首页> 中国专利> 任意几何配置的机载双基地雷达杂波模型建模方法

任意几何配置的机载双基地雷达杂波模型建模方法

摘要

本发明公开了一种任意几何配置的机载双基地雷达杂波模型建模方法。为克服现有机载双基地雷达杂波建模中几何配置单一的问题,本发明的方法具体采用坐标变换,首先利用地面等距离和非标准椭圆求解出其对应的标准椭圆,然后获得标准椭圆上点的坐标,最后再通过坐标的旋转和平移变换求出非标准椭圆上点的坐标,有效解决了在实际应用中接收站和发射站几何配置的任意性导致多普勒表达式中方位角和俯仰角难以求解的问题,从而实现对任意几何配置机载双基地雷达杂波模型建模。

著录项

  • 公开/公告号CN103487790A

    专利类型发明专利

  • 公开/公告日2014-01-01

    原文格式PDF

  • 申请/专利权人 电子科技大学;

    申请/专利号CN201310435788.4

  • 申请日2013-09-23

  • 分类号G01S7/41;

  • 代理机构成都宏顺专利代理事务所(普通合伙);

  • 代理人周永宏

  • 地址 611731 四川省成都市高新区(西区)西源大道2006号

  • 入库时间 2024-02-19 21:44:33

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2015-05-20

    授权

    授权

  • 2015-05-06

    著录事项变更 IPC(主分类):G01S7/41 变更前: 变更后: 申请日:20130923

    著录事项变更

  • 2014-02-05

    实质审查的生效 IPC(主分类):G01S7/41 申请日:20130923

    实质审查的生效

  • 2014-01-01

    公开

    公开

说明书

技术领域

本发明属于雷达技术领域,具体涉及机载双基地雷达杂波抑制与空时自适应处理技术。

背景技术

机载双基地雷达由于收发分置而有着很多突出的优点,使其得到快速发展和广泛的应 用,并成为当今雷达领域的研究热点之一,它能获取目标的非后向散射信息,具有作用距 离远、抗低空突防、隐蔽性和抗干扰性强等特点。由于机载双基地雷达接收站不含大功率 器件,其功耗低、体积小、重量轻,便于多种类型的飞机携带,造价较低。总之,机载双 基地雷达作为一种空间对地观测的新手段,在民用和军用领域都有着广阔的发展空间。

对于机载双基地雷达系统,同一距离门内的回波是到接收站及发射站距离和相等的散 射点上的回波,在某一时刻,空间中所有到接收站和发射站距离和相等的点的集合构成一 个椭球面。由于接收站和发射站的飞行高度以及位置的任意性,实际的椭球面是一个非标 准椭球,因而该椭球面与地面的交线为一非标准椭圆(即椭圆的几何中心不在坐标原点或 者椭圆的对称轴不是坐标轴),从而导致地面等距离和椭圆上点的坐标难以求解。在文献 “Comparison between monostatic and bistatic antenna configuration for STAP,IEEE Trans Aero  and Elect Sys,AES-36,596-608,April2000”中,建立了接收站和发射站航迹呈直线、平 行、垂直和交叉4类场景的几何模型,但该模型要求接收站在地面上的投影点位于坐标原 点,并针对接收站在X轴方向运动;在文献“双基地机载预警雷达空时二维杂波建模及杂 波特性分析,电子学报,2001,29(12):1940~1943”中,建立了接收站和发射站沿同一航 向的几何模型,但此模型只适用于接收站和发射站等高度的几何配置。上述模型只针对几 类特殊的机载双基地雷达几何配置,不能应用于在任意几何配置下建立精确的杂波模型。

发明内容

本发明的目的是针对背景技术存在的缺陷,研究设计一种在任意几何配置下机载双基 地雷达杂波模型建模方法,解决现有机载双基地雷达杂波建模方法几何配置单一,无法实 现实际应用中机载双基地雷达几何配置任意性的问题。

本发明的解决方案是采用坐标变换,利用地面等距离和非标准椭圆解出其对应的标准 椭圆,然后获得标准椭圆上点的坐标,最后对此坐标进行旋转和平移变换便可得到非标准 椭圆上点的坐标,该方法有效解决了在实际应用中接收站和发射站几何配置的任意性导致 多普勒表达式中方位角和俯仰角难以求解的问题,从而实现对任意几何配置机载双基地雷 达杂波模型建模。

为了方便描述本发明的内容,首先对以下术语进行解释:

术语1:基线

基线是指机载双基地雷达中接收站和发射站的连线在地面上的投影。

术语2:地面等距离和

等距离和是指地面到接收站和发射站距离之和相等的点。

术语3:标准椭圆

在直角坐标系中,标准椭圆指的是椭圆的几何中心为坐标原点,对称轴为坐标轴的椭 圆。

术语4:任意几何配置

任意几何配置是指机载双基地雷达中接收站和发射站的位置以及飞行方向的任意性。

本发明提出了一种任意几何配置机载双基地雷达杂波模型建模方法,具体包括步骤:

