首页> 中国专利> 一种iGPS测量系统和CATIA软件数据通信的方法

一种iGPS测量系统和CATIA软件数据通信的方法

摘要

本发明为一种iGPS测量系统和CATIA软件数据通信的方法,用CAA编写了基于CATIA装配模块的VirtualAsseambly模块,利用VirtualAsseambly加载虚拟装配件文件,开发了介于Surveyor和CATIA的中间软件MySurveyor,中间软件根据VirtualAssembly发送的请求数据内容,提供实时跟踪测量和单点测量,将测量数据与三维虚拟装配件的模型结合,通过坐标转换将装配现场的实况反应在CATIA软件里。本发明避免了iGPS系统难以和三维模型结合以及CATIA软件与外界数据通信困难的问题,可实时观测装配过程中装配件的移动情况,对飞机自动化装配有一定参考价值。

著录项

  • 公开/公告号CN103116668A

    专利类型发明专利

  • 公开/公告日2013-05-22

    原文格式PDF

  • 申请/专利权人 北京航空航天大学;

    申请/专利号CN201310028808.6

  • 发明设计人 闫光荣;朱明浩;孙涪龙;范庆香;

    申请日2013-01-25

  • 分类号G06F17/50;

  • 代理机构北京永创新实专利事务所;

  • 代理人周长琪

  • 地址 100191 北京市海淀区学院路37号

  • 入库时间 2024-02-19 18:53:05

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-01-11

    未缴年费专利权终止 IPC(主分类):G06F17/50 授权公告日:20151007 终止日期:20180125 申请日:20130125

    专利权的终止

  • 2015-10-07

    授权

    授权

  • 2013-06-19

    实质审查的生效 IPC(主分类):G06F17/50 申请日:20130125

    实质审查的生效

  • 2013-05-22

    公开

    公开

说明书

技术领域

本发明属于信息技术领域,涉及一种iGPS测量系统和CATIA软件数据通信的方法。

背景技术

在飞机大部件装配中,需要测量基准点以调整装配件的位置和姿态,而且需要满足很高 的精度。室内测量定位系统iGPS是一种新型的三维数字化测量技术,具有量程空间大、整体 测量、多任务、高效率的独特优点,很好地匹配了飞机数字化装配对于三维测量技术的需求。 在国外先进的飞机制造技术中,iGPS测量技术已经成为数字化装配中最重要的技术手段之一, 展现出广阔而又富有魅力的应用前景和价值。

iGPS测量系统由激光发送器、接收器、接收中心和控制器组成。当一台iGPS系统安装 在已校准的环境中时,它可以在一个新计量时段开始前轻易地启动。其接收器的探测针可以 附在物件上也可以由使用者手握面向物件,一个单点检测只需要几秒钟就可以完成。矢量杆 跟探测针连接,将获取的测量资料储存在一个坚固的手持控制器内,或以无线的方式传送给 工作站。

Metris公司的iGPS系统多供应航天、造船、汽车业等领域使用,Metris iGPS读取数据 的软件是Surveyor,Surveyor软件提供了SDK(Software Development Kit,软件开发工具包) 供使用者实现自己需要的功能,其SDK支持Visual C++语言的二次开发,可以按照用户的需 求实现不同的功能。

我国航空企业大多数采用Dassault公司的CATIA软件实现航空产品的设计、建模、仿真 等。CATIA软件提供了二次开发接口,可以通过两种方式与外部程序通信:进程内应用程序 (In-process Application)方式和进程外应用程序(Out-Process Application)方式。进程内应 用程序方式下,CATIA软件与脚本运行在同一进程地址空间,比如宏方式(Macro),这种方 式比较简单,在CATIA环境中就可完成。进程外应用程序方式下,CATIA与外部应用程序在 不同进程地址空间运行。在CATIA运行的情况下,外部进程可以通过接口驾驭CATIA,创建、 修改CATIA环境和几何形体的数据、尺寸等,同时支持对象连接与嵌入(Object Linking and  Enbedding,OLE)。基于CAAV5的CATIA的二次开发就是属于后者,其功能也比较强大。

在实际用途中,将iGPS系统和CATIA软件结合使用中存在一些不足:

(1)iGPS系统难以和三维模型结合

现代航空企业的飞机产品模型基本上是在CATIA V5里实现建模和装配的,在实际装配 过程中,需要观测实际装配件的变形,利用Surveyor读取的测量数据难以和三维数据模型结 合,虽然Suveyor可以将数据传给SA(Spatial Analyzer)等支持三维模型的处理软件,但基于 CATIA的数模必须转换为其允许的格式,如将CATIA零件的格式CATPart转换为igs格式, 这样就增加了工作量,而且在数模转换的时候可能会丢失一些信息,不利于三维模型和实际 测量数据的结合。

