首页> 外文OA文献 >Semiconductor Nanowire Based Piezoelectric Energy Harvesters: Modeling, Fabrication, and Characterization
【2h】

Semiconductor Nanowire Based Piezoelectric Energy Harvesters: Modeling, Fabrication, and Characterization

机译:基于半导体纳米线的压电能量收集器:建模,制造和表征

摘要

Semiconductor nanowire (NW) arrays’ unique advantages over bulk forms, including enhanced surface area, high mechanical flexibility, high sensitivity to small forces, better charge collection, and enhanced light absorption through trapping, make them ideal templates on which to build other structures. This research on the piezoelectric behavior of NWs used in high-performance energy harvesters is based on device modeling, fabrication, and characterization. These activities optimize the electrical properties of a NW device in response to a compression/release force applied to the NWs.The dissertation first discusses the piezoelectric and semiconductor properties of wurtzite compound nanomaterials, emphasizing III-nitride semiconducting InN and GaN NWs. Static analysis identifies the role of carrier density, temperature, force, length/diameter ratio, and Schottky barrier height. Piezoelectric nanogenerators (NGs) based on vertically aligned InN nanowires (NWs) are fabricated, characterized, and evaluated. In these NGs, arrays of exclusively either p-type or intrinsic InN NWs prepared by plasma-assisted molecular beam epitaxy (MBE) demonstrate similar average piezoelectric properties. The p-type NGs show 160% more output current and 70% more output power product than the intrinsic NGs. The features driving performance enhancement are reduced electrostatic losses due to a higher NW areal density and longer NWs, and improved electromechanical energy conversion efficiency due to smaller NW diameters. These findings highlight the potential of InN based NGs as a power source for self-powered systems and the importance of NW morphology in overall NG performance.The second part is devoted to demonstrate a series of flexible transparent ZnO p-n homojunction nanowire (NW)-based piezoelectric nanogenerators (NGs) with different p-doping concentrations. The lithium-doped segments are grown directly and consecutively on top of intrinsic nanowires (n-type). When characterized under cyclic compressive strains, the overall NG performance is enhanced by up to eleven-fold if the doping concentration is properly controlled. This improvement is attributable to reduction in the mobile charge screening effect and optimization of the NGs’ internal electrical characteristics. Experimental results also show that an interfacial MoO3 barrier layer, at an optimized thickness of 5-10 nm, reduces leakage current and substantially improves piezoelectric NG performance.The third part presents the first cascade-type compact hybrid energy cell (CHEC) that is capable of simultaneously or individually harvesting solar and strain energies. It is made of an n-p junction NW-based piezoelectric nanogenerator to harvest strain energy and an nc/a-Si:H single junction cell to harvest solar energy. The CHECs ability to harvest energy effectively simultaneously, and complementary is demonstrated by deploying six CHECs to power LEDs and a wireless strain gauge sensor node. Under ~10 mW/cm2 illumination and vibrations of 3 m/s2 at 3 Hz frequency, the output current and voltage from a single 1.0 cm2 CHEC are 280 μA and 3.0 V, respectively; enough to drive many low power commercial electronics.This dissertation aims to deepen understanding of the piezoelectric behavior of semiconductor NWs on hard and flexible substrates. Thus, this research in the field of nanopiezoelectrics could have a substantial impact on many areas, ranging from the fundamental study of new nanomaterial properties and mechanical effects in nanostructures to diverse applications like aerospace.
机译:半导体纳米线(NW)阵列相对于块状形式具有独特的优势,包括增加的表面积,高的机械柔韧性,对小力的高灵敏度,更好的电荷收集以及通过捕获而增强的光吸收,使其成为构建其他结构的理想模板。对高性能能量收集器中使用的NW的压电行为的这项研究基于设备建模,制造和表征。这些活动响应于施加到NW上的压缩/释放力来优化NW器件的电性能。论文首先讨论了纤锌矿化合物纳米材料的压电和半导体性能,重点是III族氮化物半导体InN和GaN NW。静态分析确定了载流子密度,温度,力,长度/直径比和肖特基势垒高度的作用。基于垂直排列的InN纳米线(NWs)的压电纳米发电机(NGs)得以制造,表征和评估。在这些NG中,通过等离子体辅助分子束外延(MBE)制备的仅p型或本征InN NW阵列显示出相似的平均压电性能。与固有NG相比,p型NG显示出160%的输出电流和70%的输出功率乘积。驱动性能增强的特征是由于较高的NW面密度和较长的NW而减少了静电损失,并且由于较小的NW直径而提高了机电能量转换效率。这些发现凸显了基于InN的NG作为自供电系统的动力的潜力以及NW形态在整个NG性能中的重要性。第二部分专门演示了一系列基于柔性透明ZnO pn同质结纳米线(NW)的材料具有不同p掺杂浓度的压电纳米发电机(NGs)。掺杂锂的链段直接在本征纳米线(n型)上连续生长。当在循环压缩应变下表征时,如果适当地控制掺杂浓度,总的NG性能将提高11倍。这种改进归因于移动电荷屏蔽效果的降低以及NG内部电气特性的优化。实验结果还表明,最优化厚度为5-10 nm的界面MoO3势垒层可降低泄漏电流并显着提高压电NG性能。第三部分展示了第一个可级联的紧凑型混合动力电池(CHEC)同时或单独收集太阳能和应变能。它由一个基于n-p结NW的压电纳米发电机来收集应变能,以及一个nc / a-Si:H单结电池来收集太阳能。通过部署六个CHEC来为LED供电和一个无线应变仪传感器节点,CHEC能够同时有效地收集能量并实现互补。在〜10 mW / cm2的照明下和在3 Hz频率下3 m / s2的振动下,单个1.0 cm2 CHEC的输出电流和电压分别为280μA和3.0V。足以驱动许多低功率商用电子产品。本论文旨在加深对在硬性和柔性衬底上的半导体NW压电性能的了解。因此,在纳米压电领域的这项研究可能会对许多领域产生重大影响,从对新的纳米材料特性和纳米结构的机械效应的基础研究到航空航天等各种应用。

著录项

  • 作者

    Liu Guocheng;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号