承受反压UC1,其电流开始从Io线性下降,流过S1的电流相应的由零开始线性上升,所以S1为零电流开通。 

iLr(t)=Io-UC1Lr(t-t0)

uCr(t)=0 

uDc(t)=UC1

在t1时刻,流过S1的电流上升到Io,流过谐振电感中的电流相应的降为零,D3零电流关断。模态1的持续时间为: 

Δt1=IoLrUC1

模态2[t1~t2](等效电路如图3(b)所示) 

在这个阶段,由于二极管D3存在反向恢复,由假设可知,其结电容用C来代替,因此,在t1时刻,二极管D3与电感Lr经等效电压源UC1、开关管S1串联谐振。 

iLr(t)=-UC1Z1sinωr1(t-t1)

uCr(t)=0 

uDc(t)=UC1cosωr1(t-t1

式中,在t2时刻,有:uDc(t)=-UD,UD为箝位二极管DC的导通压降。模态2的持续时间为: 

Δt2=1ωr1cos-1(-UDUC1)

模态3[t2~t3](等效电路如图3(c)所示) 

在t2时刻,DC导通,DC两端的电压被箝制UD,二极管D3与电感Lr之间的串联谐振结束,而Lr与Cr之间的串联谐振开始。 

iLr(t)=UDZCrsinωr(t-t2)-iLr(t2)cosωr(t-t2)

uCr(t)=-UD+UDcosωr(t-t2)+ZCriLr(t2)sinωr(t-t2

uDc(t)=-UD

式中,在t3时刻,iLr(t)=0,模态3结束。模态3持续的时间为: 

Δt3=1ωrtg-1ZCriLr(t2)UD

模态4[t3~t4](等效电路如图3(d)所示) 

在这个阶段,S1持续导通,由于箝位二极管DC存在反向恢复,因此DC以及电容Cr、电感Lr发生谐振,又因为C<<Cr,Cr可以忽略不计。因此,在t3时刻,二极管DC与电感Lr发生谐振。 

iLr(t)=uCr(t3)Z1sinωr1(t-t3)

uCr(t)=uCr(t3

uDc(t)=uCr(t3)-uCr(t3)cosωr1(t-t3

谐振一直持续,直至开关管S2导通,模态4结束。模态4持续的时间为: 

Δt4=DTs-Δt1-Δt2-Δt3

式中,D为有效占空比,Ts为开关周期。 

模态5[t4~t5](等效电路如图3(e)所示) 

在t4时刻,开通开关管S2,则加在Lr、Cr的电压为UC1,此时Lr、Cr将通过UC1、S2发生串联谐振。S2中的电流将由零逐渐上升,所以S2为零电流开通。 

iLr(t)=uCr(t3)-UC1ZCrsinωr(t-t4)

uCr(t)=UC1-(UC1-uCr(t3))cosωr(t-t4)uDc(t)=UC1

在t5时刻,Cr的端电压达到最大值2UC1-uCr(t3),iLr(t)=0,此时可以零电流关断S2,模态5结束。模态5持续的时间为: 

Δt5=πωr

模态6[t5~t6](等效电路如图3(f)所示) 

由于t5时刻关断了开关管S2,因此Lr、Cr将通过UC1、D2、S1发生串联谐振,Cr的端电压将从最大值2UC1-uCr(t3)逐渐下降,流过Lr的电流由零开始反向逐渐增大,D2为零电压开通。 

iLr(t)=UC1-uCr(t3)ZCrsinωr(t-t5)

uCr(t)=UC1+(UC1-uCr(t3))cosωr(t-t5

uDc(t)=UC1

在t6时刻,谐振电流iLr增大为Io,流经S1的电流减小为零。此时可以零电流关断S1,模态6结束。模态6持续的时间为: 

Δt6=1ωrsin-1(IoZCrUC1-uCr(t3))

模态7[t6~t7](等效电路如图4(4a)所示) 

在这个阶段,Lr、Cr将通过开关管S1的反并二极管D1继续谐振,Cr的端电压逐渐减小,D1为零电压开通。 

iLr(t)=UC1-uCr(t3)ZCrsinωr(t-t5)

uCr(t)=UC1+(UC1-uCr(t3))cosωr(t-t5

uDc(t)=UC1

iLr从Io继续增大,达到峰值后又逐渐减小。在t7时刻,iLr减小为Io,D1中的电流为零,实现了零电流关断,模态7结束。模态7持续的时间为: 

Δt7=πωr-2Δt6

模态8[t7~t8](等效电路如图4(4b)所示) 

在这个阶段,由于S1的反并二极管D1存在反向恢复,由假设可知,其结电容用C代替,又因为C<<Cr,Cr可以忽略不计。因此,在t7时刻,C与Lr将会发生串联谐振。 

iLr(t)=Io-UC1-uCr(t7)Z1sinωr1(t-t7)

uCr(t)=uCr(t7

uDc(t)=uCr(t7)+(UC1-uCr(t7))cosω1(t-t7

在t8时刻有:uDc(t)=-UD,模态8结束。模态8持续的时间为: 

Δt8=1ω1cos-1uCr(t7)+UDuCr(t7)-UC1

模态9[t8~t9](等效电路如图4(4c)所示) 

t8时刻,箝位二极管Dc导通,Dc两端的电压被箝制在UD,二极管D1的结电容C与Lr之间的串联谐振结束,而Cr与Lr之间的串联谐振开始。 

iLr(t)=UD+uCr(t7)ZCrsinωr(t-t8)+iLr(t8)cosωr(t-t8)

uCr(t)=-UD+(UD+uCr(t7))cosωr(t-t8)-ZCriLr(t8)sinωr(t-t8

uDc(t)=-UD

在t9时刻,uCr(t)=0,模态9结束。模态9持续的时间为: 

