首页> 中国专利> 由链烷烃和二氧化碳能量有效地合成脂族醛的方法

由链烷烃和二氧化碳能量有效地合成脂族醛的方法

摘要

本发明的任务在于提供制备醛的方法,借此方法能够相对于常规加氢甲酰基化方法削减CO

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-06-02

    未缴年费专利权终止 IPC(主分类):C07C45/50 授权公告日:20150218 终止日期:20190616 申请日:20110616

    专利权的终止

  • 2015-02-18

    授权

    授权

  • 2014-07-30

    专利申请权的转移 IPC(主分类):C07C45/50 变更前: 变更后: 登记生效日:20140704 申请日:20110616

    专利申请权、专利权的转移

  • 2013-07-03

    实质审查的生效 IPC(主分类):C07C45/50 申请日:20110616

    实质审查的生效

  • 2013-02-13

    公开

    公开

说明书

醛例如戊醛是用途广泛的工业化学品。当今,戊醛在工业上通过烯烃1-丁烯或2-丁烯在添加合成气(一氧化碳和氢)的情况下加氢甲酰基化制备。丁烯源自石油化学方法,合成气同样由化石来源产生。

鉴于经济地利用化石原料来源受到限制和被视为对气候不利的大气中CO2浓度,长期需要能够节约资源和削减(einsparen)CO2来制备醛例如戊醛的替代途径。另外,对于加氢甲酰基化所需的一氧化碳由于其毋庸置疑的毒性而在公众中遭受越来越严重的接受度问题。

因此,本发明的任务在于提供制备醛的方法,借此方法能够相对于常规加氢甲酰基化方法削减CO2,这归因于替代的原料来源并能够省去提供一氧化碳。

该任务通过如下方法解决,该方法包括下列步骤:

a)提供至少一种链烷烃;

b)将链烷烃光催化脱氢为含有至少一种烯烃和氢的混合物;

c)向所述混合物添加二氧化碳和氢;

d)将所述烯烃加氢甲酰基化为至少一种醛。

本发明的第一基本理念在于将在链烷烃的光催化脱氢中释放的氢用于随后的通过脱氢产生的烯烃的加氢甲酰基化。因此,加氢甲酰基化的氢需求可以部分地能量有效地由CO2中性的光催化满足(gedeckt)。另外,光催化需要丁烷作为原料,其相对于现今使用的丁烯更易于获得。石化法得到的丁烷现今主要以热方式利用并释放CO2

其次,本发明基于下面认知:源自催化脱氢的氢开辟了这样的可能性,也即利用CO2代替CO作为加氢甲酰基化的碳源。这例如以逆向水煤气变换反应途径得以成功,借助在大气中不合意的CO2和释放的氢能够原位产生加氢甲酰基化所需的CO。省去了分开地供给有毒的CO,另外,可以利用在其它的方法中产生的CO2作为原料,使得整体降低二氧化碳排放。

因此,本发明使得能够将CO2返回到化学价值创造链中,其中用CO2替代之前需要的由合成气获得的一氧化碳。在戊醛的情况下,每吨所制备的醛使用超过半吨CO2。在全球范围内每年生产340,000吨戊醛的情况下,每年能够循环利用大约200,000吨的CO2。如果此外还通过该方法制备其它醛,则预计该能力增加数倍。

这两个根据本发明组合的方法片段“光催化脱氢”和“用二氧化碳加氢甲酰基化”本身在文献中已经描述为可实行的:

例如,K. Nomura和Y. Saito, J. Chem. Soc., Chem. Commun, (1988), 161描述了在温和条件和辐照条件下在Rh催化剂上使链烷烃光催化脱氢:

