首页> 外文OA文献 >Tunable Two-Color Ultrafast Yb:Fiber Chirped Pulse Amplifier: Modeling, Experiment, and Application in Tunable Short-Pulse Mid-Infrared Generation
【2h】

Tunable Two-Color Ultrafast Yb:Fiber Chirped Pulse Amplifier: Modeling, Experiment, and Application in Tunable Short-Pulse Mid-Infrared Generation

机译:可调谐两色超快Yb:光纤Chi脉冲放大器:可调谐短脉冲中红外发生器的建模,实验和应用

摘要

In this thesis, I have developed a tunable two-color two-stage ultrafast Yb:fiber chirped pulse amplifier for the generation of short-pulse mid-infrared (MIR) radiation in the long-wavelength side of the "molecular fingerprint" (2.5-25 μm) using difference frequency generation (DFG) technique. The two colors called blue and red are in the wavelengths 1.03-1.11 μm and are amplified simultaneously in the same Yb-doped fiber amplifier (YDFA) stages in order to reduce the induced environmental noise on the phase difference of the pulses and to minimize the complexity and system cost.I will present numerical simulations on the two-stage YDFA system to amplify a two-color spectrum in the wavelengths 1.03-1.11 μm. The first and second YDFA called preamplifier and main amplifier are single-clad, single-mode and double-clad, single-mode YDFA respectively. From numerical simulations, the optimal length of the preamplifier to have equal power at two colors centered at 1043 nm and 1105 nm are in agreement with experimental results.It is well known that the power of MIR radiation generated by difference frequencymixing of two wavelengths scales up with the product of mixing powers in a fixed-fieldapproximation. Furthermore, for the gain narrowing effect on the short-wavelength side of the YDFA gain profile, the spectral bandwidth of the blue color decreases resulting in pulse broadening. In addition, for the two colors separated largely, the amplified spontaneous emission is intensified. Considering the cited factors, I will present the modeling results on the two-color, two-stage YDFA system that the product of the power of the two colors is maximized for a maximized wavelength separation between the two mixing colors and a minimized gain narrowing on the blue color in order to build an as broadly tunable and powerful as possible ultrafast mid-infrared source by difference frequency mixing of the two colors.In this research, I achieved a wavelength separation as broad as 71 nm between pulsescentered at 1038 nm and 1109 nm from the two-color ultrafast YDFA system. I achievedcombined average powers of 2.7 W just after the main amplifier and 1.5 W after compressing the two-color pulses centered at 1041 nm and 1103 nm to nearly Fourier transform limited pulses. From autocorrelation measurements, the full width at half maximum (FWHM) of the compressed two-color pulses with the peak wavelengths of 1041 nm and 1103 nm was ~500 fs. By mixing the tunable two-color pulses in a 1-mm-thick GaSe crystal using DFG technique, I achieved tunable short-pulse MIR radiation.In this research, I achieved short-pulse MIR radiation tunable in the wavelengths 16-20 μm. The MIR tuning range from the lower side was limited to the 16 μm because of the 71-nm limitation on the two-color separation and from the upper side was limited to the 20 μm because of the 20-μm cutoff absorption wavelength of GaSe. Based on measured MIR spectra, the MIR pulses have a picosecond pulse duration in the wavelengths 16-20 μm. The FWHM of measured spectra of the MIR pulses increases from 0.3 μm to 0.8 μm as the MIR wavelength increases from 16 μm to 20 μm. According to Fourier transform theory, the FWHM of the MIR spectra corresponds to the bandwidth of picosecond MIR pulses assuming that the MIR pulses are perfectly Fourier-transform-limited Gaussian pulses.In this research, I achieved a maximum average power of 1.5 mW on short-pulse MIRradiation at the wavelength 18.5 μm corresponding to the difference frequency of the 500-fs two-color pulses with the peak