步骤一:机载双基地雷达系统参数初始化,

发射站的位置记为(xT,yT,zT),其中,xT、yT、zT分别为发射站的x轴坐标、y轴坐 标及z轴坐标;接收站的位置记为(xR,yR,zR),其中,xR、yR、zR分别为接收站的x轴坐标、 y轴坐标及z轴坐标;发射站和接收站的速度分别记为VT和VR,发射站和接收站的飞行方 向与基线的夹角分别为δT和δR,某一固定时刻地面等距离和椭圆上参考点坐标记为(x,y);

步骤二:计算地面等距离和非标准椭圆的方程,

根据椭球的定义,到接收站和发射站距离和相等的椭球面为:

(x-xR)2+(y-yR)2+(z-zR)2+(x-xT)2+(y-yT)2+(z-zT)2=Rs---(1)

其中,RS为双基距离和,(x,y,z)为空间中到接收站和发射站距离和相等的点的集合;

式(1)令z=0即可求得地面等距离和曲线的方程为:

(x-xR)2+(y-yR)2+zR2+(x-xT)2+(y-yT)2+zT2=Rs---(2)

将式(2)展开可得:

[4(xR-xT)2-4RS2]x2+[4(yR-yT)2-4RS2]y2+

8(xR-xT)(yR-yT)xy+[4A(xR-xT)+8RS2xR]x+---(3)

[4A(yR-yT)+8RS2yR]y+[A2-4RS2(xR2+yR2+zR2)]=0

其中,式(3)即表示机载双基地雷达地面等距离和 非标准椭圆的方程;

步骤三:根据非标准椭圆的方程确定椭圆的倾角、几何中心及长短半轴,

设参考非标准椭圆的方程为:

ax2+bxy+cy2+dx+ey+1=0    (4)

对比式(3),根据对应项系数相等法则便可求解系数a,b,c,d,e为:

a=[4(xR-xT)2-4RS2]/[A2-4RS2(xR2+yR2+zR2)]b=8(xR-xT)(yR-yT)/[A2-4RS2(xR2+yR2+zR2)]c=[4(yR-yT)2-4RS2]/[A2-4RS2(xR2+yR2+zR2)]d=[4A(xR-xT)+8RS2xR]/[A2-4RS2(xR2+yR2+zR2)]e=[4A(yR-yT)+8RS2yR]/[A2-4RS2(xR2+yR2+zR2)]---(5)

根据非标准椭圆的方程和标准椭圆的方程的对应关系,可以推导出(4)式对应的椭圆 的长轴倾角为:

θ=12arctanba-c---(6)

几何中心为:

xc=be/(4ac-b2)yc=(bd-2ae)/(4ac-b2)---(7)

长短半轴为:

La=(axc2+cyc2+bxcyc-1)a+c+(a-c)2+b2Lb=2(axc2+cyc2+bxcyc-1)a+c-(a-c)2+b2---(8)

利用非标准椭圆的方程确定的长短半轴即可得到其对应的标准椭圆的方程为:

X2La2+Y2Lb2=1---(9)

其中,X,Y分别为标准椭圆上点的横纵坐标。

步骤四:求解非标准椭圆的方程确定的椭圆上点的坐标,

式(9)对应的参数方程为:

X=LacosαY=Lbsinα---(10)

其中,参数α∈[0,2π],利用上式即可求解出标准椭圆上点的集合(X,Y),然后利用式 (6)确定的倾角进行坐标的旋转变换,坐标的旋转变换可以表述为:

x^y^=cosθ-sinθsinθcosθXY---(11)

再利用式(7)确定的几何中心进行坐标的平移变换便可得出非标准椭圆上点的坐标 (xp,yp);

坐标的平移变换为:

xP=x^+xcyP=y^+yc---(12)

步骤五:多普勒频率表达式中方位角和俯仰角的确定,

接收到的杂波回波的多普勒频率为:

其中,λ为波长,θR和θT分别为接收站和发射站雷达天线波束指向相对于基线方向的方 位角,和分别为杂波散射点相对于接收站和发射站天线轴向的俯仰角;

经过步骤一到四求解出地面等距离和非标准椭圆上杂波散射点的坐标后便可得到多普 勒频率表达式中的方位角和俯仰角为:

θR=arccosLRT·LRP||LRT||||LRP||---(14)

θT=arccosLRT·LTP||LRT||||LTP||---(15)