Δt9=1ωr[sin-1UD(UD+uCr(t7))2+(iLr(t8)ZCr)2+tg-1UD+uCr(t7)iLr(t8)ZCr]

模态10[t9~t10](等效电路如图4(4d)所示) 

在这一阶段,由于所有开关管以及S1的反并二极管均已关断,因此谐振结束。在t9时刻,滤波电容Cr两端电压为零,二极管D3导通,电感Lr两端承受正向电压UD,其电流从iLr(t9)线 性上升,流过二极管DC的电流则相应的线性下降。 

iLr(t)=iLr(t9)+UDLr(t-t9)

uCr(t)=0 

在t10时刻,流过电感Lr的电流上升为Io,即iLr(t10)=Io,模态10结束。模态10持续的时间为: 

Δt10=Lr(Io-iLr(t9))UD

模态11[t10~t11](等效电路如图4(4e)所示) 

从t10时刻开始,等效电流源IL1、IL2和Io以及等效恒压源UC1经Lr、D3继续续流。直到再次开通开关管S1,模态11结束。模态11持续的时间为: 

Δt11=Ts-DTs-2πωr+Δt6-Δt8-Δt9-Δt10

图5给出了其理想工作波形。 

通过对ZCS-PWM Superbuck变换器的工作模态分析,要确保变换器在输入电压和整个负载范围内都能实现软开关,则必须满足下列式子: 

Io,maxUC1,min-uCr(t3)ZCr=UC1,min-uCr(t3)LrCr

实现软开关还必须满足时间条件,在t6~t7时间段内,Lr和Cr的谐振电流流过S1的反并二极管,在这段时间内关断S1为零电流关断。在t5~t7时间段内,关断S2也为零电流关断。 

实施案例 

根据上述分析,设计了一台ZCS-PWM Superbuck变换器,其输入电压Uin=510V,输出电压Uo=300V,输出功率Po=1.5kW,开关频率fs=80kHz。参数设计如下: 

滤波电感L1的计算 

由变换器基本参数可知,输入电流平均值为: 

Iin=IL1=PoUin=15005103A

占空比为: 

D=UoUin=3005100.6

按电流纹波脉动不超过20%计算。 

UL1=Uin-Uo=L1diL1dt

L1=(Uin-Uo)TonΔIL1=(510-300)×7.5×10-60.62.6mH

取L1=2.6mH 

滤波电感L2的计算 

UL2=Uo=L2diL2dt

L2=Uo(1-D)TsΔIL2=300×0.4×12.5×10-62×0.2=3.75mH

取L2=4mH 

储能电容C1的计算 

由伏秒积平衡可知:UC1=Uin

ΔUC1=1C1tt+Ts2ΔiC1dt=1C1(12·dTs2·ΔIL22+12·(1-d)Ts2·ΔIL12)=IL2+(1-d)ΔIL18C1fs

由上式可得 

C1=IL2+(1-d)ΔIL18ΔUC1fs

按电压脉动量不超过1%计算,C1≈0.15uF,取C1=0.47uF 

输出滤波电容C0的计算 

由于输出电流的脉动量全部流过电容C0,可知: 

ΔUo=1C0tt+Ts2Δiodt=1C0·12·ΔIo2·Ts2=ΔIo8C0fs---(1)

由上式可得 

C0=ΔIo8ΔUofs

按输出电压脉动量不超过1%计算,C0≈0.52uF,用两个0.47uF的电容并联。 

谐振电感Lr和谐振电容Cr的计算 

允许输出电流的最大脉动不超过额定输出电流的10%,从而有: 

Io,max=PoUo×(1+10%)=1500300×1.1=5.5A

要确保变换器在输入电压范围内都能实现软开关,则必须满足下列式子: 

Io,maxUC1,min-uCr(t3)ZCr=UC1,min-uCr(t3)LrCr

取谐振频率为:fr=5fs,从而有: 

fr=5fs=12πLrCr=4×105Hz

LrCrUC1,min-uCr(t3)Io,max=450-905.565.45

求取Cr≥6.1nF,取Cr=10nF,从而有:Lr≈33uH。 

另外,为了避免开关管损坏,选取管子时电压、电流定额要留有一定裕量。因此,IGBTS选用IXSH35N120A,二极管选用DSEI30-12A和1N4007。 

为了便于分析该变换器的工作状况,将计算出的主电路参数应用于Saber仿真中。图6给出了一个周期内的仿真波形图。其中,图6(a)为主开关管S1的电压、电流波形,图6(b)为辅助开关管S2的电压、电流波形,图6(c)为滤波电容电压、谐振电感电流波形,图6(d)为箝位二极管Dc的电压、电流波形,图6(e)为二极管D2的电压、电流波形,图6(f)为二极管D3的电压、电流波形。 

以上仿真波形与理论分析波形很好的吻合,验证了上述电路的可行性。此外,由仿真波形可以看出,该ZCS-PWM Superbuck变换器能在整个负载范围内实现所有开关管的零电流关断以及所有二极管的零电压开通;谐振电感不与主开关管串联,使得主开关管的电流应力达到最低;输入电流连续,网侧电流谐波小;输出电流连续,因此不需要电解电容;无源箝位电路,使得所有功率管的电压应力最低;因此该ZCS-PWM Superbuck变换器具有电应力低、体积重量小、效率高、寿命长、对电网污染小等优点,特别适合用作电动汽车的充电装置。 

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号