首页> 外文OA文献 >Short-term Prediction of Freeway Travel Times Using Data from Bluetooth Detectors
【2h】

Short-term Prediction of Freeway Travel Times Using Data from Bluetooth Detectors

机译:使用蓝牙探测器的数据对高速公路出行时间进行短期预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There is increasing recognition among travelers, transportation professionals, and decision makers of the importance of the reliability of transportation facilities. An important step towards improving system reliability is developing methods that can be used in practice to predict freeway travel times for the near future (e.g. 5 – 15 minutes). Reliable and accurate predictions of future travel times can be used by travelers to make better decisions and by system operators to engage in pre-active rather than reactive system management. Recent advances in wireless communications and the proliferation of personal devices that communicate wirelessly using the Bluetooth protocol have resulted in the development of a Bluetooth traffic monitoring system. This system is becoming increasingly popular for collecting vehicle travel time data in real-time, mainly because it has the following advantages over other technologies: (1) measuring travel time directly; (2) anonymous detection; (3) weatherproof; and (4) cost-effectiveness.The data collected from Bluetooth detectors are similar to data collected from Automatic Vehicle Identification (AVI) systems using dedicated transponders (e.g. such as electronic toll tags), and therefore using these data for travel time prediction faces some of the same challenges as using AVI measurements, namely: (1) determining the optimal spacing between detectors; (2) dynamic outlier detection and travel time estimation must be able to respond quickly to rapid travel time changes; and (3) a time lag exists between the time when vehicles enter the segment and the time that their travel time can be measured (i.e. when the vehicle exits the monitored segment).In this thesis, a generalized model was proposed to determine the optimal average spacing of Bluetooth detector deployments on urban freeways as a function of the length of the route for which travel times are to be estimated; a traffic flow filtering model was proposed to be applied as an enhancement to existing data-driven outlier detection algorithms as a mechanism to improve outlier detection performance; a short-term prediction model combining outlier filtering algorithm with Kalman filter was proposed for predicting near future freeway travel times using Bluetooth data with special attention to the time lag problem. The results of this thesis indicate that the optimal detector spacing ranges from 2km for routes of 4km in length to 5km for routes of 20km in length; the proposed filtering model is able to solve the problem of tracking sudden changes in travel times and enhance the performance of the data-driven outlier detection algorithms; the proposed short-term prediction model significantly improves the accuracy of travel time prediction for 5, 10 and 15 minutes prediction horizon under both free flow and non-free flow traffic states. The mean absolute relative errors (MARE) are improved by 8.8% to 30.6% under free flow traffic conditions, and 7.5% to 49.9% under non-free flow traffic conditions. The 90th percentile errors and standard deviation of the prediction errors are also improved.
机译:旅行者,运输专业人员和决策者之间越来越认识到运输设施可靠性的重要性。提高系统可靠性的重要一步是开发可在实践中用于预测不久的将来(例如5至15分钟)的高速公路行驶时间的方法。旅行者可以使用可靠,准确的未来旅行时间预测来做出更好的决策,而系统运营商则可以使用它们进行主动系统管理,而不是被动系统管理。无线通信的最新进展以及使用蓝牙协议进行无线通信的个人设备的普及导致了蓝牙流量监控系统的发展。该系统在实时收集车辆行驶时间数据方面变得越来越流行,主要是因为与其他技术相比,它具有以下优点:(1)直接测量行驶时间; (2)匿名检测; (3)防风雨; (4)成本效益。从蓝牙检测器收集的数据类似于使用专用应答器(例如,电子收费标签)从自动车辆识别(AVI)系统收集的数据,因此将这些数据用于行驶时间预测会遇到一些困难。与使用AVI测量相同的挑战,即:(1)确定探测器之间的最佳间距; (2)动态离群值检测和旅行时间估计必须能够快速响应旅行时间的快速变化; (3)车辆进入路段的时间与可以测量出行时间的时间(即车辆离开被监控路段的时间)之间存在时间滞后。本文提出了一种通用模型来确定最优在市区高速公路上,蓝牙检测器部署的平均间隔与要估计行进时间的路线长度有关;提出了一种交通流过滤模型,以作为对现有数据驱动离群值检测算法的增强,以提高离群值检测性能。提出了一种结合异常值滤波算法和卡尔曼滤波器的短期预测模型,该模型利用蓝牙数据预测近期的高速公路出行时间,并特别注意时滞问题。结果表明,最佳探测器间距范围为:长度4km的路径为2km,长度为20km的路径为5km。提出的过滤模型能够解决跟踪旅行时间突然变化的问题,并提高了数据驱动的异常检测算法的性能。所提出的短期预测模型显着提高了在自由流动和非自由流动交通状态下5、10和15分钟预测范围的行驶时间预测的准确性。在自由流动条件下,平均绝对相对误差(MARE)提高了8.8%至30.6%,在非自由流动条件下则提高了7.5%至49.9%。第90个百分位误差和预测误差的标准偏差也得到了改善。

著录项

  • 作者

    Hu Yaxin;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号