首页> 中国专利> 一种单频多路径效应探测与缓解方法

一种单频多路径效应探测与缓解方法

摘要

本发明提供一种单频多路径效应探测与缓解方法,包括:接收机接收原始数据;原始数据包括伪距观测值和载波相位观测值;将伪距观测值和载波相位观测值组合,得到有偏的伪距/载波相位观测值;计算多历元的有偏的伪距/载波相位观测值的均值,得到无偏的码减相位偏差组合观测值的时间序列;采用傅里叶变换方法分析提取无偏的码减相位偏差组合观测值时间序列的频谱信息;对频谱信息分析,得到多路径效应的频率分布;对无偏的码减相位偏差组合观测值进行多级小波分解和小波重构,得到多路径效应估值;伪距观测值与多路径效应估值进行求差,得到多路径缓解后的伪距观测值。本方法有效降低多路径效应影响,提高观测数据质量。

著录项

  • 公开/公告号CN103901442A

    专利类型发明专利

  • 公开/公告日2014-07-02

    原文格式PDF

  • 申请/专利权人 中国测绘科学研究院;

    申请/专利号CN201410095456.0

  • 申请日2014-03-14

  • 分类号G01S19/22;

  • 代理机构北京市盛峰律师事务所;

  • 代理人赵建刚

  • 地址 100830 北京市海淀区莲花池西路28号

  • 入库时间 2024-02-20 00:11:30

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-05-11

    授权

    授权

  • 2014-07-30

    实质审查的生效 IPC(主分类):G01S19/22 申请日:20140314

    实质审查的生效

  • 2014-07-02

    公开

    公开

说明书

技术领域

本发明属于卫星导航技术领域,具体涉及一种单频多路径效应探测与缓解 方法。

背景技术

早在二十世纪七十年代GPS系统的研制和论证阶段,多路径效应对定位的影 响就被列为论证因素之一明确提出。多路径效应是指:GPS卫星定位信号在其发 射和传播过程中由于受到环境因素的影响而导致接收信号中带入周围环境造成 的反射或绕射信号,这种信号畸变致使GPS信号的极化方式和延迟发生变化,从 而产生定位偏差甚至信号失锁,从而构成卫星定位中的多路径效应。

多路径效应主要具有以下特点:(1)多路径效应为一时空环境效应:多路 径效应的产生可以理解为一时空环境效应。其与卫星相对于地物的空间位置及 地物均有关系。地物所造成的多路径效应影响与地物对GPS信号的反射能力又 有关。反射能力常以地物的反射系数表示,此时地物为GPS信号传播的一种介 质。反射物的反射系数被定义为反射波场强与入射波场强之比,GPS定位信号 从卫星发出到达地面接收天线时,球面波之等位面的局部球面可看成平面,即 球面波可当成平面波处理。由多路径误差的形成机理可知,在适当长的时间里, 其均值将愈来愈小。(2)多路径效应的影响与接收机的抑制能力有关:由于不 同工作原理工作的GPS接收机跟踪和锁定GPS卫星信号的过程也有所不同,从 而导致接收机输出的观测量受到的多路径效应的影响也不相同。因此,除观测 环境外,GPS接收机内部工作机理与多路径效应的产生是密不可分的。另外, GPS接收天线也是接收系统中的重要单元,其性能直接影响到对多路径效应的 克服能力。(3)静态时的多路径效应具有重复性:由第一特点可以理解到,在 静态情况下,卫星空间结构相对于观测点是依卫星的运行周期而重复的,因此 产生多路径的场景也是重复的,这直接导致多路径效应具有的重复性。(4)多 路径效应的影响在量值上具有一定的范围:GPS接收机在对信号进行相关比对 和跟踪锁定时决定了多路径效应的最终产生具有量值上的范围,即理论上码伪 距不会超过一个码元的宽度,而相位不会超过四分之一个载波波长。(5)多路 径效应具有一定的频率行为:当产生多路径的场景一定时,反射介质的反射特 性也一定,多路径信号随着卫星的运行而不断改变其入射角。

据美国Ohio大学的研究,GPS C/A码多路径误差最大可达150米,精码也 达10米,实用中的大地型GPS接收机在水面上的伪距多路径影响可达7米。这 足以危机定位的精度和可靠性,直接影响着诸如飞机进场,航天器对接等重大 任务的顺利进行。澳大利亚Queensland大学卫星导航中心的研究(A.Walker,I999) 表明地物反射特性不同,定位结果也存在差异,例如雨天和晴天的GPS观测量 的信噪比差一倍,多路径效应的幅值明显增大,因而直接影响诸如精密形变监 测和板块运动监测等的结果,甚至可导致形变趋势解译和预报的失误。加拿大 的Georgiadou和Kleusberg早在1988年就得出在静态和动态定位方式下,城市 环境限制了点位的选择,并导致载波相位观测量因多路径效应而受到污染,致 使在快速静态定位中,基线收敛速度慢一倍;动态情况下,水平位置有5cm误 差,高程分量大于10cm的误差。因此多路径效应探测与环境的探测与环境是十 分必要的。

