首页> 中国专利> 脂润滑滚动轴承的再润滑周期的确定方法

脂润滑滚动轴承的再润滑周期的确定方法

摘要

本发明涉及滚动轴承,尤其涉及脂润滑滚动轴承的再润滑。一种脂润滑滚动轴承的再润滑周期的确定方法,它包括:轴承参数测量步骤:轴承参数包括尺寸参数和运行参数;模拟工况的条件,检测滚动轴承润滑状态步骤;模拟工况条件下,轴承再润滑周期的确定步骤:确定该工况下试验轴承润滑状态发生突变时的运转圈数N和运行时间T1,并在此基础上计算出平均转速n:根据轴承理论再润滑周期公式确定修正系数α1的步骤;根据现场轴承工作环境以及外界影响轴承润滑因素修正确定系数α2的步骤;实际轴承再润滑周期T的确定步骤。本发明为现场设备的精确润滑提供理论指导,以便在润滑脂失效前及时补充或更换润滑脂,减少因“过润滑”导致的润滑脂浪费现象。

著录项

  • 公开/公告号CN103148107A

    专利类型发明专利

  • 公开/公告日2013-06-12

    原文格式PDF

  • 申请/专利权人 上海宝钢工业检测公司;

    申请/专利号CN201110400451.0

  • 申请日2011-12-06

  • 分类号F16C41/00(20060101);

  • 代理机构31216 上海天协和诚知识产权代理事务所;

  • 代理人张恒康

  • 地址 201900 上海市宝山区湄浦路335号

  • 入库时间 2024-02-19 18:53:05

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-05-12

    专利权人的姓名或者名称、地址的变更 IPC(主分类):F16C41/00 变更前: 变更后: 申请日:20111206

    专利权人的姓名或者名称、地址的变更

  • 2017-02-22

    授权

    授权

  • 2014-11-05

    实质审查的生效 IPC(主分类):F16C41/00 申请日:20111206

    实质审查的生效

  • 2013-12-18

    著录事项变更 IPC(主分类):F16C41/00 变更前: 变更后: 申请日:20111206

    著录事项变更

  • 2013-06-12

    公开

    公开

说明书

技术领域

本发明涉及滚动轴承,尤其涉及脂润滑滚动轴承的再润滑。

背景技术

随着资源节约型社会的呼声日益强烈,脂润滑设备的“过润滑”现象已引起国内外学者的广泛关注。据统计,全国冶金企业的吨钢油耗指标(FPM)为0.8kg/吨钢,而同期韩国浦项制铁仅为0.36 kg/吨钢。2011年我国冶金行业的润滑脂消耗量预计将达到18万吨,成本约为45亿元。仅以浦项制铁为参照,我国钢铁行业的润滑脂消耗约有50%的下降空间,因此直接降耗效益非常可观。我国冶金行业存在较严重“过润滑”现象的原因在于缺乏能够满足现场要求的脂润滑滚动轴承的再润滑周期确定方法,加上现场设备维护人员普遍存在的“润滑脂用量越多对设备越好”的错误观念,致使润滑脂消耗量一直居高不下。若考虑脂润滑滚动轴承的广泛应用,这项浪费更是惊人。

经典的滚动轴承再润滑周期计算公式是一种理想状态下的计算公式,它未考虑轴承的实际使用工况,因而通用性不强。对于环境恶劣的冶金设备而言,根据这些公式得出的理论再润滑周期与现场实际加脂周期存在很大的差距,有的甚至相差100~300倍。

发明内容

本发明旨在解决上述缺陷,提供一种脂润滑滚动轴承的再润滑周期的确定方法。本发明为现场设备的精确润滑提供理论指导,以便在润滑脂失效前及时补充或更换润滑脂,减少因“过润滑”导致的润滑脂浪费现象。

为解决上述问题,一种脂润滑滚动轴承的再润滑周期的确定方法,其特征在于,它包括:

轴承参数测量步骤:轴承参数包括尺寸参数和运行参数;

模拟工况的条件,检测滚动轴承润滑状态步骤;

模拟工况条件下,轴承再润滑周期的确定步骤:

确定该工况下试验轴承润滑状态发生突变时的运转圈数N和运行时间T1,并在此基础上计算出平均转速n:

计算方程为: n=N/T1×60

其中:n为平均转速,rpm

      N为试验轴承运转圈数

      T1为试验条件下的再润滑周期,h;

根据轴承理论再润滑周期公式确定修正系数α1的步骤:

T2=(14000000K-4×d)/(n×d0.5)      

其中:T2为理论再润滑周期,h

      d 为轴承内径,mm

      n 为轴承转速rpm,在此即为以上模拟试验过程的平均转速。

      K-轴承系数:圆锥滚子轴承,K=1;圆柱滚子轴承,K=5;径向球轴承,K=10;

