首页> 中国专利> 应用智能电网的电动汽车双向供电装置及利用该供电装置的双向供电方法

应用智能电网的电动汽车双向供电装置及利用该供电装置的双向供电方法

摘要

本发明涉及应用智能电网的电动汽车双向供电装置及利用该供电装置的双向供电方法。本发明的电动汽车双向供电装置是作为连接于智能电网根据电力需求向电网实施双向充电的应用智能电网的电动汽车双向供电装置,包括:双向充电器,连接于智能电网,向高电压电池供电,使车辆的装载的高电压电池被充电;BMS,控制高电压电池的充电,与双向充电器用电连接,判断高电压电池的充电状态和智能时间后,控制双向充电器,从电网向高电压电池充电,或者从高电压电池向所述电网供电。所述电动汽车双向供电方法是如果设定为智能模式则考虑是智能时间还是深夜时间并根据高电压电池的SOC,从高电压电池向电网供电,或者从电网向接收供电实施充电。

著录项

  • 公开/公告号CN103490485A

    专利类型发明专利

  • 公开/公告日2014-01-01

    原文格式PDF

  • 申请/专利权人 现代摩比斯株式会社;

    申请/专利号CN201310217449.9

  • 发明设计人 姜宗辰;

    申请日2013-06-03

  • 分类号H02J7/02;H02J3/32;H01M10/44;

  • 代理机构北京汇泽知识产权代理有限公司;

  • 代理人武君

  • 地址 韩国首尔市江南区驿三1洞679-4ING

  • 入库时间 2024-02-19 22:05:54

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-03-09

    授权

    授权

  • 2015-05-13

    实质审查的生效 IPC(主分类):H02J7/02 申请日:20130603

    实质审查的生效

  • 2014-01-01

    公开

    公开

说明书

技术领域

本发明涉及应用智能电网的电动汽车的双向供电装置及利用该供电装置的双向供电方法,具体是BMS(Battery Management System)决定电池充电或者电网充电,并对此分别实施控制的应用智能电网的电动汽车双向供电装置及利用该供电装置的双向供电方法。

背景技术

如今,电动汽车的使用逐渐增多,但其商用化仍然处于初步发展阶段,并且其配件价格高,车辆价格也比普通内燃机汽车高而需要相对地减少维护成本。

电不能主动满足需求,因此为稳定供电,有必要将电力需求从电力需求多的白天等高峰时段转移到电力需求少的深夜。

作为上述两种必要性的共同点,将电动汽车与智能电网(Smart Grid)连接,根据电力需求从电网进行充电,或者相反向电网供电。就是说,对现有的电网嫁接信息技术(IT),由供电者和消费者双向实时交换信息,以优化能效的第二代智能电网即智能电网上连接电动汽车而在电力需求少的深夜是从电网向电动汽车电池进行充电,而电力需求多的时间段则相反从所述电动汽车向电网实施供电只留下电动汽车行驶所需的最小限度的电力而有效应对电力需求。

为此,电动汽车上单独装配用于电网充电的电网控制部,利用所述电网控制部根据电力需求对电动汽车双向实施充电。

但是因单独装配电网控制部而车辆重量增加且生产成本增多,车辆重量增加还会导致电动汽车的行驶距离减少的问题。

此外,关于利用智能电网对电动汽车实施充电如先有技术文献KR10-2011-0116078 A公开了一种与智能电网连接考虑实时电费、各时间段的电费以及用电总量等调节双向充电器的耗电量的“智能电动车双向充电器”的技术。

发明内容

本发明的目的在于提供一种利用电动汽车上装载的BMS(Battery Management System),控制从智能电网(Smart Grid)的双向充电的应用智能电网的电动汽车双向供电装置及利用该供电装置的双向供电方法。

