首页> 外文OA文献 >Regional registration for expression resistant 3-D face recognition
【2h】

Regional registration for expression resistant 3-D face recognition

机译:面向表情的3-D人脸识别的区域注册

摘要

Biometric identification from three-dimensional (3-D) facial surface characteristics has become popular, especially in high security applications. In this paper, we propose a fully automatic expression insensitive 3-D face recognition system. Surface deformations due to facial expressions are a major problem in 3-D face recognition. The proposed approach deals with such challenging conditions in several aspects. First, we employ a fast and accurate region-based registration scheme that uses common region models. These common models make it possible to establish correspondence to all the gallery samples in a single registration pass. Second, we utilize curvature-based 3-D shape descriptors. Last, we apply statistical feature extraction methods. Since all the 3-D facial features are regionally registered to the same generic facial component, subspace construction techniques may be employed. We show that linear discriminant analysis significantly boosts the identification accuracy. We demonstrate the recognition ability of our system using the multiexpression Bosphorus and the most commonly used 3-D face database, Face Recognition Grand Challenge (FRGCv2). Our experimental results show that in both databases we obtain comparable performance to the best rank-1 correct classification rates reported in the literature so far: 98.19% for the Bosphorus and 97.51% for the FRGCv2 database. We have also carried out the standard receiver operating characteristics (ROC III) experiment for the FRGCv2 database. At an FAR of 0.1%, the verification performance was 86.09%. This shows that model-based registration is beneficial in identification scenarios where speed-up is important, whereas for verification one-to-one registration can be more beneficial.
机译:从三维(3-D)面部表面特征进行生物特征识别已变得很流行,尤其是在高安全性应用中。在本文中,我们提出了一种全自动表情不敏感的3-D人脸识别系统。由面部表情引起的表面变形是3-D面部识别中的主要问题。所提出的方法在几个方面处理了这种挑战性条件。首先,我们采用一种快速且准确的基于区域的注册方案,该方案使用了常见的区域模型。这些通用模型使得可以在一次注册证中建立与所有画廊样本的对应关系。其次,我们利用基于曲率的3D形状描述符。最后,我们应用统计特征提取方法。由于所有3D面部特征都在区域上注册到相同的通用面部组件,因此可以采用子空间构造技术。我们显示线性判别分析显着提高了识别精度。我们使用多重表达式Bosphorus和最常用的3D人脸数据库“人脸识别大挑战(FRGCv2)”来演示我们系统的识别能力。我们的实验结果表明,在这两个数据库中,我们都能获得与迄今为止文献中报道的最佳1级正确分类率相当的性能:Bosphorus为98.19%,FRGCv2数据库为97.51%。我们还为FRGCv2数据库进行了标准接收机工作特性(ROC III)实验。在FAR为0.1%时,验证性能为86.09%。这表明基于模型的注册在识别方案中是非常有用的,在这些方案中,提高速度很重要,而对于验证,一对一注册可能会更有益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号