  修正系数α1的计算方程为:α1=T1/T2;

根据现场轴承工作环境以及外界影响轴承润滑因素修正确定系数α2的步骤:

α2=W×S×C

其中:W—有水分影响时W=0.9,无水分影响时W=1;

S—根据轴承密封状态设定,一般轴承密封完全失效时S=0.1,密封完好时S=1,其余数值介于0.1-1之间;

C—有冲击载荷时C=0.95,无冲击载荷时C=1;

实际轴承再润滑周期T的确定步骤:

T=α1×α2×(14000000K-4×d)/(n×d0.5

其中:

T为现场再润滑周期,h

d 为轴承内径,mm

n 为轴承实际转速,rpm

α1、α2为以上计算得出的修正系数

K-轴承系数,圆锥滚子轴承,K=1;圆柱滚子轴承,K=5;径向球轴承,K=10。

所述脂润滑滚动轴承的再润滑周期的确定方法,所述尺寸参数包括:轴承外径D、轴承内径d、轴承宽度B;运行参数包括:工作转速、工作温度、环境温度、水分、密封状态、载荷。

所述的脂润滑滚动轴承的再润滑周期的确定方法,所述模拟工况的条件,检测滚动轴承润滑状态步骤包括:

建立模拟试验:尽量采用与现场工况基本一致的条件进行试验,需要考虑轴承结构形式、润滑脂类型、水分、工作温度、载荷因素;

确定润滑状态监测方法:采用振动冲击值,包括峰值和有效值,进行监测。

确定润滑状态判别标准:采用振动冲击值,包括峰值和有效值,进行监测时,当冲击值出现突跃时作为润滑状态变化拐点,此时的峰值和有效值一般为正常值的5-20倍。 

本发明适合于各类脂润滑滚动轴承再润滑周期的确定。本发明基于模拟试验提出了脂润滑滚动轴承的再润滑周期的确定方法,在确保轴承润滑状态良好的前提下,建立最合理的再润滑,以便在润滑脂失效前及时补充或更换润滑脂,减少因“过润滑”导致的润滑脂浪费现象,对机械设备运行维护、节能减排具有很好的指导意义,因此具有良好的推广应用前景。

具体实施方式

本发明脂润滑滚动轴承的再润滑周期的确定方法,其步骤如下:

1、现场轴承参数的收集

  1)、现场轴承尺寸参数:轴承外径(D)、轴承内径(d)、轴承宽度(B)。

  2)、现场轴承运行参数:轴承工作转速、轴承工作温度、环境温度、水分、密封状态、载荷等。

2、模拟工况下滚动轴承润滑状态监测方法的确定

  1)、建立模拟试验方法:尽量采用与现场工况基本一致的条件进行试验,尤其需要考虑轴承结构形式、润滑脂类型、水分、工作温度、载荷等因素。

  2)、确定润滑状态监测方法:采用振动冲击值(包括峰值和有效值)进行监测。

  3)、确定润滑状态判别标准:采用振动冲击值(包括峰值和有效值)进行监测时,当冲击值出现突跃时作为润滑状态变化拐点,此时的峰值和有效值一般为正常值的5-20倍。

3、模拟工况下试验轴承再润滑周期的确定

在以上选定条件下进行模拟试验,确定该工况下试验轴承润滑状态发生突变时的运转圈数N和运行时间T1(小时),并在此基础上计算出平均转速n(rpm).

计算方程为: n=N/T1×60

      其中:n为平均转速(rpm)

            N为试验轴承运转圈数

            T1为试验条件下的再润滑周期(h)

4、修正系数α1的确定

  1)、理论再润滑周期的计算

根据轴承理论再润滑周期公式计算得出试验轴承再润滑周期T2:

T2=(14000000K-4×d)/(n×d0.5)      

其中:T2为再再润滑周期(h)

      d 为轴承内径(mm),

      n 为轴承转速(rpm),在此即为以上模拟试验过程的平均转速。

          K-轴承系数(圆锥滚子轴承,K=1;圆柱滚子轴承,K=5;径向球轴承,K=10)

  2)、修正系数α1的计算

      修正系数α1的计算方程为:α1=T1/T2

5、修正系数α2的确定

根据现场轴承工作环境以及外界影响轴承润滑因素设定轴承再润滑周期修正系数α2,该系数由轴承所受冲击载荷C、水分影响W、密封状态S综合决定:

α2=W×S×C

其中:W—有水分影响时W=0.9,无水分影响时W=1;

  S—根据轴承密封状态设定,一般轴承密封完全失效时S=0.1,密封完好时S=1,其余数值介于0.1-1之间;