为实现所述目的,本发明所采用的解决方案是,提供一种应用智能电网的电动汽车双向供电装置,该供电装置是连接于智能电网根据电力需求向电网实施双向充电的应用智能电网的电动汽车双向供电装置,包括:双向充电器,连接于智能电网,向高电压电池供电,使车辆的装载的高电压电池被充电;BMS,控制所述高电压电池的充电,与所述双向充电器用电连接,判断所述高电压电池的充电状态和智能时间与否后,控制所述双向充电器,从所述电网向高电压电池充电,或者从高电压电池向所述电网供电。

优选地,所述BMS通过通信网反映从外部接收的驾驶员指令,对所述双向充电器实施控制。

所述BMS是反映所述智能开关信息来控制所述双向充电器的。

而且,所述BMS指令所述双向充电器从所述电网向高电压电池充电,则所述双向充电器实施控制从所述电网向所述高电压电池供电。

所述BMS指令所述双向充电器从所述高电压电池向所述电网供电,所述双向充电器会实施控制从所述高电压电池向所述电网供电。

所述BMS包括:BMS控制部,利用所述BMS内置的智能开关检测部检测的智能开关的位置或者所述BMS内置的指令确认部接收的驾驶员指令,以及所述BMS内置的SOC确认部测定的所述高电压电池的SOC决定所述双向充电器的控制指令;BMS通信部,传送由所述BMS控制部决定的控制指令;所述双向充电器包括:充电器通信部,从所述BMS通信部接收控制指令;充电器控制部,处理从所述充电器控制部接收的控制指令;电池充电部,根据所述充电器控制部,从所述电网向所述高电压电池充电;电网供应部,根据所述充电器控制部,从所述高电压电池向所述电网供电,并与所述电池充电部择一运行。

本发明一方面涉及的应用智能电网的电动汽车双向供电方法是该实施步骤包括:BMS起动步骤,电动汽车的双向充电器连接于智能电网则BMS起动;智能模式判断步骤,所述BMS起动则判断是否智能模式;智能时间判断步骤,判断是智能模式,则判断是否智能时间;充电状态判断步骤,判断电动汽车上装载的高电压电池的SOC是否超过第一设定值a;电网供应步骤,所述高电压电池的SLC超过第一设定值a,则控制所述双向充电器,从所述高电压电池向电网供电;电网中止判断步骤,将所述高电压电池的SOC与第二设定值b比较后,如果所述高电压电池的SOC超过第二设定值b,则返回所述电网供应步骤,所述高电压电池的SOC小于第二设定值b,则中止从所述电网的充电。

还包括:深夜时间判断步骤,所述电网中止判断步骤以后所述高电压电池的SOC小于第二设定值b;则判断是否适用所述深夜费用的时间;判断是深夜时间,则实施控制所述双向充电器从所述电网向高电压电池供电使高电压电池被充电的高电压电池充电步骤。

优选地,在所述智能模式判断步骤如果判断不是智能模式,则实施控制所述双向充电器从所述电网向高电压电池供电而使高电压电池被充电的高电压电池充电步骤。

在所述智能时间判断步骤如果判断不是智能时间,则实施控制所述双向充电器从所述电网向高电压电池供电而使高电压电池被充电的高电压电池充电步骤。

在所述充电状态判断步骤,如果所述高电压电池的SOC小于第一设定值a,则实施控制所述双向充电器从所述电网向高电压电池供电而使高电压电池被充电的高电压电池充电步骤。

所述第一设定值a比第二设定值b设定得高。

本发明具有的优点在于:

具有所述结构的本发明的应用智能电网的电动汽车双向供电装置及利用该供电装置的双向供电方法不需其它的电网控制部,可以利用BMS从智能电网实施双向充电,从而减少利用智能电网的电动汽车双向充电所需的构件。

如上所述,因电动汽车上装配的配件数量减少而配线、重量、生产成本也随之减少,因车辆重量减少而增加行驶距离。

附图说明

图1是本发明的应用智能电网的电动汽车双向供电装置的结构块图。

图2是表示本发明的应用智能电网的电动汽车双向供电装置中BMS与双向充电器之间控制关系的块图。

图3是本发明的应用智能电网的电动汽车双向供电方法的顺序图。

图中:

