首页> 外文OA文献 >A large-scale multi-seasonal habitat prioritization and an analysis of structural connectivity for the conservation of greater sage-grouse in Wyoming
【2h】

A large-scale multi-seasonal habitat prioritization and an analysis of structural connectivity for the conservation of greater sage-grouse in Wyoming

机译:怀俄明州大规模多季节生境优先排序和结构连通性分析,以保护更多的鼠尾草

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Habitat loss is widely recognized as the primary cause of global declines in biodiversity and is linked to human disturbances through widespread land-use changes (Menon et al., 2001). As a consequence, wildlife species must persist on landscapes that are greatly modified and fragmented (Moilanen et al., 2005). Disruptions affecting the structural connectivity can hinder ecological flows of energy, nutrients and the natural dispersal of species across the landscape. Therefore, in order to conserve wildlife populations, we are challenged with securing areas where species are most likely to survive in the long run while maintaining habitat connectivity to facilitate natural ecological processes and meta-population dynamics (Gardner et al., 1993; Early and Thomas, 2007). Identifying conservation priority areas is an essential step in wildlife conservation planning. In order to achieve long term conservation success amid increasing developments and environmental degradation, we must aim for biologically and ecologically comprehensive and justifiable approaches that take multiple factors into consideration when defining conservation priority areas. In addition, when prioritizing the landscape, we must also account for the variations in habitat use caused by seasonal changes throughout the annual cycle in order to protect indispensable habitat across all seasons and life-stages. Thus, my first objective was to develop an annual habitat prioritization for greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse) in Wyoming, USA by combining nesting, summer and winter habitat selection models in an ecologically meaningful way using a quantitative spatial prioritization tool. I assessed the capacity of Wyoming’s current sage-grouse protected areas for capturing priority areas across the full annual cycle in order to quantify the importance of a multi-seasonal (i.e., annual) habitat prioritization. While, the annual habitat prioritized substantial as well as very similar fractions of the best habitat from each individual season, results indicated that the protected areas did not account for 52% of the top 25% of best annual habitat. As expected, the individual seasonal analysis confirmed that the protected areas contained more nesting priority habitat and failed to capture substantial fractions of summer and winter priority habitat. My second objective was to model connectivity between sage-grouse lek sites by applying circuit theory across the annual habitat model. I calculated the correlation between connectivity and habitat use across the annual and nesting habitat selection models to test if greater connectivity resulted in larger and more stable populations independent of habitat. I examined these trends across years of high population as well as years of low population. The structural connectivity of the landscape was not strongly correlated with the relative probability of habitat use across both nesting and annual habitat models (r = 0.3). Increasing connectivity was associated with increasing population sizes at leks and decreasing variability in lek counts; thus signifying that structural connectivity has a positive influence on population abundance and supports greater stability at lek sites. These trends also extended across years of high population as well as years of population declines, therefore indicating the importance of structural connectivity across the full cycle. Overall, my research explicitly integrates across all seasonal habitats supporting a multi-seasonal approach over a single-season approach for identifying priority areas in order to shield sage-grouse from human induced disturbances across the full annual cycle. Furthermore, I found that the structural connectivity of the landscape is beyond a simple summarization of habitat availability; therefore, when prioritizing the landscape and identifying core areas for protection, considering areas of high structural connectivity in addition to good quality habitat would enhance overall conservation outcomes across the full annual cycle.
机译:生境丧失被广泛认为是全球生物多样性下降的主要原因,并通过广泛的土地利用变化与人为干扰联系在一起(Menon et al。,2001)。结果,野生动植物物种必须在经过大量修改和破碎的景观上持续存在(Moilanen等,2005)。影响结构连通性的破坏会阻碍能量,养分的生态流动以及物种在景观中的自然扩散。因此,为了保护野生动植物种群,我们面临的挑战是如何确保最有可能长期生存的物种,同时保持栖息地的连通性,以促进自然生态过程和后代种群动态(Gardner等,1993;早期和早期)。托马斯,2007年)。确定保护重点领域是野生动植物保护规划中必不可少的步骤。为了在不断发展的环境和日益恶化的环境中取得长期的成功保护,我们必须以生物学和生态学上全面,合理的方法为目标,在确定保护重点领域时要考虑多种因素。此外,在对景观进行优先排序时,我们还必须考虑由于整个年度周期内的季节变化而引起的栖息地使用的变化,以保护所有季节和生命周期中必不可少的栖息地。因此,我的首要目标是在美国怀俄明州制定年度栖息地优先次序,以提高鼠尾草的生长(Centrocercus urophasianus;此后的鼠尾草),方法是使用定量的空间优先次序,以生态上有意义的方式结合嵌套,夏季和冬季栖息地选择模型工具。我评估了怀俄明州目前的鼠尾草保护区在整个年度周期内捕获优先区域的能力,以便量化多季节(即年度)栖息地优先次序的重要性。虽然年度生境优先考虑每个季节的最佳生境的大部分以及非常相似的部分,但结果表明,保护区并未占最佳年度生境的前25%的52%。正如预期的那样,个别的季节性分析证实,保护区包含更多的嵌套优先生境,未能捕获大部分夏季和冬季优先生境。我的第二个目标是通过在整个年度栖息地模型中应用回路理论来模拟鼠尾草韭菜站点之间的连通性。我计算了年度和嵌套生境选择模型之间的连通性和栖息地使用之间的相关性,以测试更大的连通性是否会导致更大且更稳定的种群独立于栖息地。我研究了人口稠密岁月和人口稀少岁月的趋势。在嵌套和年度生境模型中,景观的结构连通性与生境使用的相对概率并没有强烈相关(r = 0.3)。连通性的增加与韭菜种群数量的增加和韭菜数量变异性的降低有关。因此,这表明结构的连通性对人口数量有积极影响,并支持沥水场所更大的稳定性。这些趋势还在人口众多的年份以及人口减少的年份中延伸,因此表明在整个周期中进行结构连接的重要性。总的来说,我的研究明确地整合了所有季节栖息地,从而支持多季节方法而不是单季节方法,以识别优先区域,从而在整个年度周期中保护鼠尾草免受人为干扰。此外,我发现景观的结构连通性不只是对栖息地可用性的简单概括。因此,在对景观进行优先排序并确定要保护的核心区域时,除了高质量的栖息地之外,还应考虑具有高度结构连通性的区域,这将在整个年度周期内提高总体保护成果。

著录项

  • 作者

    De Silva Anushika;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号