首页> 中国专利> 一种原位氧化提高硅纳米线阵列场发射性能的方法

一种原位氧化提高硅纳米线阵列场发射性能的方法

摘要

本发明涉及用于场发射材料的一维纳米材料,特指一种原位氧化提高硅纳米线阵列场发射性能的方法。本发明的技术方案是采用无电化学腐蚀法制备Si纳米线阵列,然后采用原位部分氧化法将Si纳米线阵列转化为SiO

著录项

  • 公开/公告号CN102856141A

    专利类型发明专利

  • 公开/公告日2013-01-02

    原文格式PDF

  • 申请/专利权人 常州大学;

    申请/专利号CN201210256049.4

  • 申请日2012-07-24

  • 分类号H01J9/02;H01J1/304;B82Y40/00;

  • 代理机构南京经纬专利商标代理有限公司;

  • 代理人楼高潮

  • 地址 213164 江苏省常州市武进区滆湖路1号常州大学

  • 入库时间 2024-02-19 17:13:29

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-07-08

    未缴年费专利权终止 IPC(主分类):H01J 9/02 专利号:ZL2012102560494 申请日:20120724 授权公告日:20150826

    专利权的终止

  • 2015-08-26

    授权

    授权

  • 2013-02-20

    实质审查的生效 IPC(主分类):H01J9/02 申请日:20120724

    实质审查的生效

  • 2013-01-02

    公开

    公开

说明书

技术领域

本发明涉及用于场发射材料的一维纳米材料,特指一种原位氧化提高硅纳米线阵列场发射性能的方法。

背景技术

场发射材料在真空微电子器件中有着广泛的应用,一维纳米材料由于具有较小的功函数、高长径比、高电导率,从而被广泛应用于场发射器件中(参见文献:1. Jo S H, Banerjee D, Ren Z F, Appl Phys Lett, 2004, 85: 1407-1409; 2. Fang X S, Gautam J K, Bando Y, et al. J Phys Chem C, 2008, 112: 4753-4742);近年来如何增强一维纳米材料的场发射性能成为研究热点,研究表明在一维纳米材料表面包覆低功函数或者低电子亲和势的材料可有效提高一维纳米材料的场发射性能,例如采用SiO2包覆SiC纳米线(参见文献:1. Ruu Y, Tak Y, Yong K, Nanotechnology, 2005, 16: 370-374), 采用MoO3包覆C纳米管(参见文献:1. Yu J, Sow C H, Wee A T S, et al. J Appl Phys, 2009, 105: 114320),采用Ga2O3包覆GaN纳米线(参见文献:1. Tang C C, Xu X W, Hu L, Li Y X, Appl Phys Lett, 2009, 94: 243105);上述方法均能实现一维纳米材料场发射性能的提高,然而,这些方法都是先要制备出纳米线,然后采用各种沉积方法在纳米线周围沉积包覆一层低功函数或者低电子亲和势的材料,工艺比较复杂,因此需要开发一种简单且行之有效的增强一维纳米材料场发射性能的方法。

发明内容

本发明的目的是提高Si纳米线阵列场发射性能,从而提供一种工艺简单、可有效增强Si纳米线阵列的场发射性能、提高Si纳米线阵列场发射稳定性的方法。

本发明的技术方案是采用无电化学腐蚀法制备Si纳米线阵列,然后采用原位部分氧化法将Si纳米线阵列转化为SiOx包覆的Si纳米线芯壳结构阵列,由于SiOx具有较低的电子亲和势(0.6-0.8eV),所以可有效增强Si纳米线阵列的场发射性能,而且SiOx还可作为Si纳米线阵列的保护层,提高Si纳米线阵列的场发射稳定性。

本发明所述的原位氧化提高Si纳米线阵列场发射性能的方法如下:

1)选用单晶硅片,分别用丙酮、乙醇和去离子水超声清洗,去除表面杂质;

2)用HF和 AgNO3按比例配制腐蚀液,并装入聚四氟乙烯瓶内,将硅片浸没在腐蚀液中,然后将聚四氟乙烯瓶放入烘箱内恒温加热;

3)腐蚀结束后将硅片取出,用去离子水清洗,用HNO3浸泡硅片,用于去除硅片表面包覆的 Ag,在硅片表面即可得到 Si纳米线阵列;

4)将硅片放入陶瓷舟内,然后将陶瓷舟放入水平管式炉中心温区处,通入氧气,并升温加热,Si纳米线阵列表面形成一层氧化层,Si纳米线阵列转化为SiOx包覆的Si纳米线芯壳结构阵列;