100 : 电动汽车;            10 : 高电压电池;

20 : BMS;                  21 : 智能开关检测部;

22 : 指令确认部;           23 : SOC确认部;

24 : BMS控制部;            25 : BMS通信部;

30 : 电动机控制器;         31 : 逆变器;

32 : 逆变器控制部;         40 : 驱动电动机;

50 : 双向充电器;           51 : 充电器通信部;

52 : 充电器控制部;         53 : 电池充电部;

54 : 电网供应部;           61 : 智能开关;

62 : 辅助电池;             71 : 远程接收部;

72 : 智能手机;             200 : 电网;

210 : 量电计。

具体实施方式

下面结合附图详述本发明的应用智能电网的电动汽车双向供电装置。

图1是本发明的应用智能电网的电动汽车双向供电装置的示意图。

本发明提供的应用智能电网的电动汽车双向供电装置包括高电压电池10、控制所述高电压电池10充电的BMS20、与电网200连接则对所述高电压电池10实施充电或者从所述高电压电池10向所述电网200供电且被所述BMS20控制的双向充电器50。

所述高电压电池10是充电电动汽车100驱动所需的电力。被所述高电压电池100充电的直流电源通过包括逆变器31和逆变器控制部32的电动机控制部30变换成交流电源而供应于发生驱动力的驱动电动机40。

BMS(Battery Management System) 20测定所述高电压电池10的SOC(State of Charge)、温度等所述高电压电池10的状态,控制所述高电压电池10的充电。

双向充电器50连接于电网200,从所述电网200向所述电动汽车的高电压电池10供电,使所述高电压电池10被充电,或者从所述高电压电池10向所述电网200供电。

另一方面,如图1所示,所述双向充电器50是被所述BMS20控制。

下面结合图2查看所述BMS20对所述双向充电器50实施控制的结构,所述BMS20包括识别驾驶员可以任意以智能模式运行的智能开关操作的智能开关检测部21、确认通过通信接收的驾驶员指令的指令确认部22、测定所述高电压电池10SOC的SOC确认部23、所述智能开关检测部21、指令确认部22以及基于从所述SOC确认部23输入的信息决定是否从BMS20向所述双向充电器50实施控制的BMS控制部24、用于与所述双向充电器50通信的BMS通信部25。

智能开关检测部21和指令确认部22用于启动和关闭智能模式的运行。所述智能模式是电费贵的时间段,即智能时间,所述高电压电池10的SOC充足时,将高电压电池10的电力供应给电网200。因此,所述智能电网运行时,对所述高电压电池10实施充电,满足智能模式运行条件(智能时间,SOC达标准以上)时从所述高电压电池10向所述电网200供应高电压电池10上充电的电力。

所述智能开关检测部21检测出电动汽车100的内部安装于辅助电池62和所述BMS20之间安装的智能开关61的位置,根据所述智能开关61ON/OFF与否应用智能模式。

指令确认部22与所述智能开关61不同,远程接收驾驶员的指令,在此基础上使智能模式进行,利用智能手机72等终端机通过无线互联网、蓝牙等远程通信接收驾驶员的指示而应用智能模式。

SOC确认部23是定所述高电压电池10的充电状态,即测定高电压电池10的SOC(State of charge)用于决定所述双向充电器50的充电方向。

BMS控制部24基于从所述智能开关检测部21、指令确认部22或者SOC确认部3中至少一个以上接收的信息判断并决定所述双向充电器50的充电方向。充电方向是指所述双向充电器50的运行状态,是所述双向充电器50供电使从电网200向高电压电池10充电,或者从所述高电压电池10向所述电网200供电。

所述BMS控制部24决定的双向充电器50的控制指令通过BMS通信部25传递于所述双向充电器50。

双向充电器50包括从所述BMS20接收控制指令的充电器通信部51、处理从所述充电器通信部51接收的控制指令的充电器控制部52、根据所述充电器控制部52的处理结果择一运行的电池充电部53和电网供应部54。