其中,||·||为二范数,R′和T′分别为接收站和发射站在地面的投影点,式(14)到式(17) 中的向量为:

LRT=(xT-xR,yT-yR,0)LRP=(xP-xR,yP-yR,0)LTP=(xP-xT,yP-yT,0)LRP=(xP-xR,yP-yR,-zR)LTP=(xP-xT,yP-yT,-zT)---(18)

将式(14)到式(17)代入式(13)得到回波多普勒频率的值后便可建立杂波模型并 得到杂波的空时二维分布示意图;所述空时二维分布示意图是指在直角坐标系中分别以 2fd/fr和R为坐标的横纵轴绘制的曲线。

本发明的有益效果:本发明的方法利用坐标的旋转和平移变换得到非标准椭圆上点的 坐标,首先确定非标准椭圆对应的标准椭圆,然后通过椭圆的参数方程得到标准椭圆上点 的坐标,再利用坐标的旋转和平移变换求得非标准椭圆上点的坐标,从而解决了任意几何 配置下多普勒频率表达式中方位角和俯仰角难以求解的问题。本发明的方法建立的杂波模 型适用于任意机载双基地雷达几何配置,求解过程简单、精度高。

附图说明

图1是本发明提供方法的流程框图。

图2是本发明具体实施方式采用的机载双基地雷达在某一时刻的系统结构图。

图3是本发明具体实施方式采用的几何配置一示意图。

图4是本发明具体实施方式采用的几何配置二示意图。

图5是本发明具体实施方式采用的几何配置三示意图。

图6是本发明具体实施方式中对图3中的几何配置在双基地距离和RS为200Km时的空时 二维杂波分布示意图。

图7是本发明具体实施方式中对图4中的几何配置在双基地距离和RS为200Km时的空时 二维杂波分布示意图。

图8是本发明具体实施方式中对图5中的几何配置在双基地距离和RS为200Km时的空时 二维杂波分布示意图。

具体实施方式

本发明主要采用仿真实验的方法进行验证,所有步骤、结论都在Matlab2010上验证正 确。下面就具体实施方式对本发明作进一步的详细描述。

步骤一:对某一时刻建立机载双基地雷达系统的几何结构,初始化各系统参数,并确 立杂波散射点和接收站、发射站的几何关系。

步骤二:针对步骤一中的几何结构,计算该时刻地面上所有到接收站和发射站距离和 相等的点的集合,该点的集合即为一椭圆。

步骤三:利用表达式(5)得到非标准椭圆的方程的参数a,b,c,d,e,然后计算非标准椭 圆的方程确定的倾角和几何中心,以备后面坐标变换时使用;再利用式(8)计算长短半轴 并求出标准椭圆的方程。

步骤四:首先利用表达式(10)确定的参数方程解出(X,Y)的集合,然后利用步骤三 得到的倾角和几何中心对(X,Y)的集合进行坐标的旋转和平移变换,变换后的坐标集合即 为非标准椭圆上点的坐标集合(x,y)。

步骤五:利用式(12)确定的点坐标集合(x,y),即可得到式(14)到式(17)的方位 角和俯仰角,再代入式(13)便得到杂波回波的多普勒频率。

图3至图6分别为实施方式采用的几何配置一、几何配置二和几何配置三示意图图及其 参数表,其对应的参数表分别为表1、表2和表3。

表1

参数 符号 数值 光速 C 300000Km/s 载频 f01GHz 脉冲重复频率 fr2000Hz 接收站位置 xR,yR,zR0,0,6Km 发射站位置 xT,yT,zT0,80Km,6Km 接收站速度 VR150m/s 发射站速度 VT150m/s 接收站飞行方向 δR90° 发射站飞行方向 δT90°

表2

参数 符号 数值 光速 C 300000Km/s 载频 f01GHz 脉冲重复频率 fr2000Hz 接收站位置 xR,yR,zR0,0,6Km 发射站位置 xT,yT,zT30Km,30Km,6Km 接收站速度 VR120m/s 发射站速度 VT120m/s 接收站飞行方向 δR90° 发射站飞行方向 δT90°

表3

参数 符号 数值 光速 C 300000Km/s 载频 f01GHz 脉冲重复频率 fr2000Hz 接收站位置 xR,yR,zR0,0,6Km 发射站位置 xT,yT,zT40Km,40Km,6Km 接收站速度 VR120m/s 发射站速度 VT120m/s 接收站飞行方向 δR90° 发射站飞行方向 δT45°

完成任意几何配置下机载双基地雷达杂波模型的建立,结果如图6到图8所示。

通过本发明具体实施方式可以看出,本发明可以很好的实现对任意几何配置下机载双基地 雷达杂波模型的建立。

本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原 理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术 人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和 组合,这些变形和组合仍然在本发明的保护范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号