首页> 外文OA文献 >Predictive Risk Modelling of Hospital Emergency Readmission, and Temporal Comorbidity Index Modelling Using Machine Learning Methods
【2h】

Predictive Risk Modelling of Hospital Emergency Readmission, and Temporal Comorbidity Index Modelling Using Machine Learning Methods

机译:医院紧急再入院的预测风险建模和使用机器学习方法的时间合并症指数建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis considers applications of machine learning techniques in hospital emergency readmission and comorbidity risk problems, using healthcare administrative data. The aim is to introduce generic and robust solution approaches that can be applied to different healthcare settings. Existing solution methods and techniques of predictive risk modelling of hospital emergency readmission and comorbidity risk modelling arereviewed. Several modelling approaches, including Logistic Regression, Bayes Point Machine, Random Forest and Deep Neural Network are considered.Firstly, a framework is proposed for pre-processing hospital administrative data, including data preparation, feature generation and feature selection. Then, the Ensemble Risk Modelling of Hospital Readmission (ERMER) is presented, which is a generative ensemble risk model of hospital readmission model. After that, the Temporal-Comorbidity Adjusted Risk of Emergency Readmission (T-CARER) is presented for identifying very sick comorbid patients. A Random Forest and a Deep Neural Network are used to model risks of temporal comorbidity, operations and complications ofpatients using the T-CARER.The computational results and benchmarking are presented using real data from Hospital Episode Statistics (HES) with several samples across a ten-year period. The models select features from a large pool of generated features, add temporal dimensions into the models and provide highly accurate and precise models of problems with complex structures. The performances of all the models have been evaluated across different timeframes, sub-populations and samples, as well as previous models.
机译:本文利用医疗管理数据考虑了机器学习技术在医院紧急再入院和合并症风险问题中的应用。目的是介绍可应用于不同医疗保健环境的通用且强大的解决方案方法。综述了医院紧急再入院和合并症风险建模的现有预测方法和建模方法。首先考虑了Logistic回归,Bayes Point Machine,Random Forest和Deep Neural Networks等建模方法。首先,提出了一种预处理医院管理数据的框架,包括数据准备,特征生成和特征选择。然后,提出了住院再入院整体风险模型(ERMER),它是医院再入院模型的生成集合风险模型。此后,提出了经时间合并症调整的紧急再入院风险(T-CARER),用于识别病情严重的合并症患者。使用随机森林和深层神经网络使用T-CARER对患者的时间合并症,手术和并发症风险进行建模。计算结果和基准使用医院事件统计(HES)的真实数据提供,其中十个样本年期间。模型从大量生成的特征中选择特征,将时间维添加到模型中,并为复杂结构的问题提供高度准确和精确的模型。所有模型的性能已在不同的时间范围,子群体和样本以及以前的模型中进行了评估。

著录项

  • 作者

    Mesgarpour M.;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号