所述充电器通信部51从所述BMS通信部25接收控制指令传递给双向充电器50的内部。

从所述充电器通信部51接收的控制指令在所述充电器控制部52处理,根据决定的充电方向使所述双向充电器50运行。就是说,所述BMS20指令由电网200向高电压电池10充电,则运行所述双向充电器50的电池充电部53使高电压电池10被充电,BMS20指令由所述高电压电池10向电网供应电源,则所述双向充电器50运行电网供应部使高电压电池10向所述电网200供电,并与所述电池充电部53择一运行。

如上所述,由BMS20对于不同的智能双向充电器50统一实施控制而减少所需配件,进而减少车辆重量,节省生产成本。

下面结合图3,对应用智能电网的电动汽车双向供电方法进行说明。

根据本发明的应用智能电网的电动汽车双向供电方法,由所述BMS20控制所述双向充电器50而控制供电方法,在图3中图示为‘A’的区域是在BMS20实施,图示为‘B’的区域是在双向充电器50实施。

首先,电动汽车100的双向充电器50连接于电网200即可起动BMS20。BMS20起动后由BMS20控制双向充电器50的运行,使所述高电压电池10充电或者使由所述高电压电池10向智能电网200供电。

BMS20起动则判断是否智能模式(步骤SB12)。在智能模式判断(步骤SB12)利用智能开关检测部21或者指令确认部22判断驾驶员是否运行智能模式。

如果,所述BMS20判断驾驶员运行智能模式,则实施判断是否智能时间的智能时间判断(步骤SB13)。智能时间是电费相对贵,将被所述高电压电池10充上的电力在智能时间供应给电网200而通过量电计210核算电费。就是,在智能时间向电网200供电,深夜时间是从电网20接收供电,供电方向的量电计210核算费用。

如上所述,驾驶员决定运行智能模式后,确认所述高电压电池10是否被充满电。确认所述高电压电池10的SOC后判断所述高电压电池10的SOC是否超过第一设定值a。在所述高电压电池10中向电网200供电从所述高电压电池10角度是放电,而且所述高电压电池10的SOC高,因此为电动汽车100行驶,预先判断禁止从所述高电压电池10向电网200供电的设定值是否超过第一设定值a。就是说,高电压电池10的SOC低于第一设定值a,则所述高电压电池10未充满电,因此无法向电网100供电。

另一方面,所述高电压电池10充满电,SOC超过第一设定值a,则实施所述双向充电器50运行从所述高电压电池10开始放电而向电网200供电的电网供应(步骤SC12)。

在实施所述电网供应(步骤SC12)的期间,定时确认所述高电压电池10的SOC。确认所述高电压电池10的SOC并比较所述高电压电池10的SOC和第二设定值b(步骤SB15)。将所述高电压电池10的SOC与第二设定值b比较,如果所述高电压电池10的SOC超过第二设定值b,则继续实施电网供应(步骤SC12),否则中止从电网200充电,并确认是否深夜费用时间(步骤SB16)。所述第二设定值b的设定大于第一设定值a。

如果是深夜费用时间,所述BMS20会控制所述双向充电器50,从电网200接收供电对高电压电池10充电(步骤SC13),不是深夜费用时间,则待机(步骤SC14)后过一定时间重新判断是否深夜时间(步骤SB16)。

而且在所述智能模式判断(步骤SB12)判断不是智能模式,或者在智能时间判断(步骤SB13)判断不是智能时间,或者在充电判断(步骤SB14)所述高电压电池10的SOC在第一设定值a以下,则所述BMS20会控制所述双向充电器50,使所述电网200的电力供应于所述高电压电池10而所使述高电压电池10被充电(步骤SC13)。

如上所述,从所述电网200接收供电开始对所述高电压电池10充电,则BMS20测定所述高电压电池10的SOC,如果所述高电压电池10被充满电则停止充电(步骤SC15)。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号