(2)CATIA软件与外界数据通信困难

CATIA软件是基于Windows核心API编写的模块化程序,其三维造型、仿真、数控加 工等能力很强,CATIA软件内部不同模块之间数据通信能力也很强,但外部程序和CATIA通 信因为没有设置一个统一的接口,需要自行设计输入接口或者手工导入,这就造成了CATIA 软件与外界数据通信比较困难,如把iGPS的测量数据导入到CATIA中,或者提取CATIA软 件中三维模型的信息等。

(3)iGPS系统和飞机装配应用中缺乏通用方法

现阶段,飞机大部件装配过程中,往往没有统一的软件装配平台,没有统一的数据传输 方法,不同厂家的工作人员往往会从测量设备的数据读取软件里手动输入或者自动提取,不 仅效率低而且缺乏通用性和可移植性。

发明内容

针对现有技术中存在的问题,本发明提出一种iGPS测量系统和CATIA软件数据通信的 方法,本发明方法中提出了实时跟踪和单点测量跟踪的测量模式,将测量数据与三维实体模 型结合,通过坐标转换将装配现场的实况反应在CATIA软件里,最终以文档的形式记录装配 路线的曲线信息。

本发明提出一种iGPS测量系统和CATIA软件数据通信的方法,包括以下几个步骤:

第一步:加载product文件。

利用CATIA的函数库CAA(Component Application Architecture)编写一个基于CATIA装 配环境的模块,命名为VirtualAsseambly。进入VirtualAsseambly模块后,加载事先用CATIA 装配环境编辑的虚拟装配件的product文件。

第二步:在VirtualAssembly环境中建立虚拟全局坐标系。

利用iGPS测量基准点来建立全局坐标系,基准点布置在装配车间内位置固定的地方。将 建立的全局坐标系相对于iGPS系统坐标系的位置和转角传递给VirtualAssembly模块,在 VirtualAssembly环境中建立对应实际装配现场的全局坐标系的虚拟全局坐标系,也就是装配 环境坐标系,装配环境坐标系相对于iGPS系统坐标系的位置和转角等于全局坐标系相对于 iGPS系统坐标系的位置和转角。

第三步:初始化不同装配件的位姿。

首先确定固定件,在固定件和装配件上分别设置基准点,测量基准点并获取固定件在全 局坐标系中的位姿,位姿包括位置和角度,将获取的位姿数据传递给VirtualAssembly模块, 更新虚拟装配件的位姿。

第四步:判断是否是实时跟踪,若为实时跟踪,执行第五步,否则执行第十二步。

第五步:获取第三步中设置的基准点相对于接收器坐标系的相对位置。

可以利用iProbe单点测量,再经过坐标转换获取基准点相对于接收器坐标系的坐标,也 可以借助其他精度较高的测量设备,例如激光跟踪仪和关节臂等测量设备,再将数据同一到 全局坐标系下,进行坐标转换即可获得。

第六步:向Surveyor发送实时数据流的请求命令。

利用Surveyor提供的SDK开发一个介于Surveyor和CATIA之间的软件MySurveyor, VirtualAssembly模块发送实时数据流的请求命令给MySurveyor,MySurveyor根据请求数据内 容,向Surveyor请求对应的数据。请求数据内容包括请求接收器的名称和请求数据的类型, 请求数据的类型是指数据流数据或者是单点数据。

第七步:建立数据流通道。

MySurveyor在Surveyor和CATIA之间建立一个数据流通道,根据需要设置数据发送的 频率。

第八步:接收数据流并获取装配件设计坐标系在全局坐标系中的位姿。

根据第三步设置好的基准点和iGPS接收器,Surveyor直接获得的数据是接收器组成的接 收器坐标系的位置和转角,根据第五步确定好的相对位置获取基准点的实时坐标,根据多个 基准点的位置信息和基准点相对于设计坐标系的理论值,可以利用最小二乘法拟合得到装配 件设计坐标系在全局坐标系中的位姿。

第九步:根据第八步的位姿更新CATIA软件中虚拟装配件的位姿。

第十步:判断是否装配结束,若未结束返回第八步继续执行,若结束,转第十一步执行。

第十一步:关闭数据通道记录装配路线,执行第二十步。

第十二步:判断是否为单点测量,若是,执行第十三步,若不是则转第二十步执行。

第十三步:布置好iProbe。

iProbe是Metris iGPS系统的手持式接收器,其探针的位置相对于接收器坐标系的位置已 知,因此在基准点处布置好iProbe后,根据测得接收器坐标系的位置和姿态就能够获得探针 处基准点的位置。