此外,进行光催化的操作指导参见:

a) A. J. Esswein, D. G. Nocera, Hydrogen Production by Molecular Photocatalysis, Chem. Rev. 2007, 107, 4022–4047;

b) D. Morales-Morales, R- Redón, C. Yung C. M Jensen, Dehydrogenation of alkanes catalyzed by an iridium phosphinito PCP pincer complex, Inorg. Chim. Acta, 2004, 357, 2953–2956;

c) M. J. Burk, R. H. Crabtree, D. V. McGrath, J. Chem. Soc., Chem. Commun. 1985, 1829–1830;

d) M. J. Burk, R. H. Crabtree, J. Am. Chem. Soc. 1987, 109, 8025–8032;

e) T. Sakakura, T. Sodeyama, Y. Tokunaga, M. Tanaka, Chem. Lett. 1988, 263–264;

f) K. Nomura, Y. Saito, J. Chem. Soc., Chem. Commun. 1988, 161;

g) J. A. Maguire, W. T. Boese, A. S. Goldman, J. Am. Chem. Soc. 1989, 111, 7088–7093;

K. Tominaga和Y. Sasaki在Catal. Commun., 1, 2000, 1如下公开了用二氧化碳加氢甲酰基化:

多核钌配合物例如Ru3(CO)12优选用作用CO2加氢甲酰基化的催化剂。

此外,盐例如LiCl、LiBr、LiI、NaCl、KCl或它们的混合物可以被添加作为促进剂。它们出于下面原因看起来是有利的:由所述盐原位形成的氢卤酸(HCl, HBr, …)起到质子载体的作用,并因此促进逆向水煤气变换反应。

其它能用于实施用CO2加氢甲酰基化的操作指导包括:

a) K. Tominaga, Y. Sasaki, K. Hagihara, T. Watanabe, M. Saito, Chem. Lett. 1994, 1391–1394;

b) K. Tominaga, Y. Sasaki, J. Mol. Catal. A: Chem. 2004, 220, 159–165;

c) K. Tominaga, Catal. Today 2006, 115, 70-72;

d) S. Fujita, S. Okamura, Y. Akiyama, M. Arai, Int. J. Mol. Sci. 2007, 8, 749–759。

本发明的方法优选用于通过光催化脱氢将链烷烃正丁烷转化为烯烃1-丁烯和H2,和在添加CO2的情况下将该混合物加氢甲酰基化,在此过程中将1-丁烯转化为醛戊醛。

基于正丁烷和CO2的整个方法包括光催化脱氢和用CO2加氢甲酰基化的基础步骤:

正丁烷 → 1-丁烯>2>

1-丁烯>2>2>2O>2加氢甲酰基化)

随后,戊醛可以按照现今在工业上已经确立的工艺以大规模用于制备工业化学品例如聚合物添加剂。

对于利用CO2作为原料,必须在加氢甲酰基化之前将二氧化碳和氢转化为水和一氧化碳的反应,其中该反应优选是逆向水煤气变换反应。

本发明的一个优选发展设想了,将二氧化碳和氢转化为水和一氧化碳以及加氢甲酰基化能够在共同的反应器中和/或在共同的催化剂上进行。

优选地,在光催化脱氢中和/或在加氢甲酰基化和/或在将二氧化碳和氢转化为水和一氧化碳的反应中使用固定化的催化剂。固定化的催化剂理解为均相催化剂体系,其连接在不溶性的载体材料上,以能够像多相催化剂一样从反应混合物中分离出均相作用的催化剂。所述固定化借助于离子液体成功地进行:

离子液体 – 下面称为IL–是低熔点盐(<100℃)和例如在萃取过程和催化中用作新型溶剂。IL在学术上和在工业上引起兴趣的主要原因在于其具有极低的蒸气压,由此基本上避免了溶剂损失。在将离子液体用于催化领域的范围内,最近以来特别遵循两个出发点:

IL不仅是供均相催化用的有吸引力的溶剂,对于多相催化反应也是如此。例如,Xu等人

(D.-Q. Xu, Z.-Y. Hu, W.-W. Li, S.-P. Luo, Z.-Y. Xu Hydrogenation in ionic liquids: An alternative methodology toward highly selective catalysis of halonitrobenzenes to corresponding haloanilines, J. of Mol. Cat. A: Chem. 2005, 235, 137 - 142.)。

