首页> 外文OA文献 >Improving Caches in Consolidated Environments
【2h】

Improving Caches in Consolidated Environments

机译:改善整合环境中的缓存

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Memory (cache, DRAM, and disk) is in charge of providing data and instructions to a computer’s processor. In order to maximize performance, the speeds of the memory and the processor should be equal. However, using memory that always match the speed of the processor is prohibitively expensive. Computer hardware designers have managed to drastically lower the cost of the system with the use of memory caches by sacrificing some performance. A cache is a small piece of fast memory that stores popular data so it can be accessed faster. Modern computers have evolved into a hierarchy of caches, where a memory level is the cache for a larger and slower memory level immediately below it. Thus, by using caches, manufacturers are able to store terabytes of data at the cost of cheapest memory while achieving speeds close to the speed of the fastest one.The most important decision about managing a cache is what data to store in it. Failing to make good decisions can lead to performance overheads and over- provisioning. Surprisingly, caches choose data to store based on policies that have not changed in principle for decades. However, computing paradigms have changed radically leading to two noticeably different trends. First, caches are now consol- idated across hundreds to even thousands of processes. And second, caching is being employed at new levels of the storage hierarchy due to the availability of high-performance flash-based persistent media. This brings four problems. First, as the workloads sharing a cache increase, it is more likely that they contain dupli- cated data. Second, consolidation creates contention for caches, and if not managed carefully, it translates to wasted space and sub-optimal performance. Third, as contented caches are shared by more workloads, administrators need to carefully estimate specific per-workload requirements across the entire memory hierarchy in order to meet per-workload performance goals. And finally, current cache write poli- cies are unable to simultaneously provide performance and consistency guarantees for the new levels of the storage hierarchy.We addressed these problems by modeling their impact and by proposing solu- tions for each of them. First, we measured and modeled the amount of duplication at the buffer cache level and contention in real production systems. Second, we created a unified model of workload cache usage under contention to be used by administrators for provisioning, or by process schedulers to decide what processes to run together. Third, we proposed methods for removing cache duplication and to eliminate wasted space because of contention for space. And finally, we pro- posed a technique to improve the consistency guarantees of write-back caches while preserving their performance benefits.
机译:内存(高速缓存,DRAM和磁盘)负责向计算机的处理器提供数据和指令。为了使性能最大化,内存和处理器的速度应相等。但是,使用始终与处理器速度匹配的内存非常昂贵。计算机硬件设计人员已通过牺牲一些性能来设法通过使用内存高速缓存来大幅降低系统成本。高速缓存是一小块快速内存,用于存储流行数据,因此可以更快地对其进行访问。现代计算机已演变为缓存层次结构,其中内存级别是紧随其后的较大而较慢的内存级别的缓存。因此,通过使用缓存,制造商能够以最便宜的内存为代价来存储TB的数据,同时达到接近最快速度的速度。管理缓存最重要的决定是要存储哪些数据。未能做出正确的决策可能会导致性能开销和过度配置。令人惊讶的是,缓存基于原则上数十年来未更改的策略选择要存储的数据。但是,计算范例已经发生了根本性的变化,导致了两个明显不同的趋势。首先,缓存现在可以整合到数百个甚至数千个进程中。其次,由于高性能基于闪存的持久性介质的可用性,因此在存储层次结构的新级别采用了缓存。这带来了四个问题。首先,随着共享缓存的工作负载的增加,它们更有可能包含重复的数据。其次,合并会导致缓存争用,如果管理不当,则会转化为空间浪费和性能欠佳的情况。第三,随着更多工作负载共享缓存,管理员需要仔细估计整个内存层次结构中特定的每个工作负载需求,以满足每个工作负载的性能目标。最后,当前的高速缓存写入策略无法同时为新的存储层次结构级别提供性能和一致性保证。我们通过对它们的影响进行建模并针对每个问题提出解决方案来解决这些问题。首先,我们在缓冲区缓存级别和实际生产系统中的争用中对重复量进行了测量和建模。其次,我们创建了争用下的工作负载缓存使用情况的统一模型,供管理员用于配置或由流程调度程序决定要一起运行的流程。第三,我们提出了消除缓存重复并消除由于争用空间而浪费空间的方法。最后,我们提出了一种技术,可在保持其性能优势的同时,提高回写式缓存的一致性。

著录项

  • 作者

    Koller Ricardo;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号