第十四步:通过中间软件MySurveyor向Surveyor请求单点数据,获取探针处基准点相 对于全局坐标系的坐标。

第十五步:判断所有基准点是否都测量完成,若是,执行第十六步,若否,转第十三步 执行。

第十六步:获取装配件的设计坐标系相对全局坐标系中的位姿。

第十七步:根据所获取的位姿更新虚拟装配件的位姿。

第十八步:判断是否装配完成,若未完成则返回第十三步执行,若完成则执行第十九步。

第十九步:发送终止数据测量命令,并记录装配路线。

第二十步:退出VirtualAssembly模块。

本发明的优点和积极效果在于:

(1)本发明方法避免了iGPS系统难以和三维模型结合以及CATIA软件与外界数据通信困 难的问题,可将iGPS测量数据直接传递到CATIA V5环境里,实现实际装配件和数据模型结 合,可实时观测装配过程中装配件的变形情况。

(2)本发明方法利用CATIA的环境作为装配的虚拟平台,并能根据测量数据以及数据的在 线处理控制,实现自动化控制。

(3)本发明方法扩展了CATIA的功能,同时为其他测量设备和CATIA软件间的数据通信 提出一种参考模式,具有一定的参考价值。

附图说明

图1是本发明的iGPS测量系统和CATIA V5数据通信方法流程图;

图2是中间软件MySurveyor实现的原理图;

图3是中间软件MySurveyor实现实时数据流通信的流程图。

具体实施方式

下面将结合附图和实施例对本发明作进一步的详细说明。

首先,说明一下本发明方法中涉及到的坐标系:

全局坐标系:是指在实际装配现场建立的坐标系;

装配环境坐标系:是指在VirtualAssembly环境中建立的对应实际装配现场的全局坐标系 的虚拟全局坐标系;

iGPS系统坐标系:是指iGPS系统坐标系;

接收器坐标系:是指由iGPS的接收器组成的接收器坐标系;

设计坐标系:是指在VirtualAssembly模块中设计待装配件的坐标系。

本发明提出一种iGPS测量系统和CATIA软件数据通信的方法,如图1所示,包括以下 几个步骤:

第一步:加载product文件。

利用CAA编写的VirtualAsseambly模块是基于CATIA装配环境的,其默认的功能等同 于CATIA装配模块,因此可以直接加载product文件。product文件中保存着事先用CATIA 装配环境编辑好约束关系的虚拟装配件,在后期的装配过程中将删除这些约束关系。启动 CATIA,进入VirtualAsseambly模块,加载product文件。由于VirtualAsseambly模块是基于 CATIA装配环境,所以可以充分利用CATIA装配环境的功能。

第二步:在VirtualAssembly环境中建立全局坐标系。

利用iGPS测量基准点来建立全局坐标系,建立坐标系的方法有多种,有基于三点式、四 点式等方法,这些基准点应布置在装配车间内位置固定的地方。建立全局坐标系后,将全局 坐标系相对于iGPS系统坐标系的位置和转角传递给VirtualAssembly模块,在VirtualAssembly 环境中建立对应的装配环境坐标系,使虚拟全局坐标系相对于iGPS系统坐标系的位置和转角, 等于全局坐标系相对于iGPS系统坐标系的位置和转角。

第三步:初始化不同装配件的位姿。

第一步中加载的product文件是事先在CATIA装配环境建立的虚拟装配状态,首先确定 固定件,在固定件和装配件上分别设置基准点,测量基准点并获得固定件在全局坐标系中的 位姿,将位姿数据传递给VirtualAssembly模块,更新装配件三维模型的位姿。

第四步:判断是否是实时跟踪,若为实时跟踪,则转第五步执行,否则转第十二步执行。

第五步:获取第三步中设置的基准点相对于接收器坐标系的相对位置。

可以利用iProbe单点测量,再经过坐标转换获取,也可以借助其他精度较高的测量设备, 例如激光跟踪仪和关节臂等测量设备,再将数据同一到全局坐标系下,进行坐标转换即可获 得。

第六步:向Surveyor发送实时数据流的请求命令。

Surveyor提供了供用户二次开发SDK,利用SDK开发一个介于Surveyor和CATIA之间 的软件MySurveyor。VirtualAssembly模块发送实时数据流请求给MySurveyor,MySurveyor 根据请求数据内容,向Surveyor请求对应的数据。请求数据内容包括请求接收器的名称和请 求数据的类型,请求数据的类型是指数据流数据或者是单点数据。