目前对多路径效应的研究可分为硬件研究和软件研究两大方向,前者归结 为定位卫星系统自身的改进及GPS接收机和接收天线的改进,后者则为定位和 处理方法的消除措施的研究。而这两者之间又是相互促进和相互补充的,尤其 是算法的研究可以弥补硬件设计的限制和不足,并可通过软件的固化深化硬件 的发展。(1)硬件研究:在多路径效应消除或缓解的硬件研究中,主要通过使 用新型(微带式天线,扼流圈,空腔支承)天线和改进的信号跟踪环消弱多路 径效应,例如用具有各路径估计性能的锁相环。其主要技术有:窄相关技术, 多路径消减技术以及消减多路径的延迟锁相环。其中,前两种技术只考虑了DLL 中的多路径影响,因此这两种方法只能改善伪距观测值中多路径的影响;而第 三种方法同时处理了DLL和PLL中的多路径的影响,可有效地消减伪距和相位 观测值中的多路径效应的影响,但这种技术计算量较大,对硬件的要求较高。(2) 软件研究:1)在多路径建模方面,Hajj早在1990年就提出了建立多路径效应 模型的基本原理。即对具体的接收机天线及其所处的环境,根据电磁波传播理 论,基于对特定天线的天线增益,天线周围物质的反射属性及对天线的几何关 系的了解,模拟电磁波射线的传播轨迹,并通过一定的算法得出多路径效应误 差的振幅和相位,并在载波观测量上进行改正,从而减少多路径误差的影响。 Gomez(1995)和Irish(1998)分别通过建立多路径与接收机与跟踪卫星之间 的方位角、卫星高度角的函数模型改正每一颗卫星的多路径影响。2)在利用信 噪比信息消除多路径误差研究方面,Comp(1996)提出了一种消除多路径误差 的思路。由于信噪比与相位残差相比,对天线姿态有较小的敏感性,则可以通 过对每颗卫星接收信号的信噪比率进行分析,从而估计出多路径对信号的影响 程度,通过一定的方法,从复合信号中分离出多路径的影响,得到“干净”的 观测值,消除多路径对GPS观测量的影响。杨天石博士从接收机接收的信噪比 中包含了载波相位多路径的影响出发,通过分离多路径信号成分和直达信号成 分,得到多路径对直达信号的影响量,进而改正载波相位观测量,从而达到消 除或减弱多路径的目的,实践证明能取得一定的效果。3)在小波分析提取多路 径信号方面,黄丁发教授利用离散小波变换,将振动状态下的多路径与实际结 构的变形进行分离,有效的提取了多路径效应误差;周冬梅等针对小波变换的 传统算法模型在提取坐标中多路径误差方面的不足,对其进行了改进,并利用 改进后的算法提取坐标中的多路径误差,计算出多路径误差的互相关系数、滤 波后的坐标系列及坐标间的互相关系数,结果表明改进后的算法能有效地提取 出坐标中的多路径误差,达到理想的滤波效果。

从以上内容可知,在采用硬件进行多路径抑制时,可以抑制部分多路径效 应的影响,但仍有部分多路径效应不能消除,因此多路径效应仍会对GNSS观 测值的数据质量产生影响。而在采用软件进行多路径抑制时,现有的多路径效 应的处理方法大多是对后处理结果的残差进行多路径效应提取,不是真正意义 上的多路径效应的提取,特别在实时应用中上述方法存在着难以修复的缺陷, 进而难以有效缓解多路径效应,提高GNSS观测数据的数据质量。

发明内容

针对现有技术存在的缺陷,本发明提供一种单频多路径效应探测与缓解方 法,为一种真正意义上的多路径效应的提取方法,进而有效降低多路径效应的 影响,提高GNSS观测数据的数据质量。

本发明采用的技术方案如下:

本发明提供一种单频多路径效应探测与缓解方法,包括以下步骤:

S1,GNSS接收机按一定的数据采样率接收GNSS原始数据;其中,所述 GNSS原始数据包括GNSS卫星导航星历和卫星原始观测数据;所述卫星原始观 测数据包括伪距观测值ρm和载波相位观测值

S2,通过公式1,将所述伪距观测值ρm和所述载波相位观测值进行组合, 得到有偏的伪距/载波相位观测值CmCbiased,k

其中,CmCbiased,k表示有偏的伪距/载波相位观测值;ρm表示伪距观测值, 单位为米;表示载波相位观测值,单位为米;I表示电离层延迟量;N表示载 波上的整周模糊度;Mρ表示伪距上的多路径效应;表示载波观测值上的多路 径效应;ερ表示伪距上的观测噪声;表示载波观测值上的观测噪声;k表示观 测历元;

