首页> 外文OA文献 >Analysis of Microcontroller Embedded SRAMs for Applications in Physical Unclonable Functions
【2h】

Analysis of Microcontroller Embedded SRAMs for Applications in Physical Unclonable Functions

机译:用于物理不可克隆功能的微控制器嵌入式SRAM的分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The growth of the Internet of Things (IoT) market has motivated widespread proliferationof microcontroller- (MCU) based embedded systems. Suitable due to their abundance,low cost, low power consumption and small footprint. The memory architecture typicallyconsists of volatile memory such as block(s) of SRAM, and non-volatile memory (NVM)for code storage. Authentication and encryption safeguard these endpoints within an IoTframework, which requires storage of a secure key. Keys stored within integrated circuits(ICs) are susceptible to attack via reverse engineering of the NVM. Newer approaches usePhysical Unclonable Functions (PUFs), which produce unique identi ers that takes advantageof device-level randomness induced by manufacturing process variation in silicon.The unclonable property of PUFs is demonstrated with an analytical model. The unpredictableyet repeatable start-up values (SUVs) of SRAM bit-cells form the basis of anSRAM PUF. Performance measures, such as reliability, randomness, symmetry, and stability,dictate the quality of a PUF. Two commercial o -the-shelf (COTS) ARM-Cortex basedMCU products, the STM32F429ZIT6U and ATSAMR21G18A, underwent automated andmanual power cycling experiments that examined their embedded SRAM SUVs. Thecharacterization framework provided acquires data via debug software and a developed Cprogram, power cycling using a USB controlled relay and post-processing using Python.Applications of PUFs include cryptographic key generation, device identi cation and truerandom number hardware generation.Statistical results and a comparative analysis are presented. Amongst the total bitcellcount of the embedded SRAM in STM and ATSAM MCUs, 36:86% and 28:86% areclassi ed as non- or partially-skewed, respectively across N = 10; 000 samples. The AtmelMCU outperforms the STM MCU in reliability by 1.42 %, randomness by 0.65 % andstability by 8.00 %, with a 4.74 % SUV bias towards a logic '1'. Max errors per 128-bitdata item is 22 and 38 bits for MCU #1 and MCU #2, respectively. The STM MCUexhibits column-wise correlation illustrated in a heatmap, where the Atmel MCU shows arandom signature. The embedded SRAM in the Atmel MCU outperforms the STM MCU'sand is thereby considered the more suitable PUF.
机译:物联网(IoT)市场的增长推动了基于微控制器(MCU)的嵌入式系统的广泛普及。因其丰富,低成本,低功耗和占地面积小而适用。存储器架构通常由易失性存储器(例如SRAM块)和用于代码存储的非易失性存储器(NVM)组成。身份验证和加密可保护IoT框架中的这些端点,这需要存储安全密钥。存储在集成电路(IC)中的密钥容易受到NVM逆向工程的攻击。较新的方法使用物理不可克隆函数(Physical Unclonable Functions,PUF),它们会利用硅制造工艺变化引起的器件级随机性来产生唯一的标识符。通过分析模型来演示PUF的不可克隆性。 SRAM位单元的不可预测的可重复启动值(SUV)构成了SRAM PUF的基础。性能度量(例如可靠性,随机性,对称性和稳定性)决定了PUF的质量。 STM32F429ZIT6U和ATSAMR21G18A这两种基于ARM-Cortex的商业现货(COTS)MCU产品进行了自动和手动电源循环测试,以检查其嵌入式SRAM SUV。所提供的特征框架通过调试软件和开发的C程序获取数据,使用USB控制的继电器重启电源并使用Python进行后处理.PUF的应用包括加密密钥生成,设备标识和真实随机数硬件生成。统计结果和比较分析被提出。在STM和ATSAM MCU中嵌入式SRAM的总位元数量中,分别在N = 10时将36:86%和28:86%分为未偏斜或部分偏斜; 000个样本。 AtmelMCU在可靠性方面比STM MCU优越1.42%,随机性优于0.65%,稳定性优于8.00%,SUV偏向逻辑“ 1”的程度为4.74%。对于MCU#1和MCU#2,每个128位数据项的最大错误分别为22位和38位。 STM MCU展示了热图中所示的列相关性,其中Atmel MCU显示了随机签名。 Atmel MCU中的嵌入式SRAM优于STM MCU,因此被认为是更合适的PUF。

著录项

  • 作者

    Imtiaz Sakib;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号