首页> 外文OA文献 >Securing Metering Infrastructure of Smart Grid: A Machine Learning and Localization Based Key Management Approach
【2h】

Securing Metering Infrastructure of Smart Grid: A Machine Learning and Localization Based Key Management Approach

机译:确保智能电网计量基础设施:基于机器学习和本地化的密钥管理方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In smart cities, advanced metering infrastructure (AMI) of the smart grid facilitates automated metering, control and monitoring of power distribution by employing a wireless network. Due to this wireless nature of communication, there exist potential threats to the data privacy in AMI. Decoding the energy consumption reading, injecting false data/command signals and jamming the networks are some hazardous measures against this technology. Since a smart meter possesses limited memory and computational capability, AMI demands a light, but robust security scheme. In this paper, we propose a localization-based key management system for meter data encryption. Data are encrypted by the key associated with the coordinate of the meter and a random key index. The encryption keys are managed and distributed by a trusted third party (TTP). Localization of the meter is proposed by a method based on received signal strength (RSS) using the maximum likelihood estimator (MLE). The received packets are decrypted at the control center with the key mapped with the key index and the meter’s coordinates. Additionally, we propose the k-nearest neighbors (kNN) algorithm for node/meter authentication, capitalizing further on data transmission security. Finally, we evaluate the security strength of a data packet numerically for our method.
机译:在智慧城市中,智能电网的高级计量基础架构(AMI)通过采用无线网络来促进自动计量,控制和监视配电。由于通信的这种无线特性,对AMI中的数据隐私存在潜在的威胁。解码能耗读数,注入错误的数据/命令信号以及干扰网络是危害该技术的一些危险措施。由于智能电表拥有有限的内存和计算能力,因此AMI需要一种轻便但强大的安全方案。在本文中,我们提出了一种基于本地化的电表数据加密密钥管理系统。数据通过与仪表坐标和随机密钥索引关联的密钥进行加密。加密密钥由受信任的第三方(TTP)管理和分发。通过使用最大似然估计器(MLE)的基于接收信号强度(RSS)的方法来建议仪表的定位。接收到的数据包在控制中心被解密,其中密钥映射有密钥索引和仪表的坐标。此外,我们提出了k-最近邻居(kNN)算法用于节点/仪表身份验证,进一步利用了数据传输的安全性。最后,我们用数字方法评估数据包的安全强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号