第七步:建立数据流通道。

MySurveyor判断出请求的数据类型是实时数据流,在Surveyor和CATIA之间建立一个 数据流通道,并根据需要设置数据发送的频率。

第八步:接收数据并计算位姿。

根据第三步中设置好的基准点和iGPS的接收器,Surveyor直接获得的数据是接收器组成 的接收器坐标系的位置和转角,根据第五步获取的相对位置可以获取基准点的实时坐标,根 据多个基准点的位置信息和基准点相对于设计坐标系的理论值,可以利用最小二乘法拟合算 出装配件设计坐标系在全局坐标系中的位姿。

第九步:根据第八步获取的位姿更新VirtualAssembly环境中虚拟装配件的位姿。将 VirtualAsseambly环境中的装配件设计坐标系相对于第二步建立的全局坐标系的位置和角度 设置为第九步获取的位置和角度,这样虚拟装配件在VirtualAssembly环境中的位姿就能实时 更新。

VirtualAssembly模块是继承CATIA装配环境所有功能的,在装配过程中可以设定待装配 件的设计坐标系相对于装配环境坐标系的位置和转角,这样就可以将待装配件定位在虚拟装 配环境中。

第十步:判断是否装配结束,若未结束返回第八步,若结束,转第十一步。

第十一步:关闭数据通道记录装配路线,转第二十步。

第十二步:判断是否为单点测量,若是则转第十三步,若不是则转第二十步。

第十三步:在基准点处布置好iProbe。

iProbe是Metris iGPS系统的手持式接收器,其探针的位置相对于接收器坐标系的位置已 知,因此测得接收器坐标系的位置和姿态即可求得探针处基准点的位置,但由于它是通过手 持定位的,所以不可避免有所抖动,测量的数据精度会受影响,所以测量之前一定要固定好 iProbe的位置。

第十四步:通过中间软件MySurveyor向Surveyor请求单点数据,获取探针处基准点相 对于全局坐标系的坐标。

当数据请求命令到达MySurveyor软件时,MySurveyor会为当前请求数据的客户端开辟 一个单独的线程来处理数据请求,单点请求数据时,每一个点的获取都需要发送请求,由之 前开辟的数据处理线程负责从Surveyor获取数据并发送给客户端。

第十五步:判断基准点是否测量完成,若完成则转第十六步,若没完成则返回第十三步。

第十六步:获取装配件的设计坐标系在全局坐标系中的位姿。

单点测量跟踪时,需要完成多个基准点的测量后在确定装配件的设计坐标系在全局坐标 系中的位置和角度,不同于动态数据流测量,可以实时获取多个点的数据,然后通过基准点 的位置,和适当的算法求出装配件设计坐标系的位置和转角。

第十七步:更新product文件中虚拟装配件的位姿。将VirtualAsseambly环境中的装配件 设计坐标系相对于第二步建立的全局坐标系的位置和角度设置为第十六步获取的位置和角度, 使得装配件的位姿能实时更新。

第十八步:判断是否装配完成,若未完成则返回第十三步,若完成则转第十九步。

第十九步:发送终止数据测量命令并记录装配路线。

第二十步:退出VirtualAssembly模块。

中间软件MySurveyor的原理如图2所示。Surveyor程序SDK提供了很多数据读取的接 口,包含在Surveyor程序内部,中间程序MySurveyor主线程从Surveyor中读取测量数据和 消息通信,MySurveyor主线程同时创建一个等待数据请求的线程,当等待数据请求的线程收 到数据请求命令时,为CATIA的客户端创建一个数据处理线程,由数据处理线程和CATIA 客户端进行数据流通信。实现数据流通信主要分为以下几步,如图3所示:

步骤1:初始化MySurveyor软件。

初始化服务端程序主要是MySurveyor从Surveyor获取一些iGPS的系统信息,包括发射 器的个数,接收器的个数以及接收器的名称信息,为读取数据作准备。

步骤2:判断Surveyor软件是否打开,若没有打开则提醒用户打开Surveyor程序并返回 步骤1,若打开则转步骤3。

步骤3:读取配置文档。配置文档中记录有Surveyor软件中读取的数据单位和进行单位 转换时用到的转换系数,以及MySurveyor软件需要的角度转换系数等。

Surveyor软件中读取的数据是以英寸为单位的,转换成毫米单位需要乘以转换系数,同 时MySurveyor还需要角度转换系数等参数,配置文档主要记录上述信息,这一步骤主要是读 取配置文档里的这些参数,以用于数据处理。

步骤4:判断是否有数据请求命令,若有执行步骤5,若没有则继续等待。

步骤5:创建新的数据处理线程来处理数据请求。

步骤6:判断数据处理是否结束,若未结束则返回步骤4执行,若结束则执行步骤7。

步骤7:记录日志文件并退出服务端。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号