已经能够表明,IL是在阮内镍、碳负载的Pt和Pd触媒上将卤代硝基苯加氢得到相应的卤代苯胺的有吸引力的介质。如果使用IL作为溶剂,那么相对于有机溶剂避免了不合意的脱卤素。

同样,所谓的SILP概念(负载离子液体相)是很流行的。在此,将IL薄膜连同溶解在其中的均相催化剂例如通过物理吸收施加到多孔(惰性)固体表面上。在此情况下,避免了均匀两相催化的缺点,这是因为所需的IL量降低,并且通过薄膜避免了传质效应。为了涂覆多孔载体,将IL连同均相催化剂一起溶解在溶剂(例如二氯乙烷)中,和随后向其中添加固体载体。然后,在真空下缓慢除去溶液中的易挥发的二氯甲烷。借助这种制备方法可以确保离子液体完全渗入孔中。为了制备具有更高或更低的孔填充度或者层厚度的体系,可以提高或降低二氯甲烷溶液中的IL浓度。对于一些反应,SILP概念已经成功地得到验证。

关于SILP的其他实施方案及其在催化中的应用,本领域技术人员参考下面文献:

a) A. Riisager, P. Wasserscheid, R. v. Hal, R. Fehrmann, Continous fixed-bed gas-phase hydroformylation using supported ionic liquid phase (SILP) Rh catalysts, J. Catal. 2003, 219,>

b) Riisager, K. M. Eriksen, P. Wasserscheid和R. Fehrmann, Propene and 1-Octene Hydroformylation with Silica-Supported, Ionic Liquid-Phase (SILP) Rh-Phosphine Catalysts in Continuous Fixed-Bed Mode, Catal. Letters 2003, 90,>

c) C. P. Mehnert, R. A. Cook, N. C. Dispenziere, M. Afeworki, Supported Ionic Liquid Catalysis - A New Concept for Homogeneous Hydroformylation Catalysis, J. Am. Chem. Soc. 1998, 120,>

d) C. P. Mehnert, E. J. Molzeleski, R. A. Cook, Supported ionic liquid catalysis investigated for hydrogenation reactions, Chem. Comm. 2002, 24,>

e) A. Wolfson, I. F. J. Vankelecom, P. A. Jacobs, Co-immobilization of transition-metal complexes and ionic liquids in a polymeric support for liquid-phase hydrogenations, Tetrahedron Lett. 2003, 44,>

f) C. M. Gordon, New developments in catalysis using ionic liquids, Appl. Catal. A: General 2001, 222,>

g) P. J. Dyson, Transition metal chemistry in ionic liquids, Trans. Met. Chem. 2002, 27,>

h) D. Zhao, M. Wu, Y. Kou, E. Min, Ionic liquids: applications in catalysis, Cat. Today 2002, 74,>

i) J. Dupont, R. F. de Souza, P. A. Z. Suarez, Ionic Liquid (Molten Salt) Phase Organometallic Catalysis, Chem. Rev. 2002, 102,>

j) H. Olivier-Bourbigou,Catalysis in Nonaqueous Ionic Liquids in Multiphase Homogeneous Catalysis (B. Cornils et al. Eds.), Wiley VCH, Weinheim, Germany, 2006, 407–603;

k) M. J. Earle, P. B. McCormac, K. R. Seddon, The first high yield green route to a pharmaceutical in a room temperature ionic liquid, Green Chem. 2000, 2,>

l) B. Hamers, P. S. Bäuerlein, C. Müller, D. Vogt, Hydroaminomethylation of n-Alkenes in a Biphasic Ionic Liquid System, Adv.> 2008, 350,>

m) H. Wong, S. Han, A.G. Livingston, The effect of ionic liquids on product yield and catalyst stability, Chem. Eng. Sci. 2006, 61,>

n) K. Anderson, P. Goodrich, C. Hardacre. D.W. Rooney, Heterogeneously catalysed selective hydrogenation reactions in ionic liquids, Green Chem. 2003, 5,>235,>