S3,通过公式2计算多历元的有偏的伪距/载波相位观测值CmCbiased,k的均 值,进而通过公式3计算得到无偏的码减相位偏差组合观测值CmCunbiased,进 而得到无偏的码减相位偏差组合观测值CmCunbiased的时间序列;

其中,N表示用于求平均的CmCbiased的历元数,k表示观测历元;

S4,采用傅里叶变换方法分析提取所述无偏的码减相位偏差组合观测值时 间序列的频谱信息;

S5,对所述频谱信息进行分析,根据电离层误差、多路径误差及观测误差 的频率特性,得到当前序列中多路径效应的频率分布;

S6,根据所述当前序列中多路径效应的频率分布,对所述无偏的码减相位 偏差组合观测值CmCunbiased进行多级小波分解和小波重构,得到多路径效应估 值;

S7,利用S1获得的所述伪距观测值ρk与S6计算得到的多路径效应估值进 行求差,得到多路径缓解后的伪距观测值。

优选的,S4中,采用公式4对所述无偏的码减相位偏差组合观测值时间序 列进行离散傅里叶变换:

CmCunbiasedCmCunbiasedCmCunbiased,k=DFT[CmCunbiased]N=Σn=0N-1CmCunbiased,ne-j2πknN,k=0,1,...,N-1---(4)

其中,N为离散傅里叶变换区间长度;设则公式4表示为下面的 公式5形式:

CmCunbiased,k=DFT[CmCunbiased]N=Σn=0N-1CmCunbiased,nWNkn,k=0,1,...,N-1---(5).

优选的,设经S5后,得到当前序列中多路径效应的频率分布为0~fHz;则 根据该频率分布信息,采用公式6进行小波分解:

CmCunbiased=a1+Σi=11di---(6)

其中,a1为CmCunbiased的低频细节信息,其频率范围为l为小波分 解的层数;di为CmCunbiased的高频信息,其频率范围为f为观测数据 的采样频率。

优选的,S6中,通过公式7计算多路径效应估值

ϵ^WaveSmooth=CmCunbiased-ϵ^low=CmCunbiased-a1---(7)

其中,表示多路径效应估值,表示CmCunbiased的低频细节 信息,即为a1

优选的,S7中,通过公式8计算多路径缓解后的伪距观测值

ρ^WaveSmooth=ρm-ϵ^WaveSmooth---(8)

其中,ρm表示原始的伪距观测值。

本发明的有益效果如下:

本发明提供的单频多路径效应探测与缓解方法,可有效降低多路径效应的 影响,提高GNSS观测数据的数据质量。

附图说明

图1为本发明提供的单频多路径效应探测与缓解方法的流程示意图。

具体实施方式

以下结合附图对本发明进行详细说明:

如图1所示,本发明提供一种单频多路径效应探测与缓解方法,包括以下 步骤:

S1,GNSS接收机按一定的数据采样率接收GNSS原始数据;其中,所述 GNSS原始数据包括GNSS卫星导航星历和卫星原始观测数据;所述卫星原始观 测数据包括伪距观测值ρm和载波相位观测值;

本步骤中,为提高GPS定位精度,可以对接收到的GNSS原始数据进行周 跳探测与修复等数据预处理,然后再进行后续步骤。另外,数据采样率根据实 际需要设定,可以为1s、30s等,是进行数据处理的基础数据。卫星导航星历用 于计算卫星位置坐标,可以每两个小时播发一次。

S2,通过公式1,将所述伪距观测值ρm和所述载波相位观测值进行组合, 得到有偏的伪距/载波相位观测值CmCbiased,k

其中,CmCbiased,k表示有偏的伪距/载波相位观测值;ρm表示伪距观测值, 单位为米;表示载波相位观测值,单位为米;I表示电离层延迟量;N表示载 波上的整周模糊度;Mρ表示伪距上的多路径效应;表示载波观测值上的多路 径效应;ερ表示伪距上的观测噪声;表示载波观测值上的观测噪声;k表示观 测历元;

S3,通过公式2计算多历元的有偏的伪距/载波相位观测值CmCbiased,k的均 值,进而通过公式3计算得到无偏的码减相位偏差组合观测值CmCunbiased,进 而得到无偏的码减相位偏差组合观测值CmCunbiased的时间序列;

具体的,从公式(1)可以看出,CmCbiased包含载波相位的整周模糊度、电 离层延迟误差、码相位和载波多路径效应及观测噪声。在不发生周跳或者已进 行周跳的探测与修复时,公式(1)中的整周模糊度是不发生变化的,因此可采 用多个历元取平均,消除整周模糊度的影响,具体见公式2。