5)对Si纳米线阵列和SiOx包覆的Si纳米线分别采用XRD、SEM和TEM进行结构和形貌表征,对二者进行场发射性能测试,对比分析二者性能差异。

在步骤1)中,所述单晶硅片是指n型单晶硅片,<100>晶向,单面抛光,电阻率0.004Ωcm;所述用丙酮、乙醇和去离子水超声清洗时间分别为10min。

在步骤2)中,所述腐蚀液是指5M的HF和0.02M的AgNO3;所述烘箱内恒温加热是指50℃加热90min。

在步骤3)中,所述HNO3是指浓硝酸;所述浸泡时间为1min。

在步骤4)中,所述氧气的流量为30cm3/min;所述升温加热是指管式炉在15min内升温至300℃,并保温8h。

在步骤5)中,所述场发射性能测试是指测试样品场发射电流密度与电场强度的关系以及场发射稳定性。

利用上述方法制备的Si纳米线阵列的长度和直径可以通过控制反应条件:腐蚀液的浓度、烘箱温度、腐蚀时间来加以调控;本发明所制备的SiOx包覆Si芯壳结构纳米线阵列表面的SiOx层的厚度可由在水平管式炉内氧化时间、氧气流量、温度来加以调控;本发明所采用的方法可有效提高Si纳米线阵列的场发射性能以及场发射稳定性,所制备的 SiOx包覆Si芯壳结构纳米线阵列有望应用于高性能场发射器件。

相比其它提高纳米线阵列场发射性能的方法,本发明的优点在于:1)工艺简单,该方法可将Si纳米线阵列表面原位部分氧化,即可形成包覆层,无需采用任何沉积方法在Si纳米线表面沉积包覆物;2)由于SiOx包覆层具有较低的电子亲和势,因此可有效Si纳米线阵列场发射性能;3)SiOx包覆层对Si纳米线阵列起到保护层作用,可有效提高Si纳米线阵列场发射稳定性。

附图说明

图1为实施例1所制备Si纳米线阵列的扫描电镜照片,Si纳米线长度大约为20μm,直径几十到几百纳米不等,Si纳米线垂直于Si衬底表面,具有良好的取向性;

图2为实施例1所制备Si纳米线阵列的透射电镜照片(插图为SAED图谱),表明Si纳米线具有实心结构,表面较粗糙,为单晶结构,<100>取向;

图3为实施例1所制备SiOx包覆Si纳米线阵列的扫描电镜照片,表明氧化后的Si纳米线直径为几十到几百纳米不等,长度约为20μm,这与母相材料Si纳米线阵列一致;

图4为实施例1所制备SiOx包覆Si纳米线阵列的透射电镜照片(插图为高分辨透射电镜照片和SAED图谱),可清晰的看出SiOx包覆的Si/SiOx芯/壳结构;

图5为实施例2所制备Si纳米线阵列以及SiOx包覆Si芯壳结构纳米线阵列场发射电流密度与电场强度关系曲线图,表明二者的开启场强Eto分别为7.54V/μm和4V/μm,可以看出,部分氧化显著地降低了纳米线阵列的开启场强;

图6为实施例3所制备Si纳米线阵列以及SiOx包覆Si芯壳结构纳米线阵列场发射FN曲线图,表明二者电子的发射行为符合FN理论;

图7为实施例4所制备Si纳米线阵列以及SiOx包覆Si芯壳结构纳米线阵列场发射稳定性曲线图,表明部分氧化后的得到的Si/SiOx芯/壳结构纳米线阵列的场发射电流密度要远高于母相Si纳米线阵列。

具体实施方式

下面通过实施例结合附图对本发明作进一步说明。

实施例1:

选用n型单晶硅片,<100>晶向,单面抛光,电阻率0.004Ωcm,分别用丙酮、乙醇和去离子水超声清洗,去除表面有机物杂质;用5M的HF和0.02M的AgNO3配制腐蚀液,并装入聚四氟乙烯瓶内,将硅片浸没在腐蚀液中,然后将聚四氟乙烯瓶放入烘箱内恒温加热至50℃加热并保温90min;腐蚀结束后将硅片取出,用去离子水清洗,用浓HNO3浸泡硅片,用于去除硅片表面包覆的 Ag,在硅片表面即可得到 Si纳米线阵列;将硅片放入陶瓷舟内,然后将陶瓷舟放入水平管式炉中心温区处,通入流量为30cm3/min的氧气,管式炉在15min内升温至300℃,并保温8h;反应结束后,Si纳米线阵列表面形成一层氧化层,Si纳米线阵列转化为SiOx包覆的Si纳米线芯壳结构阵列;对Si纳米线阵列以及SiOx包覆的Si纳米线分别采用SEM和TEM进行结构和形貌表征,对二者进行场发射性能测试,由J-E关系曲线可以看出,二者的电流密度J均随着场强E的增强而增强,开启场强分别为7.54V/μm和4V/μm,可以看出原位氧化显著降低Si纳米线阵列的开启场强,设置阴极样品和阳极间的间距为200μm,加正向偏压2500V时,结果表明部分氧化后的Si纳米线阵列的场发射电流密度要远高于Si纳米线阵列,计算二者的场发射增强因子分别为2939和3712,表明原位氧化法可明显提高Si纳米线阵列场发射性能。

实施例2:

选用n型单晶硅片,<100>晶向,单面抛光,电阻率0.004Ωcm,分别用丙酮、乙醇和去离子水超声清洗,去除表面有机物杂质;用5M的HF和0.02M的AgNO3配制腐蚀液,并装入聚四氟乙烯瓶内,将硅片浸没在腐蚀液中,然后将聚四氟乙烯瓶放入烘箱内恒温加热至50℃加热并保温120min;腐蚀结束后将硅片取出,用去离子水清洗,用浓HNO3浸泡硅片,用于去除硅片表面包覆的 Ag,在硅片表面即可得到 Si纳米线阵列;将硅片放入陶瓷舟内,然后将陶瓷舟放入水平管式炉中心温区处,通入流量为30cm3/min的氧气,管式炉在15min内升温至350℃,并保温6h;反应结束后,Si纳米线阵列表面形成一层氧化层,Si纳米线阵列转化为SiOx包覆的Si纳米线芯壳结构阵列;对Si纳米线阵列以及SiOx包覆的Si纳米线分别采用SEM和TEM进行结构和形貌表征,对二者进行场发射性能测试,由J-E关系曲线可以看出,二者的电流密度J均随着场强E的增强而增强,开启场强分别为7.59V/μm和4.1V/μm,可以看出原位氧化显著降低Si纳米线阵列的开启场强,设置阴极样品和阳极间的间距为200μm,加正向偏压2500V时,结果表明部分氧化后的Si纳米线阵列的场发射电流密度要远高于Si纳米线阵列,计算二者的场发射增强因子分别为2934和3707,表明原位氧化法可明显提高Si纳米线阵列场发射性能。

实施例3:

选用n型单晶硅片,<100>晶向,单面抛光,电阻率0.004Ωcm,分别用丙酮、乙醇和去离子水超声清洗,去除表面有机物杂质;用5M的HF和0.02M的AgNO3配制腐蚀液,并装入聚四氟乙烯瓶内,将硅片浸没在腐蚀液中,然后将聚四氟乙烯瓶放入烘箱内恒温加热至50℃加热并保温150min;腐蚀结束后将硅片取出,用去离子水清洗,用浓HNO3浸泡硅片,用于去除硅片表面包覆的 Ag,在硅片表面即可得到 Si纳米线阵列;将硅片放入陶瓷舟内,然后将陶瓷舟放入水平管式炉中心温区处,通入流量为30cm3/min的氧气,管式炉在15min内升温至400℃,并保温4h;反应结束后,Si纳米线阵列表面形成一层氧化层,Si纳米线阵列转化为SiOx包覆的Si纳米线芯壳结构阵列;对Si纳米线阵列以及SiOx包覆的Si纳米线分别采用SEM和TEM进行结构和形貌表征,对二者进行场发射性能测试,由J-E关系曲线可以看出,二者的电流密度J均随着场强E的增强而增强,开启场强分别为7.64 V/μm和4.3V/μm,可以看出原位氧化显著降低Si纳米线阵列的开启场强,设置阴极样品和阳极间的间距为200μm,加正向偏压2500V时,结果表明部分氧化后的Si纳米线阵列的场发射电流密度要远高于Si纳米线阵列,计算二者的场发射增强因子分别为2930和3701,表明原位氧化可明显提高Si纳米线阵列场发射性能。

实施例4:

选用n型单晶硅片,<100>晶向,单面抛光,电阻率0.004Ωcm,分别用丙酮、乙醇和去离子水超声清洗,去除表面有机物杂质;用5M的HF和0.02M的AgNO3配制腐蚀液,并装入聚四氟乙烯瓶内,将硅片浸没在腐蚀液中,然后将聚四氟乙烯瓶放入烘箱内恒温加热至50℃加热并保温180min;腐蚀结束后将硅片取出,用去离子水清洗,用浓HNO3浸泡硅片,用于去除硅片表面包覆的 Ag,在硅片表面即可得到 Si纳米线阵列;将硅片放入陶瓷舟内,然后将陶瓷舟放入水平管式炉中心温区处,通入流量为30cm3/min的氧气,管式炉在15min内升温至450℃,并保温4h;反应结束后,Si纳米线阵列表面形成一层氧化层,Si纳米线阵列转化为SiOx包覆的Si纳米线芯壳结构阵列;对Si纳米线阵列以及SiOx包覆的Si纳米线分别采用SEM和TEM进行结构和形貌表征,对二者进行场发射性能测试,由J-E关系曲线可以看出,二者的电流密度J均随着场强E的增强而增强,开启场强分别为7.57V/μm和4.2V/μm,可以看出原位氧化显著降低Si纳米线阵列的开启场强,设置阴极样品和阳极间的间距为200μm,加正向偏压2500V时,结果表明部分氧化后的Si纳米线阵列的场发射电流密度要远高于Si纳米线阵列,计算二者的场发射增强因子分别为2938和3707,表明原位氧化可明显提高Si纳米线阵列场发射性能。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号