首页> 外文OA文献 >Structured Reverse Mode Automatic Differentiation in Nested Monte Carlo Simulations
【2h】

Structured Reverse Mode Automatic Differentiation in Nested Monte Carlo Simulations

机译:嵌套蒙特卡洛模拟中的结构化反向模式自动微分

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In many practical large scale computational problems, the calculation of partial derivatives of the object function f with respect to input parameters are entailed and the dimension of inputs n is much larger the one of outputs m. The use of reverse mode automatic differentiation (AD) is mostly efficient as it computes the gradient in the same amount of runtime as f regardless of the input dimension n. However, it demands excessive memory. To enjoy the runtime efficiency of reverse mode without paying unaffordable memory, structured reverse mode has been proposed and succeeded in several applications. Due to the fundamental difficulty in automatic structure detection, structured reverse mode has not been fully automated. This thesis, instead of trying to solve to structure detection problem for a completely generic piece of code, is devoted to the analysis and implementation of deploying structured reverse mode to a generic class of problems with a known structure, nested Monte Carlo simulations. We reveal the general structure pattern of Monte Carlo simulations in financial applications. Space/time tradeoff on deploying structured reverse mode are discussed in details and numerical experiments using Variable Annuity program are conducted to corroborate the analysis. Significant memory and runtime reductions are observed. We argue such contribution is important as nested Monte Carlo simulations accommodates several large scale computations in financial services that are crucial in practice.
机译:在许多实际的大规模计算问题中,需要进行对象函数f相对于输入参数的偏导数的计算,并且输入n的维数要比输出m的大得多。反向模式自动微分(AD)的使用最有效,因为它在与f相同的运行时间中计算梯度,而与输入维n无关。但是,它需要过多的内存。为了享受反向模式的运行效率而不付出不必要的内存,已经提出了结构化反向模式并在几种应用中获得了成功。由于自动结构检测的基本困难,结构化反向模式尚未完全自动化。本文致力于解决结构化反向模式到具有已知结构的一类通用问题的嵌套蒙特卡洛模拟的分析和实现,而不是试图解决一个完全通用的代码段的结构检测问题。我们揭示了金融应用程序中蒙特卡洛模拟的一般结构模式。详细讨论了在部署结构化反向模式时的时空权衡,并使用变量年金程序进行了数值实验以证实分析结果。观察到显着的内存减少和运行时间减少。我们认为这种贡献很重要,因为嵌套蒙特卡洛模拟可容纳金融服务中的一些大规模计算,而这在实践中至关重要。

著录项

  • 作者

    Zhou An;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号