首页> 外文OA文献 >An Improved Framework for Dynamic Origin-Destination (O-D) Matrix Estimation
【2h】

An Improved Framework for Dynamic Origin-Destination (O-D) Matrix Estimation

机译:一种改进的动态起点 - 目的地(O-D)矩阵估计框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation aims to improve the performance of existing assignment-based dynamic origin-destination (O-D) matrix estimation models to successfully apply Intelligent Transportation Systems (ITS) strategies for the purposes of traffic congestion relief and dynamic traffic assignment (DTA) in transportation network modeling. The methodology framework has two advantages over the existing assignment-based dynamic O-D matrix estimation models. First, it combines an initial O-D estimation model into the estimation process to provide a high confidence level of initial input for the dynamic O-D estimation model, which has the potential to improve the final estimation results and reduce the associated computation time. Second, the proposed methodology framework can automatically convert traffic volume deviation to traffic density deviation in the objective function under congested traffic conditions. Traffic density is a better indicator for traffic demand than traffic volume under congested traffic condition, thus the conversion can contribute to improving the estimation performance. The proposed method indicates a better performance than a typical assignment-based estimation model (Zhou et al., 2003) in several case studies. In the case study for I-95 in Miami-Dade County, Florida, the proposed method produces a good result in seven iterations, with a root mean square percentage error (RMSPE) of 0.010 for traffic volume and a RMSPE of 0.283 for speed. In contrast, Zhou’s model requires 50 iterations to obtain a RMSPE of 0.023 for volume and a RMSPE of 0.285 for speed. In the case study for Jacksonville, Florida, the proposed method reaches a convergent solution in 16 iterations with a RMSPE of 0.045 for volume and a RMSPE of 0.110 for speed, while Zhou’s model needs 10 iterations to obtain the best solution, with a RMSPE of 0.168 for volume and a RMSPE of 0.179 for speed. The successful application of the proposed methodology framework to real road networks demonstrates its ability to provide results both with satisfactory accuracy and within a reasonable time, thus establishing its potential usefulness to support dynamic traffic assignment modeling, ITS systems, and other strategies.
机译:本文旨在提高现有基于赋值的动态原产地(OD)矩阵估计模型的性能,以成功地将智能运输系统(ITS)策略应用于交通网络建模中的缓解交通拥堵和动态交通分配(DTA) 。与现有的基于赋值的动态O-D矩阵估计模型相比,该方法框架具有两个优势。首先,它将初始O-D估计模型组合到估计过程中,以为动态O-D估计模型提供较高的初始输入置信度,这有可能改善最终估计结果并减少相关的计算时间。其次,在交通拥堵的情况下,该方法框架可以在目标函数中将交通量偏差自动转换为交通密度偏差。在拥塞的交通状况下,交通密度比交通量是更好的交通需求指标,因此转换可以有助于提高估计性能。在几个案例研究中,所提出的方法显示出比典型的基于分配的估计模型更好的性能(Zhou等,2003)。在佛罗里达州迈阿密戴德县的I-95案例研究中,提出的方法在七个迭代中产生了良好的结果,交通量的均方根误差(RMSPE)为0.010,速度的均方根误差为0.283。相比之下,Zhou的模型需要进行50次迭代才能获得体积的RMSPE为0.023和速度的RMSPE为0.285。在佛罗里达州杰克逊维尔的案例研究中,提出的方法在16次迭代中获得了收敛解,体积RMSPE为0.045,速度RMSPE为0.110,而Zhou的模型需要10次迭代才能获得最佳解,RMSPE为体积为0.168,速度的RMSPE为0.179。所提出的方法框架在实际道路网络上的成功应用表明,它能够在令人满意的准确性和合理的时间内提供令人满意的结果,从而确立了其潜在的实用性,以支持动态交通分配模型,ITS系统和其他策略。

著录项

  • 作者

    Chi Hongbo;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号