首页> 外文OA文献 >Using genetic algorithms to solve combinatorial optimization problems
【2h】

Using genetic algorithms to solve combinatorial optimization problems

机译:使用遗传算法解决组合优化问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Genetic algorithms are stochastic search techniques based on the mechanics of natural selection and natural genetics. Genetic algorithms differ from traditional analytical methods by using genetic operators and historic cumulative information to prune the search space and generate plausible solutions. Recent research has shown that genetic algorithms have a large range and growing number of applications.The research presented in this thesis is that of using genetic algorithms to solve some typical combinatorial optimization problems, namely the Clique, Vertex Cover and Max Cut problems. All of these are NP-Complete problems. The empirical results show that genetic algorithms can provide efficient search heuristics for solving these combinatorial optimization problems.Genetic algorithms are inherently parallel. The Connection Machine system makes parallel implementation of these inherently parallel algorithms possible. Both sequential genetic algorithms and parallel genetic algorithms for Clique, Vertex Cover and Max Cut problems have been developed and implemented on the SUN4 and the Connection Machine systems respectively.
机译:遗传算法是基于自然选择和自然遗传学机制的随机搜索技术。遗传算法与传统的分析方法不同,它使用遗传算子和历史累积信息来修剪搜索空间并生成合理的解。近年来的研究表明,遗传算法具有广泛的应用范围,并且具有越来越广泛的应用前景。本文的研究是利用遗传算法解决一些典型的组合优化问题,即Clique,Vertex Cover和Max Cut问题。所有这些都是NP完全问题。实验结果表明,遗传算法可以为解决这些组合优化问题提供有效的搜索启发式方法。遗传算法本质上是并行的。连接机系统使这些固有的并行算法的并行实现成为可能。针对Clique,Vertex Cover和Max Cut问题的顺序遗传算法和并行遗传算法已分别在SUN4和Connection Machine系统上开发和实现。

著录项

  • 作者

    Cui Xinwei;

  • 作者单位
  • 年度 1991
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号