其中,N表示用于求平均的CmCbiased的历元数,k表示观测历元;

S4,采用傅里叶变换方法分析提取所述无偏的码减相位偏差组合观测值时 间序列的频谱信息;

本步骤中,采用公式4对所述无偏的码减相位偏差组合观测值时间序列进 行离散傅里叶变换:

CmCunbiasedCmCunbiasedCmCunbiased,k=DFT[CmCunbiased]N=Σn=0N-1CmCunbiased,ne-j2πknN,k=0,1,...,N-1---(4)

其中,N为离散傅里叶变换区间长度;设则公式4表示为下面的 公式5形式:

CmCunbiased,k=DFT[CmCunbiased]N=Σn=0N-1CmCunbiased,nWNkn,k=0,1,...,N-1---(5).

通过傅里叶变换,将原来难以处理的时域信号相对比较容易地转换成了易 于分析的频域信号,可以利用一些工具对这些频域信号进行处理、加工,将信 号转化为可以对其进行各种数学变化的数学公式,对其进行处理,最后再利用 傅里叶反变换将处理后的信号转化成时域信号。

S5,对所述频谱信息进行分析,根据电离层误差、多路径误差及观测误差 的频率特性,得到当前序列中多路径效应的频率分布;

具体的,由公式3可以看出,在以无偏的码减相位偏差组合观测值 CmCunbiased作为基础的数据处理序列中,每一个CmCunbiased包含多路径效应和 观测噪声;与观测噪声相比,多路径效应的频率为低频信息,因此,首先对 CmCunbiased进行快速傅里叶变换,通过频率分析可得当前序列中多路径效应的 频率分布,确定多路径效应的频率区间。

S6,根据所述当前序列中多路径效应的频率分布,对所述无偏的码减相位 偏差组合观测值CmCunbiased进行多级小波分解和小波重构,得到多路径效应估 值;

假定经经S5的频谱分析后得知,当前序列中多路径效应的频率分布为0~f Hz;则根据该频率分布信息,采用公式6进行小波分解:

CmCunbiased=a1+Σi=11di---(6)

其中,a1为CmCunbiased的低频细节信息,其频率范围为l为小波分 解的层数;di为CmCunbiased的高频信息,其频率范围为f为观测数据 的采样频率。

根据a1与多路径效应的频段为0~fHz之间的关系确定小波分析中的小波分 解层数,进而通过公式7计算多路径效应估值

ϵ^WaveSmooth=CmCunbiased-ϵ^low=CmCunbiased-a1---(7)

其中,表示多路径效应估值,表示CmCunbiased的低频细节 信息,即为a1

S7,利用S1获得的所述伪距观测值ρk与S6计算得到的多路径效应估值进 行求差,得到多路径缓解后的伪距观测值;消除多路径效应后的伪距观测值可 与载波观测值组合用于各种高精度定位与服务。

具体的,通过公式8计算多路径缓解后的伪距观测值

ρ^WaveSmooth=ρm-ϵ^WaveSmooth---(8)

其中,ρm表示原始的伪距观测值。

由于多路径效应具有一定的频率行为,即:当产生多路径的场景一定时, 反射介质的反射特性也一定,多路径信号随着卫星的运行而不断改变其入射角; 这种物理现象的产生和结束都是在一定的频率范围内进行的。本发明正是基于 这一原理,利用傅里叶分析和小波分析进行多路径效应探测与缓解,为一种真 正意义上的多路径效应的提取方法,进而有效降低多路径效应的影响,提高 GNSS观测数据的数据质量。

将本发明提供的单频多路径效应探测与缓解方法应用于一个具体实例中, 从而验证本发明提供的单频多路径效应探测与缓解方法的有效性:

在一高墙边安装GNSS接收机,其中,墙高3米,长10余米,GNSS接收机高 1.6米,距离墙边0.9米,因此,墙面为主要多路径误差来源。由GNSS接收机自 动记录原始观测数据,采样间隔0.5秒,观测时间为下午15时20分到17时30分, 共记录有效数据2小时。采用现有技术中的普通算法对卫星多路径误差计算并改 正,然后计算基线向量,用solution软件给出基线精度和基线精度图,从卫星相 对于基准星的差分相位残差图可以看出,该基线由于多路径影响,相位差分残 差仍较大,基线精度较低。而采用本发明的单频多路径效应探测与缓解方法对 卫星多路径误差计算并改正,从改正后的基线相位残差图中可明显看出,相位 残差有较大改善,最大相位残差明显减小,基线精度也有较大提高。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰, 这些改进和润饰也应视本发明的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号