Wireless sensing applications have extended into power transmission line monitoringapplications. Minimal power consumption of sensor electronics have enabled kinetic energyharvesting systems to provides a means of self sustainability in the form of parasitic energyharvesting from power transmission lines. With this goal in mind, a miniature piezoelectricbimorph cantilever harvester has been developed using a magnetic tip mass which interactswith the oscillating magnetic flux surrounding power transmission wires. The focus ofthis thesis is develop an analytical model which can be used to optimize the amountof piezoelectric material to support sensory electronics. Special emphasis has also beenplaced on magnet orientation and geometry to ensure optimal magnetic flux interactionbetween input and output mechanisms. A single prototype harvester is designed with anarbitrary piezoelectric material length and experimentally validated at different conductorwire currents. The analytical model shows excellent agreement in frequency predictionfor the prototype tested. Two damping techniques are used to experimentally extractmodal damping ratios to predict peak mechanical and electrical responses at resonancefrequencies. The miniature prototype design is less than 30 mm in length with only 10 mm piezoelectric material to produce a total volume of 154 10^-12 cm^3. The power output ismeasured at 174.1 W of power when positioned over top a 10 AWG copper conductor adistance of 6 mm with approximately 16 Amps of current passing though the conductor.
展开▼
机译:无线感测应用已扩展到电力传输线监控应用。传感器电子设备的最小功耗使动能收集系统能够以自输电线路的寄生能量收集的形式提供自我可持续性的手段。出于这个目标,已经开发了一种微型压电双压电晶片悬臂式收割机,该收割机使用了一个磁性尖端块,该尖端与围绕输电线的振荡磁通相互作用。本文的重点是开发一个分析模型,该模型可用于优化支持传感电子的压电材料的量。还特别强调了磁体的方向和几何形状,以确保输入和输出机构之间的最佳磁通相互作用。单个原型收割机的设计采用任意长度的压电材料,并在不同的导线电流下进行了实验验证。对于所测试的原型,该分析模型在频率预测方面显示出极好的一致性。两种阻尼技术用于实验提取模态阻尼比,以预测共振频率下的峰值机械和电响应。微型原型设计的长度不到30毫米,仅用10毫米压电材料制成,总体积为154 10 ^ -12 cm ^ 3。当放置在距离6 mm的10 AWG铜导体上方时,大约有16安培的电流流经该导体,功率输出为174.1W。
展开▼