wavelengths of 1041 nm and 1103 nm and average powers of 1350 mW and 80 mW respectively.Considering the gain bandwidth, Ti:sapphire is a main competitor to the YDFA to be used in the two-color ultrafast laser systems. In the past, the broad gain bandwidth of Ti:sapphire crystal has resulted in synchronized two-color pulses with a wavelength separation up to 120 nm. Apart from its bulkiness and high cost, Ti:sapphire laser system is limited to a watt-level output average power at room temperature mainly due to Kerr lensing problem that occurs at high pumping powers. In comparison, YDFA as a laser amplifier has a narrower gain bandwidth but it is superior in terms of average power.Optical parametric generation (OPG) and optical parametric amplification (OPA) techniques are two competitors to DFG technique for the generation of short-pulse long-wavelength MIR radiation. Although OPG offers a tunability range as broad as DFG, the MIR output power is lower because of the absence of input signal pulses. From the OPA technique, the tunability range is not as broad as the DFG technique due to limitations with the spectral bandwidth of the optical elements. Currently, quantum cascade lasers (QCLs) are the state-of-art MIR laser sources. At the present time, the tunability range of a single MIR QCL is not as abroad as that achieved from the DFG technique. More, mode-locked MIR QCLs are not abundant mainly because of the fast gain recovery time. Thus, the generation of widely tunable short-pulse MIR radiation from DFG technique such as that developed in this thesis remains as a persistent technological solution.The application of the system developed in this thesis is twofold: on one hand, thetunable two-color ultrashort pulses will find applications for example in pump-probe ultrafast spectroscopy, short-pulse MIR generation, and optical frequency combs generation. On the other hand, the short-pulse MIR radiation will find applications for example in time-resolved MIR spectroscopy to study dynamical behavior of large molecules such as organic and biological molecules.
机译:在本文中,我开发了一种可调谐的两色两级超快Yb:光纤chi脉冲放大器,用于在“分子指纹”的长波侧产生短脉冲中红外(MIR)辐射(2.5 -25μm)使用差分频率生成(DFG)技术。称为蓝色和红色的两种颜色的波长为1.03-1.11μm,并且在相同的掺Yb光纤放大器(YDFA)阶段中同时进行放大,以减少脉冲相位差引起的环境噪声并最大程度地减小我将在两级YDFA系统上进行数值模拟,以放大1.03-1.11μm波长的双色光谱。第一和第二YDFA被称为前置放大器和主放大器,分别是单包层,单模和双包层,单模YDFA。从数值模拟来看,以1043 nm和1105 nm为中心的两种颜色具有相等功率的前置放大器的最佳长度与实验结果相符。众所周知,由两个波长的不同频率混合产生的MIR辐射的功率会扩大与混合功率的乘积在一个固定的场近似中。此外,对于YDFA增益分布的短波长侧的增益变窄效果,蓝色的光谱带宽减小,导致脉冲展宽。另外,对于两种颜色分开较大的颜色,放大后的自发发射会增强。考虑到上述因素,我将在两色,两阶段YDFA系统上呈现建模结果,即两种颜色的乘积最大化,从而使两种混合颜色之间的波长间隔最大化,并且使增益变窄最小。为了通过两种颜色的不同频率混合来构建尽可能广泛可调和强大的超快中红外光源。在这项研究中,我实现了以1038 nm和1109为中心的脉冲之间的波长分离达到71 nm两色超快YDFA系统产生的nm。在紧接主放大器之后,我获得了2.7 W的组合平均功率,在将以1041 nm和1103 nm为中心的双色脉冲压缩为接近傅立叶变换的受限脉冲之后,我获得了1.5 W的组合平均功率。根据自相关测量,峰值波长为1041 nm和1103 nm的压缩双色脉冲的半峰全宽(FWHM)约为500 fs。通过使用DFG技术在1mm厚的GaSe晶体中混合可调谐的两色脉冲,我获得了可调谐的短脉冲MIR辐射。在这项研究中,我获得了可调谐的16-20μm波长的短脉冲MIR辐射。由于两色分离的71nm限制,从下侧开始的MIR调整范围被限制为16μm,而由于GaSe的截止吸收波长为20μm,从上侧开始的MIR调整范围被限制为20μm。基于测量的MIR光谱,MIR脉冲在16-20μm波长下具有皮秒脉冲持续时间。随着MIR波长从16μm增加到20μm,MIR脉冲的测量光谱的FWHM从0.3μm增加到0.8μm。根据傅里叶变换理论,假设MIR脉冲是完全傅里叶变换限制的高斯脉冲,则MIR谱的半峰宽对应于皮秒MIR脉冲的带宽。在这项研究中,我在短时间内获得了1.5 mW的最大平均功率对应于500-fs两色脉冲的差分频率的18.5μm波长的MIR辐射,峰值波长分别为1041 nm和1103 nm,平均功率分别为1350 mW和80 mW。考虑增益带宽Ti:蓝宝石是用于两色超快激光系统的YDFA的主要竞争对手。过去,Ti:蓝宝石晶体的宽增益带宽导致了波长间隔高达120 nm的同步双色脉冲。除了体积大和成本高之外,Ti:蓝宝石激光系统在室温下还受限于瓦特级输出平均功率,这主要是由于在高泵浦功率下发生的Kerr透镜问题。相比之下,作为激光放大器的YDFA具有较窄的增益带宽,但在平均功率方面却比较优越。光参量生成(OPG)和光参量放大(OPA)技术是DFG技术在短脉冲生成方面的两个竞争对手长波长MIR辐射。尽管OPG的可调范围与DFG一样宽,但由于缺少输入信号脉冲,因此MIR输出功率较低。从OPA技术来看,由于光学元件的光谱带宽的限制,可调谐性范围没有DFG技术那么宽。当前,量子级联激光器(QCL)是最新的MIR激光源。目前,单个MIR QCL的可调范围还不如DFG技术所达到的可调范围。更多,锁模MIR QCL并不丰富,主要是因为增益恢复时间快。因此,由DFG技术产生的可调谐短脉冲MIR辐射(如本文开发的方法)仍然是一种持续的技术解决方案。本文开发的系统的应用是双重的:一方面,可调谐双色超短脉冲将在例如泵浦探头超快光谱,短脉冲MIR生成和光学频率梳生成中找到应用。另一方面,短脉冲MIR辐射将在例如时间分辨MIR光谱中找到应用,以研究大分子(如有机和生物分子)的动力学行为。

著录项

  • 作者

    Hajialamdari Mojtaba;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号