首页> 外文OA文献 >Wind Resource Mapping Using Landscape Roughness and Spatial Interpolation Methods
【2h】

Wind Resource Mapping Using Landscape Roughness and Spatial Interpolation Methods

机译:利用景观粗糙度和空间插值方法绘制风资源图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Energy saving, reduction of greenhouse gasses and increased use of renewables are keypolicies to achieve the European 2020 targets. In particular, distributed renewable energy sources,integrated with spatial planning, require novel methods to optimise supply and demand. In contrastwith large scale wind turbines, small and medium wind turbines (SMWTs) have a less extensiveimpact on the use of space and the power system, nevertheless, a significant spatial footprint is stillpresent and the need for good spatial planning is a necessity. To optimise the location of SMWTs,detailed knowledge of the spatial distribution of the average wind speed is essential, hence, in thisarticle, wind measurements and roughness maps were used to create a reliable annual mean windspeed map of Flanders at 10 m above the Earth’s surface. Via roughness transformation, the surfacewind speed measurements were converted into meso- and macroscale wind data. The data werefurther processed by using seven different spatial interpolation methods in order to develop regionalwind resource maps. Based on statistical analysis, it was found that the transformation into mesoscalewind, in combination with Simple Kriging, was the most adequate method to create reliable maps fordecision-making on optimal production sites for SMWTs in Flanders (Belgium).
机译:节能,减少温室气体和增加可再生能源的使用是实现欧洲2020年目标的关键政策。特别地,与空间规划相结合的分布式可再生能源需要新颖的方法来优化供需。与大型风力涡轮机相比,中小型风力涡轮机(SMWT)对空间和电力系统的使用影响较小,尽管如此,仍然存在大量的空间占用空间,并且有必要进行良好的空间规划。为了优化SMWT的位置,必须详细了解平均风速的空间分布,因此,在本文中,使用风速测量和粗糙度图创建了在地表以上10 m的Flanders的年度平均风速图。 。通过粗糙度变换,将表面风速测量值转换为中尺度和宏观尺度的风数据。通过使用七种不同的空间插值方法进一步处理了数据,以开发区域风资源图。根据统计分析,发现将中尺度风转化为简单Kriging组合,是在法兰德斯(比利时)的SMWT最佳生产地点上创建决策可靠决策的最合适方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号