另一个概念是用于改善多相催化剂的选择性的所谓SCILL概念(带有离子液体层的固体催化剂)。SCILL概念—参见

a) U. Kernchen, B. Etzold, W. Korth, A. Jess, Solid Catalyst with Ionic Liquid Layer (SCILL) - A New Concept to Improve the Selectivity Investigated for the Example of Hydrogenation of Cyclooctadiene. Chem. Eng. Technol. 2007, 30,>

b) N. Wörz, J. Arras, P. Claus, Einfluss ionischer Flüssigkeiten auf die kontinuierliche Hydrierung von Citral im Rieselbettreaktor, Jahrestreffen Reaktionstechnik, Würzburg, 10. - 12.5.2010, 会议卷第34/35页—

以某种方式结合和拓宽了上述两种策略:类似于SILP技术,用离子液体涂覆多孔固体,但是该固体现在是多相催化剂而不仅是溶解在IL中的均相催化剂打算固定于其上的惰性载体。由此,均相催化剂不参与SCILL概念,尽管与SILP概念的结合表现为对于整合均相和多相催化的一个选项。IL层是稳定的和不会发生IL洗出到有机相中。

除了能够通过离子液体将均相催化剂固定到多孔载体上的优点之外,离子液体还能够直接影响反应动力学。在反应物或中间产物的溶解性有区别时,这尤其成立。例如,在环辛二烯(COD)连续多相催化氢化成为环辛烯(COE)和环辛烷(COA)情况下,通过用离子液体(丁基甲基咪唑鎓-辛基硫酸盐)涂覆显著提高了中间产物COE的选择性。在中间产物溶解性差的情况下尤其如此。对于根据本发明重要的逆向水煤气变换反应 (H2>2>2O)尤其预期类似的效果,因为在所有四种涉及的反应参与物中,CO2能够最好地溶解在IL中,这对于在相对低温度时平衡受限制的反应具有积极的影响。

均相催化的显著问题(从反应物料中分离出催化剂)根据本发明也通过将所开发的均相催化剂借助离子液体通过上述SILP和/或SCILL概念固定化而解决。

在此情况下,该概念还可以转用到链烷烃的光催化反应。作为载体材料可以使用多孔玻璃,以确保尽可能高的光透入深度。烷烃的光催化脱氢所用的催化剂也优选负载在多孔玻璃上。

实施例

例如,现在由正丁烷制备戊醛来详细描述本发明:

根据本发明,首先将正丁烷光催化脱氢,和所得到的1-丁烯与CO2在加氢甲酰基化反应中转化形成戊醛。

整个方法如下:

1) 正丁烷 → 1-丁烯>2>

2a) H2>2>2O

2b) 1-丁烯 + CO>2>

-----------------------------------------------------------

Σ:正丁烷>2>2

步骤2a和2b可以在一个反应器或者尽可能在一种催化剂上进行,并因此能够如下理解为CO2加氢甲酰基化反应。

2a/b) 1-丁烯>2>2>2O

即使没有丁烷的光催化脱氢,也即基于丁烯,该方法相对于“常规”的基于CO的加氢甲酰基化而言仍然是有利的,只要能够以CO2中性的方式提供氢即可:

1) 2 H2O>2>2>2中性,在此未详述)

2a) H2>2>2O

2b) 1-丁烯 + CO>2>

-----------------------------------------------------------

Σ:1-丁烯>2>2O → 戊醛>2

对于光催化合适的催化剂有基于铱和铑的有机和金属有机光敏化剂或者由光敏化剂组分和基于Pd、Ru、Ir或Fe的质子还原组分组成的组合催化剂。

对于加氢甲酰基化合适的催化剂有铱-膦配合物,钌基配合物,特别是多核钌基配合物以及铁羰基氢化物配合物。作为促进剂还可以另外添加盐例如LiCl、LiBr、LiI、NaCl、KCl,单独地或者以它们的混合物形式。

均相催化剂可以通过离子液体固定在具有不同孔大小的多孔固体载体上。为了提高透光性,可以使用多孔玻璃作为载体。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号