  C—有冲击载荷时C=0.95,无冲击载荷时C=1。

6、现场轴承再润滑周期的确定

    将现场轴承的轴承内径,运行转速代入以下方程中,计算出现场轴承的实际再润滑周期T:

T=α1×α2×(14000000K-4×d)/(n×d0.5

其中:T为现场再润滑周期(h)

      d 为轴承内径(mm)

      n 为轴承实际转速(rpm)

     α1、α2为以上计算得出的修正系数

      K-轴承系数(圆锥滚子轴承,K=1;圆柱滚子轴承,K=5;径向球轴承,K=10)

将以上滚动轴承润滑状态实施监控方法应用到热轧厂精轧机工作辊轴承的加脂标准优化工作中,取得了良好的实际效果。下面以1880热轧F1-F7工作辊轴承为例,介绍滚动轴承润滑状态实施监控方法在加脂周期优化过程中的作用,具体操作步骤如下:

1、现场轴承参数的收集

    1880热轧工作辊轴承的相关参数见表1和表2。

表1  1880热轧工作辊轴承参数

表2  1880热轧工作辊轴承运行参数

机架转速 rpm温度环境温度是否有水分密封冲击载荷F130<70100-120较好F260<70100-120较好F360<70100-120较好F4100<70100-120较好F5200<70100-120较好F6300<70100-120较好F7400<70100-120较好

2、实验室模拟试验

在精确润滑滚动轴承试验台上,选择与现场轴承结构相近的SKF球面滚子轴承进行模拟试验,具体运行参数见表3.

表3  实验室模拟试验的运行参数

项 >内 >润滑脂牌号MEP-1极压锂基脂轴承型号SKF 22206E球面滚子轴承加脂方式手动加脂运转速度3000rpm径向载荷7.8KN轴向载荷0轴承工作温度<70℃运行方式24小时连续运转在线监测振动(包括试验机本身的传感器和新装在线振动监测系统)、温度、扭矩、电流等润滑状态判别标准以在线振动监测系统的振动冲击值作为润滑状态监控手段,判别标准为:冲击峰值和有效值中有一项达到其正常值的5倍以上时作为润滑状态变化拐点

在低速(约100rpm)时,给轴承加注润滑脂,然后升速至设定转速进行润滑脂周期试验,当在线振动监测系统的冲击峰值和有效值中有一项达到其正常值的5倍以上时,作为一个试验周期的结束。经多次试验,得出模拟工况下试验轴承的平均转速n=3040rpm,润滑脂实际再润滑周期T1=173h。

3、模拟工况下试验轴承再润滑周期的确定

经计算,得出试验条件下的平均转速n=3040rpm;再润滑周期T1=173h

4、修正系数α1的确定

  1)、理论再润滑周期的计算

  2)、修正系数α1的计算

      修正系数α1的计算方程为:α1=T1/T2=173/841=0.2057

5、修正系数α2的确定

  根据现场轴承工作环境以及外界影响轴承润滑因素设定轴承再润滑周期修正系数α2,其中:W-有水分影响W=0.9;S-轴承密封状态较好,S=0.9;C-有冲击载荷C=0.95;

则α2=W×S×C=0.9×0.9×0.95=0.7695

6、现场轴承再润滑周期的确定

  将现场滚动轴承的内径、运行转速代入以下方程中,计算出现场轴承的实际再润滑周期T:

T=α1×α2×(14000000K-4×d)/(n×d0.5

其中:

T为现场再润滑周期(h)

      修正系数α1=0.2057

      修正系数α2=0.7695

      d 为轴承内径(mm)

      n 为轴承实际转速(rpm)

      K-轴承系数(圆锥滚子轴承,K=1;圆柱滚子轴承,K=5;径向球轴承,K=10)

 计算结果见表4。

表4  1880热轧工作辊轴承的再润滑周期计算结果

机架四列圆锥滚子轴承的再润滑周期(h)止推轴承的再润滑周期 (h)F13271 3942 F21635 1971 F31635 1971 F4981 1183 F5561 649 F6374 433 F7280 325

由表4可知,1880热轧工作辊轴承最长的再润滑周期为3942h,最短的为280h,考虑到现场实际再润滑操作过程中周期的需统一,因此合理的再润滑周期为280h。

7、润滑脂降耗效果

按照当前轧机工作辊每次上机时间约10h,每上机3次即加脂一次的情况,则当前的再润滑周期仅30h,与以上计算结果相比,具有很大的优化空间。据此,我们提出了加脂标准优化方案,并遵照循序渐进的思路,首先在1580和1880热轧磨辊间进行了试点、然后逐步推广,取得了较好的润滑脂降耗效果。据统计,自2008年11月以来,1580和1880磨辊间的润滑脂消耗同比下降了30%以上,并具备进一步下降的空间。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号